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Abstract: Liver cancer is a common type of cancer that causes death, because there are no noticeable symptoms at 

an early stage, as this disease is not detected in most patients until cancer has reached the advanced stage only. 

Researchers are developing algorithms that doctors can use to detect liver tumours early by examining images of 

tissue from a biopsy or an abdominal medical image. The tissue expert must put in the time and effort required at this 

stage to determine whether or not this tumour is cancerous and in need of treatment. This model can then be used by 

a histology expert to make an initial diagnosis. Convolutional neural networks (CNNs) are employed in this paper to 

propose a novel combination of deep learning models that can transfer information from previously trained global 

models. After that, this information was decanted into a solo model to improve our model approaches to increase the 

performance in time and accuracy with tuning to an encoder, decoder, shortcuts, and skip connections to custom 

convolution layers for three classes such as background, origin, and Tumour shape. Regarding semantic 

segmentation, our model has proved to be a highly effective way to make results more accurate and valuable to assist 

in the diagnosis of the liver Tumour using CT scans. As a result, we were able to develop a hybrid model that is 

capable of recognizing CT images of a liver tumour. Our research yielded the greatest possible results, which we got, 

reaching 99.50% accuracy, a 86.40% precision and a recall of 97.90%. This accuracy with multi-class is higher than 

that obtained using other previous models that obtained the best accuracy of 0.991 during the annual periodic 

examination campaigns for liver cancer detection. Using this model, experts in this field can save time and effort 

while becoming more informed choices. It also keeps the time and effort that would otherwise be required to 

administer this treatment, especially during the annual examination campaigns. 

Keywords: CT, CNN, Data augmentation, Deep learning, Liver cancer, Multi-class segmentation, Transfer learning, 

Tumour detection. 

 

 

1. Introduction 

Liver cancer is amid the most prevalent kinds of 

malignant illnesses, and it was responsible for the 

deaths of 745,000 people globally in 2012 [1]. 

Statistics from 2018 indicate that liver cancer is one 

of the leading causes of mortality. It ranked third in 

terms of the number of deaths, as it achieved 84,000 

deaths despite the high ways of cancer in general 

and the high cure rates for many diseases and their 

impact on cancer. However, the rate of cancer has 

increased. The liver is among the most often 

affected organs by cancer Tumour metastases, and 

computed tomography (CT) remains one of the most 

commonly utilized imaging modalities for the 

detection, diagnosis, and monitoring of hepatic 

lesions [2]. A CT scan of the abdomen might be 

performed useful in the early identification of a 

variety of different types of liver cancer, including 
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pancreatic cancer. The procedure may also give 

exact statistics for the size, shape, and position of 

any cancerous Tumour s in the liver or elsewhere in 

the abdomen, as well as details on the blood vessels 

that surround the tumors. Intravenous injection of a 

contrast agent before and after, images are captured, 

with the portal phase images (taken 60–80 seconds 

after the injection) providing the best identification 

of lesions. It is necessary to know the precise size, 

shape, and location of the lesions in order to 

administer these treatments. The radiologist must 

spend time reviewing a 3D CT image with 

numerous lesions in order to manually detect and 

segment the lesions. Given the complexity of this 

job, it emphasizes the necessity of computer-aided 

analysis to help physicians detect and evaluate the 

size of liver metastases in CT images. Due to the 

differences in contrast enhancement behaviour 

between liver lesions, automatic identification and 

segmentation of liver lesions and parenchyma is a 

challenging job. Furthermore, due to individual 

variations in perfusion and scan time, the image 

contrast between these tissues may be poor.  

We present a novel method for creating deep 

learning methods in the area of liver tumour 

detection and segmentation using artificial 

intelligence (AI) to address these issues. The 

detection centred on the effect of combining a pre-

trained VGG16 and ResNet50 architectures in the 

first portion of our model for feature extraction. 

After that, we employed transfer learning and fine-

tuning techniques using the CNN's architecture via 

the UNet++ architect and custom layers to get multi-

class segmentation accuracy to segment three 

classes: background, origin, and tumor. 

Consequently, the significance of our research lies 

in the incorporation of multiple hypered pre-trained 

models into CNN layers, such as DeeplapV2 and V3, 

VGG-16, ResNet-50 and UNet++ to detect liver 

tumours. The principal contributions of this study 

can be summed up as: 

• Propose a novel Hyperion pre-trained models 

and hypered architect that makes use of CNNs 
for liver multi-class segmentation and Tumour 

detection. Our model analyzes whole images 

rather than patches, which eliminates the need 

to pick representative patches, avoids 

unnecessary computations when patches 

overlap and allows our network to scale up to 

more effectively as image quality increases. 

• As a result of the small size of the used dataset, 

we have turned to data augmentation by 

applying scale transformations to the readily 

available training images. The scale 

transformations enable the network to learn 

how to change the texture characteristics of the 

immediate environment. 

• For the purpose of liver segmentation, we 

employ a fully convolutional architecture and 

compare it to a patch-based CNN for the 

detection of liver metastases in CT scans. To 

our knowledge, this is the first study to segment 

the liver and identify lesions using a full CNN 

combination. 

• Demonstrate an accurate system that 

outperforms other previous methods on small 

datasets and solves the overfitting issue. 

The remaining sections are grouped as follows: 

The recent work is discussed in Section 2. Section 3 

illustrates the proposed method adopted in this work. 

Experimental results and analysis are shown 

comprehensive discussion in Section 4. The paper is 

concluded with discussion of future works in 

Section 5. 

2. Related work 

In this section, we discuss in detail the 

approaches currently in use related to liver cancer 

detection, segmentation, or classification. The 

previous methods are classified into two categories, 

such as machine learning [3, 4] and deep learning 

approaches [5-12]. However, the authors have only 

included deep learning-related approaches in 

accordance with the scope of this work. In addition, 

several recent reviews [13, 14] in this field 

demonstrate that deep learning has been the focus of 

nearly all recent liver cancer detection efforts. 

Havaei et al. [5] presented a segmentation network 

to glioblastomas (brain tumors) by using MRI 

images. They simultaneously exploited both local 

and global contextual characteristics. However, they 

focused on improving the processing time, not on 

accuracy, using traditional CNN. Dong et al. [6], 

demonstrated the use of hybridized complete CNN 

for the identification and segmentation of liver 

cancer utilizing a deep learning algorithm. 

Numerous layers were employed as feature 

extractors, and the extracted features were combined 

with multiple slices. However, they were able to 

diagnose cancer with a low accuracy of .09722. 

Sureshkumar et al. [7], demonstrated a liver Tumour 

detection system based on deep learning algorithms. 

They used a Probabilistic Neural Network (PNN), 

one of the deep approaches, to recognise and 

diagnose liver cancers. They discovered that the 

PNN approach outperformed other machine learning 

methods in terms of overall accuracy while just 
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using a few features. However, this method is 

slower than other neural network models when 

classifying new cases and require more memory 

space for the processing.  Kaur et al. [8], used 3D 

CT images of liver cancer to demonstrate a multi-

organ classification approach based on CNN. To cut 

down on the computing burden of deep learning, 

they devised this approach. Data augmentation 

approaches yielded a good precision of 99.1%. 

However, this method is Computational complexity 

and suffer from overfitting problem. Shukla et al. 

[9], presented a cascaded CNN approach for liver 

cancer detection. First, they partition the liver from 

end to end in order to limit the likelihood of a 

mistake occurring during training. After that, they 

use the liver segmentation images to apply the 

approach described. The approach they used yielded 

a low precision of 94.21%. Therefore, this method is 

not robust and obtain low performance with big and 

small data. A deep learning-based bio-inspired 

method for the detection of liver cancer was 

introduced by Ghoniem [10]. The author used a 

hybrid segmentation strategy based on multiple 

models, including optimization using artificial bee 

colony and UNet Network, for liver lesions 

extraction from CT images. For extracting the 

features and classification, the author used a hybrid 

method that was 98.5% accurate. This method 

obtained a good result on big data, however, the 

method obtained very low classification results 

when working on small data. Zhou and Siddiquee 

[11] presented UNet as a new network architect 

called UNet++ for medical image segmentation. 

centred on a densely supervised encoder-decoder 

network with nested, dense skip pathways 

connecting the encoder and decoder sub-networks. 

In addition, they asserted that the optimizer would 

handle a learning task when the feature maps of the 

decoder and encoder networks are roughly 

equivalent and achieved 92.52% accuracy for cell 

nuclei, 32.12% accuracy for colon polyps, 82.90% 

accuracy for liver, and 77.7% accuracy for lung 

nodules. Ronneberger et al. [12] presented a classic 

UNet network and training based on data 

augmentation for liver segmentation. An expansive 

path (right) and a contracting path (left) are both 

present in the network architecture (right side). The 

contracting route follows the design of a typical 

convolutional network. It entails applying two 3×3 

convolutions (unpadded convolutions) repeatedly, 

followed by a rectified linear unit (ReLU) for each 

one, and down-sampling, up-sampling, and binary 

class segmentation of a 512×512 image. A 

segmentation accuracy of 92.03% was attained. This 

method obtained a very low segmentation accuracy.   

A novel and efficient integration technique for 

the detection of liver tumors is presented in this 

paper to overcome the issues of the previous works. 

The proposed method outperforms the majority of 

existing algorithms on both small and large datasets. 

Additionally, compared to earlier low-resource deep 

learning methods for liver detection, our approach is 

more durable. 

3. Methodology 

Our new model is explained in this section in 

details. In addition, all datasets used to evaluate the 

proposed models are discussed in this section in 

details. Figure 1 displays the central block diagram 

of the proposed technique with LiTS NII files CT 

scans, and 3D-IRCADb-01 dicom CT scans as 

combined dataset input. 

3.1 Liver cancer datasets 

3.1.1. First dataset LiTS17 

In this study, the liver Tumour segmentation 

benchmark, LiTS17 [15], is employed. There are 

130 CT scans and 70 CT scans for training and 

testing, respectively in this data set. LiTS dataset 

NII files containing 3D abdomen image formatted as 

CT scans images and masks. We prepare dataset CT 

scans sliced 3d NII volumes CT scan into 2D image 

slices training set and testing set to JPEG, PNG 

images to easily train and testing our model. 

3.1.2. 3D-IRCADb-01 dataset 

Twenty 3D CT scans from twenty liver cancer 

patients make up this dataset [16]. In each CT image, 

the liver’s average density ranges from 40 to 135, 

and the resolution is 512x512. Masks images are 

divided into discrete DICOM segments. A total of 

20% of the CT scan images were used in this study 

as testing and validating sets. That is, using Python 

libraries, a random sample of 26 CT images was 

chosen. Ten percent of the dataset's images were 

disassembled for testing as a final step. After 

separating the test sample, 80% of the images for the 

training set were saved, and 10% of the remaining 

images were saved for validating. Thus, we had 80% 

training, 10% testing, and 10% validating images. 

3.2 Data pre-processing 

This stage is divided into two main steps: slicing 

datasets and data augmentation. 
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Figure. 1 Central block diagram of the proposed technique  

 

 
Figure. 2 Slicing 3D volume to 2D JPEG, and PNG 

images 

3.2.1. Slicing datasets 

LiTS dataset NII files and 3D-IRCADb-01 

dataset Dicom files containing 3D abdomen image 

formatted as CT scans images trains and masks, we 

prepare dataset CT scans sliced 3d NII volumes, and 

Dicom CT scans into 2D image slices training set, 

validating set, and testing set to JPEG, PNG images 

to easily train and test our model. Fig. 2 shows 

slicing 3D volume to 2D JPEG, and PNG images. 

3.2.2. Data augmentation 

By replacing some of the training images with 

new ones created using the data augmentation 

approach, which relies on the following attributes, 

the training dataset was improved to enable the 

proposed network to see a wider variety of tumors. 

We apply the following techniques: Random 

Contrast, Random Brightness, Gaussian Noise, 

Random Scale, Colouring, Horizontal Flip, 

Cropping, Rotate. Fig. 3 depicts images after 

augmentation techniques have been applied.  

Our method expands the training and testing 

sample by including medical slice images with new 

attributes generated from the fundamental set. By  
 

 

Volume NII CT 3D Set JPEG, PNG 2D 

Slices 
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Figure. 3 Examples of the input images from the used 

datasets after applying augmentation techniques  
 

expanding the data in this manner, it is possible to 

assess how well the model can distinguish between 

photos that have been rotated, coloured, cropped, 

blurred, or enlarged. The models can recognize a 

form even if it is upside down and can store shapes 

and provide accurate results when they are in a 

certain location. 

3.3 Proposed learning model 

We discovered that all research using deep 

learning were based on a single model or a 

comparison of various models in the section on 

related work. In this research, we combine a number 

of pre-trained models and exploits the distinct 

features of each. The essence of computer vision is 

the traditional machine learning method, which is 

used to describe and discover features, but it is 

ineffective for complex classifications and is 

therefore no longer employed. 

When used to classify images, deep learning 

techniques such as CNNs have made significant 

contributions to the field of tumour classification. In 

this study, we compared the performance of two 

different pre-trained model combinations on the two 

datasets and then confirmed the best one to be the 

confirmed model. 

Fig. 4 depicts how we combine DeeplapV3 [17] 

and ResNet-50 [18]. Figure 5 depicts how we 

combine VGG-16 [19] with ResNet-50V2 [20] and 

U-Net++ [11].  

3.3.1. First proposed model 

To take the advantages of pre-trained previous 

experience and the weights revealed, we utilized 

DeeplapV3 [17] and ResNet-50 [18] as pre-trained 

models. The input mage size that fed to our model is 

512×512 with total parameters of 17,869,697, which 

is shown in Figure 6. There are nine blocks in this 

structure and with ReLU activation function in each 

block. A 2D convolution and max-pooling layers, 

and a batch normalisation layer make up the first 

block. Ten convolution and batch normalisation 

layers and three additional layers make up the 

second block. Thirteen convolution layers, four 

unique layers and thirteen batch normalisation layers 

make up the third block. The block 4 contains 19 

convolution and batch normalisation layers with six 

adding layers. The following block consists of four 

layers of convolution, one layer of concatenation, 

four layers of batch normalisation, and one layer of 

average pooling. One concatenation layer and two 

dense layers are followed by a global average 2D 

pooling layer, and two convolution layers are 

followed by two batch normalisation layers. The 

remaining blocks each have a batch normalisation 

layer with an activation function on top of a layer of 

2D convolution. Block 8 also has two dense layers 

and a global average 2D pooling layer. 

The model now includes the following layers: 

• Global average 2D pooling layer: The 

concatenate layer is fully connected for down 

sampling operation. 

• Addition layer: Called the "Add layer”, which 

add the output properties of the layers. 

• The neurons from the output rows make up the 

dense layer type output layer. 

3.3.2. Second proposed model 

We used VGG-16 [19], ResNet-50V2 [20], and 

U-Net++ [11] as pre-trained models in this model. 

Figure 7 depicts the initial portion of the model with 

input size of 512×512 and the total number of 

parameters is 4,938,371. 

This structure is made up of seven blocks. A 2D 

convolution layer, a batch normalisation layer, and a 

2D average-pooling layer make up each of the first  
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Figure. 4 Block diagram of our first model 

 

 
Figure. 5 The structure of the second model 

 

four blocks. A 2D convolution layer, a batch 

normalisation layer, and a 2D convolution transpose 

layer with a ReLU activation function make up the 

fifth building block. This block also includes a 

concatenation layer and a transposition layer.  

A 2D convolution layer, a concatenate layer, and 

a batch normalisation layer are among the remaining 

building blocks. The following layers have been 

supplemented to our model: 

• Global average pooling layer: the concatenate 

layer is fully connected for down sampling 

operations. 

• Transpose layer: This layer inverts the weights 

by 180 degrees and transposes them; its name is 

Conv2DTran. 

• UNet ++ layers: a newer architecture for 

segmenting medical images. Decrease semantic 

gaps between feature maps of encoder and 

decoder subnetworks by using the re-

engineered skip paths. 
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Figure. 6 The first portion of the first model's architecture 

 

4. Experimental results and analysis 

The Tensorflow with Keras library was used to 

run the models in Python. On the two datasets, we 

tested both models, and the model that performed 

the best was chosen as our model. Then, we 

contrasted the confirmed model with other earlier 

approaches developed in this area. 

4.1 Evaluation metrics 

To test out our model, we calculate the 

following evolutions metrics: 

i. Calculate the Precision and Recall of 

our results. 

ii. Calculate the Accuracy  

iii. Calculate dice coefficient (F1 Score) 

which are defined as follows: 

 

𝑃 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                            (1) 

 

𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                            (2) 

 

𝐴𝑐𝑐 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                   (3) 

 

𝑑𝑖𝑐𝑒𝑐𝑜𝑓 =  
2𝑇𝑃

(2𝑇𝑃+𝐹𝑃+𝐹𝑁)
                 (4) 
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Figure. 7 The first portion of the second model 

 

 
Figure. 8 Over 20 iterations, the validation (blue line) and accuracy (red line) curves of the first model converge 

 

Where P= Precision, R= Recall, Acc= Accuracy, 

dicecof= dice coefficient, TP=True Positives, 

FP=False Positives, and FN=False Negatives. 

4.2 Results on LiTS17 database 

4.2.1. The results of our first model 

The test set for the dataset was now used to evaluate 

the first suggested model. Using the previous data 

and divisions, the model was trained over the course 

of 20 epochs. The convergence of the accuracy and 

the validation curve is shown in Fig. 8, which shows 

that the training has stabilised and accuracy has 

increased after 8 epochs. By training the model on 

the training example and comparing the results to 

the above-mentioned test example, the hidden 

coefficients for the model's final layer are improved 

to better matching the images to be trained in each 

iteration. The model checks images in the validation 

sample after every training session and achieves a  
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Figure. 9 Validation (blue line) and accuracy (red line) 

loss curves for the second model during 20 epochs 

 

specific accuracy. This procedure is recurrent for all 

training epochs, and it was found that in epochs 10 

and above, this accuracy does not improve beyond a 

certain threshold. In our instance, the accuracy was 

0.995, meaning that 99.53% of the model's 

predictions were correct during both the training and 

validation stages. The loss curve is shown in Fig. 9 

as well. 

4.2.2. The results of the second proposed model 

Using the same test set as the first model, the 

second proposed model was put to the test. Fig. 11 

depicts the model's training process over 20 epochs. 

After 10 epochs, the training has stabilised and 

accuracy has increased, according to the drawing of 

the validation and accuracy curves in the figure.  

Visual examples of our results for identifying 

liver cancer on two images from the dataset are 

shown in Fig. 10. Consistently, the model checks 

images in the validation sample after every training 

session and achieves a specific accuracy. It was 

found that in phases 18 and above, the accuracy be 

stable during the end of iteration. The accuracy in 

 

 

 
Figure. 10 Visual outcomes of the first cancer detection 

model (above image is normal case with no tumour 

detection and other image is abnormal case with tumour 

detection) 

 
Figure. 11 During 20 iterations, the validation (blue line) 

and accuracy (red line) curves of the second model 

 

 

 
Figure. 12 Visual outcomes of the second cancer 

detection model (above image is normal case with no 

tumour detection and other image is abnormal case with 

tumour detection) 

 

Table 1. In the first dataset, the overall performance of 

the two models 

Model Acc P R Dice_cof 

First 0.995 0.864 0.979 0.516 

Second 0.977 0.820 0.580 0.640 

 
our instance was 0.977, meaning that 97.7% of the 

model's predictions were correct during both the 

training and validation stages.  

Visual samples of our results for identifying 

liver cancer using our second model on two images 

are shown in Fig. 12. 

Table 1 shows the overall performance of the 

two models using the metrics from the first dataset. 

4.3 Results on 3D-IRCADb-01 dataset 

On the second dataset, the same tests are run for 

the two models (3D-IRCADb-01). 

4.3.1. The results of the first model 

In this model, the test set—which had been 

randomly chosen from the second dataset—was 

used to evaluate the first suggested model. Using the 



Received:  August 21, 2022.     Revised: September 10, 2022.                                                                                          401 

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022           DOI: 10.22266/ijies2022.1231.36 

 

previous set of data and divisions, the model was 

trained over 30 iterations. As shown in Fig. 13, the 

validation and accuracy curve converge, indicating 

that the training has stabilised and the accuracy has 

risen after 10 iterations. 

As a result of training the model on the training 

examples, the values of the hidden parameters of the 

model's final layer have been modified to better 

match the images to be trained at each stage. It was 

found that in iteration 15 and above, the accuracy be 

stable during till the end. In our instance, the 

accuracy reached 0.995, indicating that 99.5% of the 

model's accuracy was maintained during the training 

and validation phases.  

4.3.2. The results of our second model 

Using the previous set of data and divisions, the 

model was trained over 60 iterations. As shown in 

Fig. 14, the validation and accuracy curve converge, 

indicating that the training has reached a stable state 

and the accuracy has risen. It was found that in 

epochs 25 and above, the accuracy be stable during 

till the end. In our instance, the accuracy reached 

0.973, indicating that 97.3% of the model's accuracy 

was maintained during the training and validation 

iterations.  

 

 
Figure. 13 Over 30 epochs, the validation (blue line) and 

accuracy (red line) curves of the first model converge 
 

 
Figure. 14 Over 60 epochs, the validation (blue line) and 

accuracy (red line) curves of the second model converge 

Table 2. In the second dataset, the overall performance of 

the two models  

Model Acc P R Dice_cof 

First 0.995 0.514 0.986 0.561 

Second 0.973 0.089 0.977 0.778 

 
Based on the metrics from the second dataset, 

Table 2 displays the overall performance of the two 

models. 

5. Discussion 

Using both datasets, the first proposed method 

achieved higher accuracies than the second method. 

This is evident from the previous results. We 

verified the first approach as our approach as a 

result. The outcomes also demonstrate that the first 

method outperformed earlier deep learning 

techniques in terms of robustness and efficiency, 

achieving the highest accuracy of 99.5% on small 

dataset. Additionally, using the first dataset, Figure 

10 demonstrates how the first model successfully 

distinguishes cancer from the healthy image. 

However, as shown in Fig. 12 (a), the second 

method exhibits roughly noise when identifying 

cancer from the normal case. The first model 

performs better than the second when there is less 

noise when using the second dataset (small data) to 

identify cancer from images. In addition, From 

Table 1, we can show that the first model’s ability to 

predict the positive images from the first dataset is 

97.92%. Also, from same Table on the first dataset 

we can find that, the second model’s ability to 

predict the positive images is 58%. On the second 

dataset, Table 2 shows that the first model’s ability 

to predict the positive images from the first dataset 

is 98.60% and the second model is 97.70%. These 

results also prove the robustness of the first 

proposed model compared with the second model 

when working on multi-task classification. Fig. 15 

and 16 show the evaluation of recall during the 

iterations for the first and second model on the first 

dataset. 

From Fig. 15 and 16, we can observe that the 

first model can predict the true images of the liver 

cancer better than the second model. From Figure 15, 

the proposed first model start with 96.5% detecting 

of the true images during the first 20K iterations and 

the recall increasing to reach 80K iterations and 

stable when reaching 140K iteration with an average 

recall of 98.6%. Whereas the second model is 

starting with a very low recall during the first 80K 

iterations with an average recall of 45% and stable 

when reach to 140K iterations with an average recall 

of 58%. 
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Figure. 15 Evaluation of recall during the iterations for 

the first model on the first dataset 

 

 
Figure. 16 Evaluation of recall during the iterations for 

the second model on the first dataset 

 

The reasons of the increasing in the performance 

of the first model are as follow: 

- We employed DeepLabv3, which is used to 

solve the problem of segmenting objects at 

various sizes which is better for detecting the 

liver cancer from the first dataset that contain 

several images with different scales and also 

when using augmentation techniques. This is 

done by applying the Atrous convolution (r) to 

the input feature map (x) as shown in Eq. (5): 

 

𝑦[𝑖] = ∑ 𝑥[𝑖 + 𝑟. 𝑘]𝑤[𝑘]𝑘               (5) 

 

- Other reason of the increasing in the accuracy 

is the combination with the ResNet, which is 

desired to solve the degradation issue in a deep 

network which is better when adding more 

layers to the network, which causes accuracy to 

achieve saturation and then decline.  Therefore, 

we can find that the accuracy of the recall of 

the second model is high when using the 

second model, which we added more layers 

than the first one. This residual block F(x) can 

be represented mathematically as Eq. (6): 

 

𝑦 = 𝐹(𝑥, {𝑤𝑖}) + 𝑥                 (6) 

 

where y and x are the output and the input 

functions to the residual block F(x, {Wi}). 

- Finally, in both models, we take the advantages 

of several pretrained models and try to improve 

the performance of these pretrained models and 

try to overcome most of their limitations by 

adding new layers as mentioned in Section 3. 

Therefore, the architecture of our models is 

unique due to the creation of a novel 

architecture able to exploit the strength of 

numerous pre-trained models and transfer 

learning techniques. 

The AI-assisted liver cancer detection system 

helps doctors decide whether a patient is infected or 

not, significantly reducing the likelihood of 

incorrect diagnoses and saving the doctor's time and 

effort by delivering quicker and more accurate 

results. As a result, it aids in the decline of liver 

cancer-related fatalities. As a result, various models 

for detecting liver cancer were presented in several 

studies [5-10, 21-26]. Several previous approaches 

were compared with the suggested approach using 

both datasets as shown in Table 3 and 4.  

Havaei et al. [5] focused on improving the 

processing time, not on accuracy, using traditional 

CNN. Dong et al. [6] were able to diagnose cancer 

with a low accuracy of 97.22%. The method 

presented by Sureshkumar et al. [7] is slower than 

other neural network models when classifying new 

cases and require more memory space for the 

processing. Kaur et al. [8] is also Computational 

complexity and suffer from overfitting problem. The 

method presented by Shukla et al. [9] is not robust 

and obtain low performance with big and small data. 

Also, the method of Ghoniem [10] obtained very 

low classification results when working on small 

data. In [21], the authors introduce a method based 

on modification of the U-Net model for 

segmentation the liver cancer automatically. In [22], 

the authors also presented a CNN model that 

consists of small number of layers and parameters 

for liver cancer segmentation. Authors in [21, 22], 

cannot deal with low-contrast boundaries images (as 

in both datasets) and obtained very low accuracy. As 

in [21], Kalsoom et al. [23] employed a method 

using modified U-Net but with different structure 

for liver tumour detection. They obtained a very low 

accuracy when working on big data. A novel and 

efficient integration method for the detection of liver 

tumours is presented in this paper to overcome the 

issues of the previous works. The proposed method 

outperforms the majority of existing algorithms on 

both small and large datasets. Additionally, 
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compared to earlier low-resource deep learning 

methods for liver detection, our approach is more 

robust. 

Despite the fact that there have been many 

contributions in this area, each one has concentrated 

on using a single neural network to identify cancer. 

No attempt has been made to combine several 

models in order to benefit from the unique qualities 

of each model. Additionally, whereas our method 

produced excellent results with small data, the 

majority of earlier works produced poor results with 

small data. 

In numerous ways, our methods have several 

limitations. CT scans were shrunk to appropriate the 

Nvidia 1080 Ti GPU (8 GB Memory). Future 

research will be able to train models with big data or 

maintain the original image resolution without 

downscaling. By retaining the full resolution of CT 

scan images, the segmented tumour region will be 

displayed in greater detail, and performance is likely 

to be enhanced. The used datasets in this paper did 

not contain all cancer tumours, and radiologists’ 

evaluations were used to label the images contained 

within the datasets. Future research on radiologists-

missed interval liver cancers and MRI datasets 

would be useful for training algorithms to detect 

non-visible cancerous tumours. The LITS and 3D-

IRCADb-01 datasets lacked samples that were 

nationally representative. Therefore, these 

performance measures cannot be directly compared 

to national estimates of the sensitivity and 

specificity of radiologists. A large number of weight 

parameter constraints led to a large model size and 

extended inference time in the research. 

6. Conclusion 

The main goal of this paper is to propose novel 

two combination systems using several deep 

learning models for the detection of liver cancer. 

The architecture of our models is unique due to the 

creation of a novel architecture able to exploit the 

strength of numerous pre-trained models and 

transfer learning techniques. In order to learn using 

several pre-trained models and integrate the results 

of each of these networks’ final layers, we selected 

the model that performed the best. In order to 

recognise images of liver tumours, modify this 

model next. The proposed model’s accuracy on both 

datasets was 99.5%, which is better than the 

outcomes of other methods applied to this area. The 

suggested method can be applied to the system for 

diagnosing and treating liver cancer, assisting 

clinicians in better surgical planning for patients 

with liver cancer. We intend to develop our model in 

the future to enhance performance and deliver a 

more precise classification. In order to evaluate the 

model’s accuracy, we also plan to test it on various 

cancer types. 

 
Table 3. Performance comparison between the selected 

model and other earlier models using LiTS17 database 

(our results in bold) 

Reference/ 

Year 
Approach 

Performance 

(%) 

[21] 

2022 
RIU-Net 

Dice_cof = 

73.79 

[22] 

2022 
CNN Acc = 97.25 

 [10]  

2020 

artificial bee colony 

optimization + UNet 

Network 

Acc = 98.50 

 [8]  

2021 
CNN Acc = 99.10 

Proposed 

2022 

Hyperion Pre-trained 

Models 
Acc = 99.50 

 
Table 4. Performance comparison between the selected 

model and other earlier models using 3D-IRCADb-01 
database (our results in bold) 

Reference/ 

Year 
Approach 

Performance 

(%) 

[21] 

2022 
RIU-Net 

Dice_cof = 

76.55 

[22] 

2022 
CNN Acc = 93.10 

[23] 

2022 
modified U-Net Acc = 93 

[24] 

2022 
HPM-Net Acc = 98.88 

[25] 

2021 
Dense V-Net 

Dice_cof = 

76.93 

[26] 

2022 
FC-CNN Acc = 99.11 

 

[9]  

2022 

CNN Acc = 94.21 

Proposed 

2022 

Hyperion Pre-

trained Models 
Acc = 99.50 
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