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Abstract: Automatic Liver and lesions segmentation from volumetric computerized tomography scans has been 

recently an active research area in images processing field. An accurate automatic segmentation is helpful to make 

personalized treatment schemes and have a big impact on liver therapy planning. However, it stays a challenging task 

due to similar pixel intensity of liver lesions with their surrounding tissues, fuzzy borders, diverse densities, and the 

big variety of size, position, and shape features of liver and lesions. Recently, deep learning achieved the state of art 

performance in many computers vision tasks. Nevertheless, it’s heavy rely on huge amount of labelled data. In medical 

images semantic segmentation, data annotation is time consuming and expensive to require.  In this paper we propose 

a new framework for Liver and lesions segmentation using a weakly cascaded reiterative patches-wise convolutional 

neural network.  A first model is used to localize object of interest and reduce the scope, the result is feed then as ROI 

in a second tuning network for final segmentation. To overcome the conventional methods drawbacks and provides 

greater retention of fine details, a multi-level patches wise training is proposed. Different dilated convolutional kernels 

sizes with are used in the encoder first layer to derive abundant semantic contextual features from CT scans. We also 

propose a new multi-level loss function for high precision. The proposed approach achieved a mean IoU score of 

0,9511 for liver and 0,9471 for lesions segmentation. 

Keywords: Liver segmentation, Liver lesions segmentation, Weakly supervised learning, Deep learning, Computer 

vision. 

 

 

1. Introduction 

Liver diseases are one the most common deaths 

cause. Liver is also a common site for secondary 

lesions. An automatic and fast liver and lesion 

segmentation from CT volumes is essential for many 

Liver therapy procedures. Manual segmentation is 

expensive due to the need of expert, time-consuming 

because the high number of scans per patient, prone 

to human error, and impractical for large datasets. 

Furthermore, the traditional methods based on 

manual feature extraction used for detection of Liver 

lesions are time-consuming and require experts to 

analyze the lesion. Therefore, developing accurate 

methods for automated lesions segmentation has 

become a necessity. 

Approaches with a relatively low computing cost, 

such as thresholding, region growing, or clustering 

methods, are fast and simple to implement. However, 

they rely on intensity data. As a result, such methods 

are vulnerable to boundary leakage on blurred lesions 

and depends on many initialization parameters. Thus, 

to reduce under-segmentation or over-segmentation 

some prior knowledges or other algorithms were 

integrated and combined which make the task more 

complex.  Recently, deep learning has become the 

state of art in computing vision tasks such as 

classification, detection, and semantic segmentation. 

Proposed models in literature produced promising 
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results on medical and biomedical image 

segmentation. However, methods based using deep 

models are complex and data hungry and stay limited 

in semantic segmentation due to the limited training 

data and the expensive labelling cost because the 

need of experts. To reduce the labour cost many semi-

supervised and weakly supervised methods based 

especially on incomplete tags and redundant or noisy 

visual features have been proposed. However, such 

methods make good results in natural images but not 

suitable for medical images, for many reasons such 

as the need of strong annotation to combine with 

weak labels, and the need Conditional Random Field 

(CRF) in post-processing step to filter out 

background pixels, which is not suitable when small 

regions present same morphology. Furthermore, the 

CT images of Liver are noisy due to the degree of 

vascularity and the injected contrast product in 

acquisition stage. This introduces uncertainty and 

make the link between the intensity and the type of 

tissue ambiguous. this uncertainty suggests that the 

intensity value at one pixel may not accurately 

characterize the type of tissue contained within this 

pixel. Additionally, the lesions have a wide range of 

appearances, and neither methods nor prior 

knowledge exist to integrate this prior information 

with every possible appearance of the lesions. 

Additionally, due to the varied types of lesions, the 

changes brought on by the injection phases, and the 

technical variances across imaging machines, healthy 

and tumoral tissues within the liver have different 

intensities and appearances. 

Liver and liver lesions segmentation challenges 

can be resumed in:  

• The wide variety of liver, lesions and healthy 

tissues appearances makes difficult to distinguish 

between tissues. 

• Uneven presence 

• Fuzzy borders with neighbour organs 

• Various liver and lesions densities, shapes, and 

sizes (see Fig. 2). 
• Class unbalance between Liver and lesions pixels 

in volumes (see Fig. 1). 

In addition, other clinical constraints must be taken in 

consideration: 

• Robustness and reusability of the method 

• Speed and on quality of detection 

 

 

(a)                              (b) 

Figure. 1 Unbalance between liver and lesions classes 

 

 
(a)                           (b)                         (c) 

Figure. 2 Example of challenges in liver and lesions 

segmentation: (a) Low-intensity difference between 

nearby organs, (b) Ambiguous boundary, and (c) Similar 

intensities with stomach 

 

• Diverse CT machines 

• Many resolutions levels 

This paper, present a new framework for liver and 

liver lesions semantic segmentation, a cascaded 

patches-wise learning in a reiterative learning 

framework to deal with weakly labelled is proposed. 

The framework is built on two cascaded networks. 

First an Encoder-Decoder network is trained to 

extract the ROI, next a second iterative patches-wise 

model using an area threshold and custom loss to 

resolve imbalanced data problem and tune the final 

segmentation. The results show the efficiency of our 

proposed platform compared with several other 

methods, the fine details at the boundaries are well 

distinguished from the neighbour organs and the 

background due to the proposed tunning network. 

The following are the main contributions of this 

paper:  

1. A patch-based learning approach within an 

encoder-decoder based model to solve weak 

annotation issue in edges detection. 

2. ASPP module with multi-scale dilated 

convolutional is inserted after the bottleneck of 

the Encoder-Decoder network to make the 

network scale invariant and extract context 

information at different scales 

3. A novel multi-level loss function to deal with 

imbalance pixels between foreground and 

background pixels joining metrics of binary cross 

entropy and dice coefficient. 

4. A multi-plane training fusion for volume 

segmentation for a better capture of dependencies 

within the 3 dimensions 

5. Cascaded networks and automatic generating of 

ROI with architectural integration as bounding 

box filters architectural prior to tune segmentation 

reduce false positive and filling holes. 

The rest of this paper is organized as follows: in 

Section 2, we review the relevant related works, the 

proposed methods and materials are presented in 
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Sections 3, in Section 4 numerical experiments and 

discussions are reported. Finally, the conclusion of 

the research work is represented in Section 6. 

2. Related works 

Many works have been proposed to segment 

Liver and Lesions from CT images, they can be 

categorized by features extraction procedures into: 

Hand-crafted methods and deep learning methods. 

In hand craft methods, researchers focused level 

set [1], watershed, statistical shape mainly on 

developing operators such as model [2], region 

growing [3], active contour model [2], threshold 

processing [4] and graph cuts [5] and traditional 

machine learning methods [3, 6] that rely heavily on 

the quality of extracted Liver and  tumors features.  

As instance [7] employed in  semi-automatic strategy 

with a variety of methods, such as fuzzy C-means, the 

region- growing algorithm and graph cut, to segment 

Liver and Liver lesions. The segmentation of liver 

lesions using dynamic regularization of level set 

parameters was also proposed by [8]. To segment the 

liver [8] used super-pixel Simple Linear Iterative 

Clustering on intensity feature and an AdaBoost 

algorithm. [11] used the first order statistical features 

of the liver image to extract the CT liver boundary, 

and afterwards applied a k-Mean classifier based on 

distance and color to identify lesions. [12] used a 

region-growing technique to segment the tumors and 

identify them as benign or malignant based on the 

extraction of texture, shape, and kinetic curve 

parameters. 

The Table 1 below list of the most used handcraft 

methods. 

However, the main disadvantage and limits of the 

discussed hand craft methods is essentially the use of 

intensity information to segment objects. CT images 

contain often a noise occurring in acquisition stage 

and the lesions edges are unclear which leads to 

segmentation errors. On the other hand, methods 

based on level set can deal with these difficulties, but 

they are strongly depending on the good parameters 

and initialization. In conclusion these methods result 

good performance, however they can’t be applied in 

 
Table 1. Handcraft methods classified by approaches 

and algorithms 

Segmentation approach Algorithms 

Gray Level Based 

Methods 

Region Based 

Active Contour 

Level Set 

Histogram Based 

Graph Cut 

Threshold 

Clustering Based 

Texture Based Methods Wavelets 

Watershed Transform 

Pattern Recognition 

 

wide clinical application because they depend to the 

operators and time consuming, about 30 minutes for 

one patient scan with 120 slices. 

Recently, deep learning had high performance in 

many computing vision tasks such as image detection, 

classification, and segmentation. Many researchers 

have been interested on the Liver and lesions 

segmentation task from CT scans. Contributions in 

literature can be classified into two categories. In the 

first category the same model is used in one step to 

segment Liver and lesions, as instance [9] combine 

FCN and a deformable models to an automatic 

segmentation. [15] proposed a Multiscale 

Combinatorial Grouping, 3D Fractal Residual 

Network, and Active Contour Model for liver tumors 

segmentation into CT volumes. [17] used a pre-

processing step and a pre-trained CNN to extract a 

binary segmented image then a smoothing and 

thresholding post-processing step to refine the result. 

In the second category researchers propose the 

segmentation in multiple stages, close to our 

proposed method  [10-13] uses two cascaded deep 

CNNs. The first network segment the liver and feed 

it as input for the training of a second network. The 

second network then segments the lesions in the 

liver’s ROI from the first network. [14] proposed a 

framework with three models, Segnet to segment 

liver and lesions, a neural network with a genetic 

algorithm to detect the slices of the liver that have 

lesions and a U-Net network for lesion segmentation.  

Also close to our framework [16] proposed a cascade 

FCNs models, a localization network to localize the 

liver, the second network to fine tune the liver 

segmentation network, and the last for lesions 

segmentation. [18] used Cascaded deep learning 

models to segment the liver and lesion in more than 

one stage by using VGG and Segnet models. For the 

reason of gap between liver and lesions areas, many 

approaches like ours prefer to separate liver and liver 

lesions segmentations steps. As instance [19]  

segment the liver with a 3D CNN model then provide 

it as initial prior segmentation to segment the liver 

lesions. 

However, even if the proposed methods reach 

high accuracy, the dice coefficient for small region 

must be improved.  In addition, this method still 

struggles to extract fine details at the extremities to 

reduce the loss of slices that occurs at the boundaries 

of the lesions, furthermore present results are very 

sensitive to its input and can easily flow into 

neighboring organs due to the similar intensity. 
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Based on the advantages and limitations of the 

reviewed related works, we propose a new efficient 

fully end to end automatic framework to improve the 

segmentation of liver and lesions in 3D CT image 

scans. Therefore, we propose two cascaded deep 

learning networks, the first is used to extract the ROI 

and reduce the scope of the exam to decrease the 

imbalance between object of interest and background, 

and the second is capable of more precisely tuning 

segmentation and increase boundaries and fine 

details detection. 

3. Material and methods 

The Fig. 3 show a global view of our framework. 

Images are feed from different sources in the form of 

2D slices or 3D volumes, a preparation layer allows 

to format all types of images, followed by a pre-

processing step to adapt the images for the deep 

learning model, the next step consists of creating two 

types of datasets, one containing the images with the 

original size and the second containing patches of 

varying sizes. In the inference stage, the case where 

the input to be segmented is a 3D volume, volume 

will be cut into slices then we predict the 

segmentation of each slice before recreating the 3D 

rendering. 

The cascaded models are inspired by U-Net 

architecture, adapted to patches-wise learning to deal 

with fine details in images and take in consideration 

the scale invariance and global context. U-net [20] 

have been widely used in medical and biomedical 

images segmentation, it consists of an 

encoder/decoder architecture, the encoder extract 

features maps from the input images using 

convolution and max-pooling layers while the 

decoder up-sample the obtained feature maps, unlike 

SegNet [18] where up-sampled max-pooling indices 

are memorized since shallow layers have maximum 

responses to extract boundaries, indices extracted 

from these responses record the location and context 

information,  U-Net feature maps are concatenated 

with corresponding  deep feature maps to reuse 

contextual and spatial information and improves 

localization, then at the last layer pixels are classified 

independently using a SoftMax activation function. 

However, U-Net is unable to learn fine information 

in global context and has weak generalization ability 

when annotated data is limited. To resolve these 

problems, we propose to cascade two models, the first 

one is an Encoder/Decoder network trained on full 

slices, used to generate Grad-CAMs for the 

localization information and an adapted multi-level 

patches input network with custom multiple level  

loss functions to tune the ROI segmentation, we also 

proposed to add an Atrous Spatial Pyramid Pooling 

module in the network bottleneck to handle the 

multiscale features invariance and  use dilated 

convolution in first layer to capture the global context 

information. The result of the first network (Grad-

CAMs) are used as ROI in the second patches-wise 

model. Patches-wise training consists of dividing the 

input images on non-overlapping slides, patches are 

beneficial to extract fine and local information in 

large scale images and fast in training due to less used 

memory and help to reduce the imbalanced data in 

images. In training stage, slices and their 

corresponding ground-truth segmentation maps are 

divided into different patches, by using dividing by 2, 

4 and 8 (256x256, 128x128, and 64x64) patches sizes, 

patches then are fed into the model in multiple levels 

in the network to learn fine details on object edges, 0 

stride is used to preserve same input images size. 

Networks are trained three times on the three 

different slices planes to extract features from 3D 

views, then the task of segmentation consists of 

combining the results models using a soft voting 

classifier. 
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Figure. 3 Framework overview 
 

3.1 Data preparation 

The most popular image formats in medical 

imaging are: DICOM, NIFTI, and less frequently the 

ANALYZE and NRRD formats. The major 

difference between the DICOM and NIFTI formats is 

the information storage. In the DICOM format, the 

2D slices made during acquisition are stored in 

separate files; whereas in the NIFTI format, they are 

concatenated into a volume that is saved as a single 

file. In many works or online challenges, a large 

number of medical images in DICOM format are 

converted to PNG and JPEG formats, this conversion 

can be done either to reduce the learning time of the 

network, or to simplify the data preparation. 

Unfortunately, converting an image from DICOM 

format to JPEG or PNG format results in a significant 

loss of information, invisible to the human eye. This 

is due to the decrease in the number of gray levels 

contained in the image: a DICOM image is encoded 

on 4096 to 65536 gray levels, while a PNG or JPEG 

image contains only 256. 

To preserve all details and prepare our training 

with a file stream to reduce use of RAM memory, 

images in created slices are stored in TIFF format. 

Next, we divide the dataset into 3 subsets: 

Training set: this subset contains most of the 

initial data (70% in this case). It’s used to estimate the 

parameters of the model during the training phase. 

Validation set: this one is used to evaluate the 

performance of the model and it’s fit to the data 

during the learning phase. It often contains a smaller 

part of the data (20% in this case). 

Test set: it measures the performance of the final 

model, in particular whether it has a good 

generalization capacity or, on the contrary, whether it 

is in an overfitting situation. The test set generally has 

a small percentage of the initial data (here 10%). 

3.2 Preprocessing 

Normalizing CT scans is essential to use a 

common intensity basis. In CT images Hounsfield 

units (HU), is a measurement of relative densities 

determined by CT. The HU values fall between -1000 

and 1000.  We adopted a global windowing 

preprocessing step to increase contrast or target 

organs. We set the HU window at the range from -

100 to 200 to remove irrelevant organ and tissues. In 

Fig. 4 we show 3D, coronal, sagittal, and axial plane 

views. The second rows show the preprocessed 

volumes with irrelevant organ removed.  

After the normalization, all features are in same 

scale and have equal importance during training. We 

propose Z-score Eq. (1) : 

 
Figure. 4 Image windowing for contrast enhancing 

 

𝑍 =
𝑥𝑖−𝜇

𝜎
                              (1) 

 

where xi are values, 𝜇 is the mean and 𝜎 is the 

standard deviation. 

Many artifacts can affect CT images during 

acquisition process. Noise, beam hardening, motion, 

scattering, ring, and metal artifacts are the most 

encountered artifacts. To identify and enhance some 

of these artifacts, we propose to use the median filter 

Eq. (2) it is a non-linear filter with good performance 

in decreasing random, salt-and-pepper, and Gaussian 

noises. The median filter works well since it keeps 

the image's edge information while also removing 

extra noise, such filling up tiny liver holes. 

 

𝐼′(𝑢, 𝑣) ← median⁡{𝐼(𝑢 + 𝑖, 𝑣 + 𝑗) ∣ (𝑖, 𝑗) ∈ 𝑅} (2) 

 

Where I’ is the filtered image, I is the image to 

filter, and R the moving region. 

3.3 Localization network 

The Fig. 5 describe the first network architecture 

used to extract Grad-Cams priors (see Fig. 6). The 

network is an encoder/decoder architecture inspired 

from U- Net [20] and it consist of many blocks a 

combination of convolutional, dropout ,max-pooling 

layers and ReLU activation. Shallow and deep layers 

are connected through skip connections. At the end 
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of the network CRF is used as post-processing step to 

refine the segmentation. 
3.4 Tuning network 

The localization network provides a good result 

in almost the whole region of object of interest; 
 

Figure. 5 Localization network 

 

 
Figure. 6 Samples of grads-cams generated by the first 

network 

 

 
Figure. 7 First segmentation issues 

 

however, it struggles in edges details (see Fig. 7), to 

resolve this issue we propose to use a cascaded 

network to refine details in boundaries. 

The Fig. 8 describe the tuning network 

architecture, it’s an encoder-decoder model with 

some concepts inspired from [21]. The model has two 

inputs layers, the CT images and the Box prior filter 

result of the first network. The CT image is fed to in 

the first contracting layer and the patches of this 

images are fed in next contracting layers. The 

bounding filter is fed independently to a new block 

denoted ConvBox. ConvBox is responsible to gather 

shape and location features. Within each skip 

connection, the intersection between the unpooled 

map from a level contracting layer and the location 

feature map from the ConvBox layer is then obtained. 

The ConvBox layer indicates the attention area 

corresponding to the location in the ROI. The output 

of the model is a segmentation mask derived from 

learnt relations between the bounding filters as well 

as the image. The compressed image features are then 

fed to the bottleneck layer with an ASPP module to 

make network scale invariant, then the result map is 

up-sampled and gave to the decoder path on the right 

side. In the end of each decoder layers, a 1x1 Conv 

layer is used to flatten the output from each patches 

layer, the activation function makes the prediction, 

and the output is then converted to the desired 

dimension similar to that of the input image. The 

input of our network combines with the semantic 

information obtained by down sampling to further 

link the input in this layer with the advanced feature 

information closely. Richest and complex features 

representation appear in the deepest encoding layers. 

However, with the multiple convolutions and non-

linearities, the network tends to lose spatial details in 

the high-level output maps which make difficult to 

reduce false detections for small objects with large 

shape variability. To address this issue, we propose 

to use multi-level patches to reinforce the signal on 

fine edges details by concatenating patches features 

in multiple level in the network to identify relevant 
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spatial information from low-level feature maps and 

propagate it to the decoding path. The original image 

is divided into patches according to the size of the 

feature map in each encoder layer. We convolve 

patches with a 1 × 1 convolutional kernel to get the 

same features dimension as the output of previous 

layer. 
 

Figure. 8 Tuning network architecture 

 

The summary of the model is: 

• Total of params: 38,059,141 

• Trainable params: 38,056,069 

• Non-trainable params: 3,072 

3.5 Integration of ASPP 

ASPP is a combination of atrous convolution with 

different rates and spatial pyramid pooling, the aim 

of this module is to capture the contextual features at 

multiple scales by adjusting the receptive field to 

capture multiscale information. For each pixel 𝑖 on 

the output 𝑦  and filter 𝑤 , atrous convolution is 

applied to the input 𝑥 as shown in Eq. (3): 

 

𝑦[𝑖] = ∑  𝑘 𝑥[𝑖 + 𝑟 ⋅ 𝑘]𝑤[𝑘]                  (3) 

 

where 𝑟 is the atrous rate, it determines the stride 

of sampling the input image. 

We employed the ASPP module that is used in 

DeepLabv3 [22] to improve the proposed network. 

Rates of 6, 12, and 18 used. ASPP is applied to the 

feature map produced by the encoder part Fig. 9, and 

the resulting feature map is fed into the decoder part, 

as shown in Fig. 10. 

3.6 Loss function 

The model outputs the pixel-wise probability map 

in the top layer. To guarantee the deep layers with 
 

 
Figure. 9 The ASPP integration 

 

 
Figure. 10 Multiple scales features using multiple parallel 

filters with different rates 4,8,12 and 16 
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correct predictions in deep layers before even reach 

the top layer, we propose to add labels with 

corresponding resolution patches to each layer in the 

decoder path and compare them with the side outputs 

from deep layers. An effective optimization 

algorithm is obtained by using calculating loss 

function in deep levels. 

Cross entropy loss Eq. (4) is a widely used pixel-

wise loss as it computes on each pixel the entropy 

value of prediction probability and ground truth, it 

can well retain boundary information. However, such 

property might lead to severe sample imbalance since 

the background has the majority. 

 

lbce = 

−
1

N
∑  N
n=1 [yn log ŷn + (1 − yn) log(1 − ŷn)] (4) 

 

where �̂�𝑛 is the predicted output model and yn it 

the ground truth. In cross entropy loss we calculate 

the average of per-pixel loss discretely, without 

knowing whether its adjacent pixels are boundaries 

or not. As a result, cross entropy loss only considers 

loss in a local sense rather than considering it globally, 

which is not enough for image level prediction. 
The Dice Eq. (5) include also global context and 

calculates the similarity regions of predicted result 

and ground truth regardless of the target's relative 

size. 

 

𝑙dice = 1 −
2�̂�𝑦+1

�̂�+𝑦+1
                         (5) 

 

Still, training loss would show instability in 

processing small targets. Therefore, we utilize a 

combination of Dice loss and binary cross-entropy 

loss to consider the similarity of local details and 

global shapes.  The higher the value of Dice, the 

better the segmentation effect is. α and β are used to 

weight loss in each layer. We believe that dice must 

be considered in loss function in deep layer to 

preserve the final segmentation result and avoid 

unbalanced data in the background. That’s why for 

each layer i the loss is defined as the sum of two 

losses Eq. (6): 

 

𝑙 = ⁡𝛼⁡𝑙𝑏𝑐𝑒 + 𝛽⁡𝑙𝑑𝑖𝑐𝑒                      (6) 

 

Where the weights α and  𝛽 are defined by: 

 

α = N − i⁡⁡and⁡𝛽 = 𝑖 
 

and the top layer loss is defined as: 𝑙⁡ = ∑ 𝑙𝑖
𝑁
𝑖=2  while 

N is the number of layers in the network. 

3.7 Residual connections 

The amount of GPU memory needed for training 

increases with the size of the input image. 

Additionally, when the architecture uses the complete 

CT as input, the model has a tendency to overlook 

information in some portions of the picture, 

especially when segmenting small regions. To solve  
 

 
Figure. 11 Residual block 

 

this issue, we suggest a patch-based learning 

approach, which has the benefit of being more 

accurate (the network can concentrate on local 

information at the patch) and requiring less memory 

for training and inference, hence speeding up 

computation. Additionally, using 3D patches take 

advantage of the context in the three directions is a 

good way to improve the context information 

provided in the patch (axial, coronal and sagittal). 

Furthermore, basic U-Net architecture has only a 

few layers, to perform better researchers suggest deep 

structures. Though adding more layers sometimes 

increases the network performance, it increase 

remarkably the number of trained parameter and lead 

to redundant computation due to the rule chain and 

increase the problem of gradient vanishing during 

training. Gradient vanishing is the decrease in the 

learning rate with forward propagation due to the 

presence of too many hidden layers, which degrades 

the network’s performance. 

Residual blocks Fig. 11 shares the same idea of 

concatenating the input and propagating the low fine 

details. This enhances the network performance 

without the need for going deeper. Thus, residual 

blocks allow to provide deeper networks and reduce 

the gradient vanishing problem caused by rules chain. 

Moreover, residual connections make the model 

learning easier as they learn a function with reference 

to the input feature map, instead of a referenced 

function. Therefore, it overcomes the problem of 

degradation of a deeper network. 

3.8 Iterative patches-wise training 

Recently, patching learning have been proposed 

in many works [23-25]. The idea consists of dividing 
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an image into non-overlapping patches to decrease 

the need of memory in training step. In our 

approaches patches are used apply contrastive 

learning to enforce network to cluster the same 

instances and push away the distinct instances. This 

mechanism make network focusing more on local 

fine-grained features and more fine local features. In 

our method we utilize an iterative patch learning to 

manage the large receptive field and make the 

network mine more local non-discriminative features 

during optimizing, and thus locate more complete 

target object regions and fine boundaries. By iterative 

training on the new self-labelled dataset, we improve 

the model performance. 

The algorithm 1 resume the iterative strategy: 

 

Algorithm 1  

Input: X {𝑥1, 𝑥2, ..., 𝑥n}: Training dataset  

            Y {𝑦1, 𝑦2, ..., 𝑦n} : Annotations 

Output: pixel-wise segmentation maps 

 

Step 1: Choose a threshold area 𝜇.  

Step 2: For each level extract patches P {𝑝1, 𝑝2..., 
𝑝3} 

Step 3: Train the model on X and Y 

Step 4: Obtain segmentation results S {s1,s2..., s3} 

Step 5: X = X ⋃ P and 𝑌 = 𝑌 ⋃ S 

Step 6: Fine-tune the network with new images 

and their patches.  

Step 7: Repeat step 3 until the integration model's 

performance stops improving. 

 

To decrease imbalance due to background.  We 

define an area threshold μ as follows: 

 

𝜇 =
𝐴

𝐶
                                     (7) 

 

where A is the annotated area C is the area of the 

patch, then patches with an area threshold lower than 

0.3 are discarded. 

The ConvBox is a succession of max-pooling 

layer and three convolutional layers to extract the 

location feature map from the filter input. The output 

in the correspondent convolved features of each layer 

for even full images and their patches, a multiply 

operation is then performed between output and the 

features from network expanding path as prior 

integration. 

3.9 Post-processing 

The output image in the segmentation process is 

usually not very clear due to the weak features  

 

 
Figure. 12 ConvBox block 

 

 
(a)                                (b) 

Figure. 13 Removing small artifacts: (a) final probability 

map and (b) output after removing false positive 

 

Fig. 13. Conditional random field is the most used in 

postprocessing in image segmentation to improve 

results and reduce errors, in our framework it is used 

to optimize the ROI segmentation results in first 

network. Typically, CRF is a graph-based algorithm 

where adjacent nodes are coupled to energy terms, to 

facilitate the assignment of the same labels to the 

spatial proximal pixels.  

3.10 Multi-planes fusion and soft voting inference 

In the proposed segmentation method Fig. 14, the 

models were trained on the three views planes 

independently. In the inference stage the three masks 

are combined to compute the final consistence 3D 

prediction. The motivation of the idea is the 3D 

context brought by the orthogonal views, each 

network predicts segmentation in a given slice 

orientation, and learn a regularity of 2D shapes in 

slices, but also a certain regularity along the direction 

orthogonal to the slices. To merge result masks in 3D 

volume a soft voting is proposed instead of hard 

voting classifiers (union, intersection, or majority 

voting) which could lead to over or under-

segmentation. In soft voting, we predict the class 

labels based on the predicted probabilities for 

classifier and allows one mask to fail without 

downgrading the final results in the areas where the 

other two are successful.   

Let V ∈ RH×W×D be our 3D volume, where H, W, 

and D are respectively the height, width, and depth of 

the volume. Furthermore, V(p, r, c) is a single voxel 

at the location (p, r, c), let P(p, r, c) the predicted 

value of the voxel V. 

 

𝑃(𝑝, 𝑟, 𝑐) =
1

3
⁡∑ 𝑃𝑖(𝑝, 𝑟, 𝑐)

3
𝑖=1                (8) 
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4. Experimental results & discussions 

4.1 Datasets 

The proposed method was evaluated on two 

public CT datasets LiTS 2017 and 3D-IRCADb-01. 

The LiTS 2017 dataset includes 3D CT images of 

individuals who, in 75% of cases, had liver tumours  
 

 
Figure. 14 Models are trained three times with 2D slice. During the inference, the 2D slices are concatenated to 

obtain 3D volumes and then merged using soft voting 

 

 
Figure. 15 Example of healthy liver images in 

datasets in LiTS dataset 

 

of various sizes. The in-plane resolution was always 

512x512 pixels, with the pixel spacing, slice 

thickness, and number of slices varying from 0.56 to 

0.87 mm, 1 to 4 mm, and 74 to 260, respectively.  

Provided tumors are manually segmented by clinical 

experts and considered as ground truth. The dataset 

for LiTS was collected from 6 medical centers. The 

CT scans as well as the segmentations are provided 

as Nifti .nii files, examples in Fig. 15. 

3D-IRCADb-01 dataset contains 3D CT-scans of 

20 persons. In 75% of cases hepatic tumours are 

present. Images are provided in DICOM format in 

256x256 size. 

4.2 Implementation details 

The parameters used in our experiments are 

described in the Table 2. The training done in Google 

Cloud platform, an instance with a total memory of 

128 Go, 16 CPU and 1 Nvidia Tesla 16 GB GPU. 

Training time was up to 3 hours per model, with an 

interference time up to 0.01s per slice. 
Table 2. Training hyper-parameters 

Parameter Value 

Framework Keras + Tensorflow 

Optimizer Adam 

Learning rate 10-4  

Dropping rate 0.2 

Epochs stopping count 50 

Epochs 100 

Batch size 4 

4.3 Evaluation 

We use Accuracy, Dice, and mean Intersection of 

Union coefficient (IoU) to measure the overlap of the 

segmentation result and ground truth in order to 

quantitatively assess the performance of the 

suggested technique. IoU values vary from 0 to 1, 

with a value of 0 denoting no overlap and a value of 

1 denoting perfectly segmented pixels. Accuracy 

values range from 0 to 100 and reflect the percentage 

of correctly predicted pixels. 
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Accuracy =
𝑇𝑃+TN

𝑇𝑃+TN+FP+FN
                (9) 

 

Dice =⁡
2|𝑋∩𝑌|

|𝑋|+|𝑌|
                       (10) 

 

IoU =⁡
|𝑋∩𝑌|

|𝑋+𝑌|
                        (11) 

 

mIoU =⁡
1

𝐶
∑ 𝐼𝑜𝑈𝑐𝑐                   (12) 

 

where X is the predicted region and Y the ground 

truth region, TP denote true positive predictions, TN 

true negative, FP false positive and FN false negative 

predictions. 

4.4 Experiment results 

The statistical results of the proposed method are 

represented in Table 7 for Liver and in Table 8 for 

Lesions. Our method achieved a DICE of 0.9511, 

0.9501 and 0.9465 respectively in Axial, Coronal and 

Sagittal plane. And an average IoU of 0.9070, 0.8976 

and 0.8988 respectively in Axial, Coronal and 

Sagittal plane. The Table 3 shows the impact of the 

proposed patches level method on the final 

segmentation performance we evaluate integrating 

patches in each level to measure the impact of this 

proposed strategy on the final performance, and the 

Table 4 show the effects of the proposed custom 

multiple level loss function, the model was trained 

with one loss function at the end of the model then 

with the proposed weighted custom loss function , 

then the Table 5 and Fig. 16 show the impacts of the 

reiterative learning proposed in the tuning network as 

described in the framework algorithm, the model is 

trained iteratively on the self-augmented dataset, 

iteration stop once we reach the best metrics. 

 
Table 3. Impact of patch level on segmentation 

performance (Axial plan) 

Parameter Patch Level 

Level-1 

256 

Level-2 

128 

Level-3 

64 

Average Accuracy 0,9512 0,952 0,9732 

Dice 0,9301 0,9102 0,9511 

mIoU 0,8810 0,870 0,907 

 
Table 4. Effects of multi-level custom loss function 

(Axial plan) 

Metrics Custom Loss Function 

Without With 

Average Accuracy 0,9020 0,9732 

Dice 0,9430 0,9511 

mIoU 0,8913 0,907 

 

Table 5. Effects of iterations in the reiterative learning 

(Axial plan) 

Iter Metrics 

Accuracy Dice mIoU 

Val Test Val Test Val Test 

N = 0 0,9520 0,9410 0,8402 0.8510 0,8210 0,8530 

N = 1 0,9572 0,9481 0,8682 0.8964 0,8470 0,8723 

N = 2 0,9600 0,9575 0,8953 0.9015 0,8670 0,8870 

N = 3  0,9690 0,9591 0,9120 0.9265 0,8810 0,8920 

N = 4 0,9701 0,9610 0,9420 0.9310 0,8750 0,8910 

N = 5 0,9732 0,9621 0,9511 0.9331 0,9700 0,9070 

N = 6 0,9730 0,9732 0,9641 0.9244 0,9640 0,9010 

N = 7 0,9710 0,9730 0,9672 0.9202 0,9680 0,9020 

 

The framework has been validated on two 

different datasets, with different input images sizes 

512x512 and 256x256, the Table 6 present the 

obtained results: 

 
Table 6. Performance comparison on two datasets 

Category Dataset Acc Dice mIoU 

Liver 
LiTS 0,9732 0,9511 0,9070 

3D IRCADB 0,9701 0,9330 0,9210 

Lesion 
LiTS 0,9471 0,9313 0,8718 

3D IRCADB 0,9524 0,9417 0,9249 

 



Received: September 1, 2022.     Revised: September 23, 2022.                                                                                       537 

 

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022           DOI: 10.22266/ijies2022.1231.47 

 
Figure. 16 Metrics evolution per number of iterations 

 
(a)                  (b)                 (c)                  (d) 

Figure. 17 Framework results in liver segmentation: (a) 

the CT images, (b) the ground truth, (c) the ROI extracted 

with the first network, and (d) the tuned segmentation 

 

 
(a)                  (b)                 (c)                  (d) 

Figure. 18 Framework results in liver lesions 

segmentation: (a) the CT images, (b) the ground truth, (c) 

the ROI extracted with the first network, and (d) the 

tuned segmentation 
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5. Conclusions 

In this paper, we developed a novel framework 

for weakly semantic segmentation. The framework 

contains two cascaded and adapted Encoder-Decoder 

networks. The first one extract the Grad-Cams to 

localize the region of interest that we feed into a 

second tuning network using a customized loss 

function and an iterative and multi-level patches wise 

learning. The model reaches a dice coefficient of 

0.9199 and mIoU of 0.965 on test data. Although 

iterative learning improves the performance indices 

of our model, after a certain number of iterations, an 

overfitting occurs when the accuracy and dice on the 

validation continues increasing but decrease on test 

data.  The results show that our model performs well 

on small objects comparing to other models due to 

our proposed tuning network with the fed patches in 

deep levels. As post-processing method, we suggest 

use CRF just in the localization network. CRF shown 

a good result to remove small artifacts in the ROI. 

However, in the patches segmentation, and due to 

errors caused by the weak annotation the data 

distribution learned by the network is not completely 

correct, and CRF didn't bring any remarkable 

improvement.  

However, the framework performance relatively 

depends on some manually defined hyperparameters 

and taking time to adjust. The contours of the 

segmentations approximate the specialist’s markings, 

being slightly larger or smaller. We notice also the 

presence of some wrong classified pixels in the holes 

lesions that can be improved by using texture features. 

As future perspective, the framework can be 

improved also to classify the type of detected lesions. 
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