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Abstract: To solve the drawbacks of existing picture enhancement methods which include the error that occur in the 

pixel intensity expression, a fuzzy inference-centered contextual-dissimilarity histogram equalization (FICDHE) 

approach is suggested. Proposed system has three components. The first module generates intensity membership 

functions based on predicted intensity intervals. Second, fuzzy inference techniques are constructed and contextual-

dissimilarity of every pixel is determined. In the last module, dissimilarity histograms are cut and leveled. The fuzzy 

system in this study not only addresses the uncertainty source of pixel gray level expression, but is also adaptable. In 

this approach, the fuzzy inference system membership function parameter is automatically selected depending on 

picture pixel gray. Its versatility creates an algorithm that is more accessible. Two typical medical photos from 

BrainWeb are used in experiments. Performance of the suggested technique was compared against a number of 

enhancement algorithms based on subjective evaluation and picture quality measurement indexes. Experiments show 

that the proposed method is superior to the other algorithms in terms of improving the contrast improvement index 

(CII) (03.603), the peak signal-to-noise ratio (PSNR) (22.877), the entropy (E) (06.781), the enhancement measures 

(EME and EMEE) (56.688 and 3344.63 respectively), the quality index based on local variance (QILV) (00.965), 

and the feature similarity index (FSIM Index) (00.905). 

Keywords: Histogram equalization contextual-dissimilarity, Fuzzy inference system, Contrast enhancement, 

Probable intensity interval. 

 

 

1. Introduction 

Medical photos include low contrast and narrow 

gray levels. Image enhancement distinguishes 

diagnostic signs and aids early detection of diseases. 

Image enhancement increases local contrast to 

emphasize features. Contrast algorithms can 

improve pixel intensity difference, improving visual 

impression [1]. Most methods involve histogram 

equalization (HE) and morphological processes [2]. 

HE is popular since it's simple and practical [3]. 

HE's biggest downside is over-enhancement and 

artifacts. To circumvent the constraint and improve 

outcomes, HE-based algorithms were developed. 

Some algorithms separate the picture into sub 

images for HE. Bi-histogram equalization (BBHE) 

splits the original histogram by the mean [4]. 

“Dynamic Histogram Equalization” (DHE) uses the 

histogram's local minimum to separate high-order 

and low-order components and manage gray stretch 

to improve picture characteristics [5]. “Brightness 

Preserving Dynamic HE” (BPDHE) and “Brightness 

Preserving Dynamic Fuzzy HE” (BPDFHE) splits 

the histogram at the local highest intensity [6], [7]. 

Singh et al. [8] suggested a recursive histogram 

division-based approach using picture exposure 

based on BPDHE, however it fails to improve 

photos with extreme high or low brightness. Over-

enhancement still happens with these procedures. 

The “contrast limited adaptive HE” (CLAHE) 

algorithm redistributes pixels with similar intensity 

to every level. It enhances contrast well but not 

subtle details [9]. “Exposure-based Sub Image HE” 
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(ESIHE) employs an exposure threshold to sub-

divide clipped histogram; fusing each sub-image 

after HE improves contrast [10]. Besides HE-based 

algorithms, literature includes random search 

methods. Saitoh et al. [11] used the genetic 

algorithm (GA) to construct a mapping function that 

compares the initial and augmented images. The 

function's value measures enhancement quality. 

Kamoona et al. [12] suggested an enhanced cuckoo 

search (ECS) technique to optimize the local/ global 

enhancement transformation parameters. ECS 

constructs an objective function using entropy and 

edge intensities. In most cases, there is no objective 

function that fits all types of images, which reduces 

the algorithm's versatility. 

Engineering uses fuzzy set and fuzzy systems 

[13]–[15]. Low contrast images reflect fuzzy pixel 

intensity, and fuzzy theory is used to boost contrast. 

Pal et al. [16] converted pixel intensity into a fuzzy 

set and increased contrast. Jenifer et. al. [17] 

suggested a fuzzy clipped CLAHE system which 

employs the “fuzzy inference system” (FIS) to 

automatically calculate the clip limit. In an identical 

fashion, the triangular fuzzy membership CLAHE 

(TFM-CLAHE) algorithm uses the triangular fuzzy 

membership function to calculate the clip limit [18]. 

Because the FIS membership function parameters 

are fixed, the clip limit value is not suitable for some 

dynamic range photos. Kaur et al. [19] introduced a 

type II fuzzy set contrast method. This method uses 

the hamacher T co-norm to improve medical picture 

quality. It can enhance global brightness and 

diminish visibility. Huang et al. [7] modified 

BPDHE by using a fuzzy histogram. The method 

improves low dynamic range photos but not high 

dynamic range ones.  

Most of these algorithms use global statistics 

and ignore context. Local histogram equalization 

(LHE) uses a sliding kernel to acquire intensity 

information in a local region and conduct HE in 

each sub-image [20]. LHE may introduce 

checkerboard artifacts during sub-image fusion. 

“Fuzzy Contextual Contrast Enhancement” (FCCE) 

creates a fuzzy dissimilarity histogram from fuzzy 

contrast factor [21]. The final improved image is 

based on the fuzzy dissimilarity index and a variant 

of the original image. “Fuzzy contextual-

dissimilarity adaptive histogram equalization” 

(FCDAHE). This approach calculates the fuzzy clip 

limit and fuzzy dissimilarity clipped histogram using 

fuzzy inference. FCDAHE performs better than 

fuzzy clipped CLAHE but has the same drawbacks. 

“Fuzzy-based Improved Particle Swarm 

Optimization” (FIPSO) is utilized to generate 

optimum values for DHE's cumulative distribution 

function [22]. Real-world imagery isn't ideal for a 

variety of reasons. Low contrast may occur. This 

impacts the observation of picture objects and the 

discovery of hidden information. Due to imaging 

apparatus limitations, there may be some fluctuation 

in pixel intensity expression or noise interference. 

This imaging ambiguity renders pixel gray levels 

unclear. Pixel gray level changes near ground truth. 

All of these contrast enhancement approaches 

assume precise pixel intensity, which is seldom true. 

Most of these algorithms have the following flaws: 

Some image subregions are over- or under-

enhanced; fixed parameters in the transform 

function or FIS membership function need 

sophisticated computation or subjective selection, 

reducing flexibility; contrast enhancement employs 

global-statistics and cannot enhance all image areas; 

existing algorithms' flaws make it tough to improve 

results. Existing challenges require an image 

enhancing approach.  

This paper offers a FIS with automated 

parameters for contextual-dissimilarity assessment, 

“Fuzzy Inference based Contextual-dissimilarity 

Histogram Equalization” (FICDHE). This approach 

considers pixel fuzziness and context. Existing 

techniques usually presume correct picture pixel 

expression. The method considers global picture 

statistics and pixel context to establish a suitable 

global-local balance. The program breaks the picture 

into sub images to boost the impact. The improved 

image has no artifacts or oversaturation, so it's fine. 

It may totally increase picture contrast and expose 

buried information, allowing for additional image 

analysis. FICDHE calculates pixel intensity intervals 

using linear interpolation. Next, the fuzzy inference 

system returns pixel dissimilarity. The sub-image 

dissimilarity histogram is trimmed by an adjustable 

threshold. The sub-images are combined to create 

the final picture. The remaining portions are as 

follows: Section 2 explains FICDHE. Section 3 

provides image quality indices. Section 4 describes 

experimental results, and section 5 concludes. 

2. Method 

FICDHE has three components. In the initial 

modules, pixels' intensity interval (II) is interpolated 

locally. Each sub image's intensity interval may be 

produced by dividing the image. In the next, FIS is 

based on interval statistics. FIS's input is the 

overlapping fraction of surrounding pixels' intensity 

interval. The FIS membership function is 

determined by overlapping intensity intervals of 

neighboring pixels. “Fuzzy contextual-dissimilarity” 

(FCD) is the result of the established FIS system. In  
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Figure. 1 Framework of FICDHE. FICDHE equalizes 

fuzzy inference-based contextual dissimilarity histograms 

 

the last module, the clip limit is derived using the 

overlapping interval statistic to clip the fuzzy 

contextual-dissimilarity of pixels dissimilarity 

histogram. After equalizing every histogram, 

combining the sub-images produces an upgraded 

picture. Fig. 1 depicts FICDHE's framework. 

2.1 Interpixel intensity 

Interpolation in the vicinity calculates pixel 

intensity intervals. Consider a (𝑀 × 𝑁)  input 

picture: 

 

𝑔 = {𝑔(𝑥, 𝑦)|1 ≤ 𝑥 ≤ 𝑀, 1 ≤ 𝑦 ≤ 𝑁}     (1) 

 

where (𝑥, 𝑦) pixel intensity is 𝑔(𝑥, 𝑦)  =  𝑔𝑘 and 

its neighborhood is 𝑁𝑘(𝑥, 𝑦)  =
 {𝑔(𝑖, 𝑗)|𝑥 − 𝑘 ≤ 𝑖 ≤ 𝑥 + 𝑘, 𝑦 − 𝑘 ≤ 𝑗 ≤ 𝑦 + 𝑘} , 

where (𝑘 = 1)  for intensity intervals. The middle 

pixel is the target pixel in the neighborhood, 

therefore linear interpolation of the intensity in eight 

directions can calculate its probability interval. 

 

{
𝑝(𝑥, 𝑦) ∈ [min(𝛿𝑧𝑖) ,max (𝛿𝑧𝑖)]

𝛿𝑧𝑖 =
𝑁𝑖(𝑥,𝑦)−𝑔(𝑥,𝑦)

2
+ 𝑔(𝑥, 𝑦)

          (2) 

 

Where (𝑖 =  1, . . . , 8, 𝑝(𝑥, 𝑦))  is the target 

pixel's interval, and (𝛿𝑧𝑖)  is its’ likely intensity. 

Neighborhood selection requires padding at the 

image's edge. Because the pixel's uncertainty is 

mostly in the region with gradual gray-value shift, it 

won't affect the image's local contrast in the 

intensity-mutating zone. If the aforementioned 

approach is employed to construct the interval for 

the pixel with intensity mutation, excessive 

measurement of the pixel's gray-value ambiguity 

will affect histogram equalization. Image mutations 

are filtered as follows: 

 

𝛿�̅�𝑖 = 

{
max(𝛿𝑧𝑖)𝑖𝑓 𝑚𝑎𝑥(𝛿𝑧𝑖) − 𝛼𝑔(𝑥, 𝑦) < 0

(1 + 𝜐)𝑔(𝑥, 𝑦) 𝑖𝑓 max(𝛿𝑧𝑖) − 𝛼𝑔(𝑥, 𝑦) ≥ 0
 (3) 

 

𝛿𝑧𝑖 = 

{
(1 − 𝜐)𝑔(𝑥, 𝑦) 𝑖𝑓𝛽𝑔(𝑥, 𝑦) − 𝑚𝑖𝑛(𝛿𝑧𝑖) < 0

min(𝛿𝑧𝑖) 𝑖𝑓𝛽𝑔(𝑥, 𝑦) − 𝑚𝑖𝑛(𝛿𝑧𝑖) ≥ 0
  (4) 

 

Where (𝛿�̅�𝑖) and (𝛿𝑧𝑖) are the interval's upper and 

lower bounds respectively. (𝛼, 𝛽, 𝜐) are constants. 

Trial-and-error experiments can determine the 

formula's parameters. In this study, 𝛼 =1.5, 𝛽 =0.5, 

and 𝜐  =0.25 are recommended. Traversing all 

picture pixels yields all possible intensity intervals. 

𝜇𝑝(𝑥,𝑦)is the membership function about (𝛿𝑧𝑖) for the 

pixel at (𝑥, 𝑦). The triangular function is used as its 

form and mean ( 𝛿𝑧𝑖 ) is regard as its vertex. 

𝜇𝑝(𝑥,𝑦)(𝛿𝑧𝑖, 𝑥, 𝑦)
𝑖∈[1,8] can be conveyed as: 

 

𝜇𝑝(𝑥,𝑦)(𝛿𝑧𝑖, 𝑥, 𝑦) =

{
 
 

 
 

𝑔−𝛿𝑚𝑖𝑛

𝛿𝑚−𝛿𝑚𝑖𝑛
, 𝑔 ∈ [𝛿𝑚𝑖𝑛, 𝛿𝑚]

𝛿𝑚𝑎𝑥−𝑔

𝛿𝑚𝑎𝑥−𝛿𝑚
, 𝑔 ∈ [𝛿𝑚, 𝛿𝑚𝑎𝑥]

𝛿𝑚 = mean
1∈[1,8]

(𝛿𝑧𝑖)

  (5) 

 

Instead of the median, the mean of the gray 

value range is the triangle vertex. Using the median 

value as the triangle's vertex may result in 

membership function deviance due to low pixel 

intensity. When using the mean value, it is less 

likely to be around the intensity interval's boundary 

and more likely towards the middle. Comparing the 

enhancing impact of membership function creation 

approaches using median value and mean value, 

testing results reveal that utilizing mean value is 

superior. Other pixels have the same membership 

role. 

2.2 System of fuzzy inference 

The likely intensity intervals are used to produce 

input for the fuzzy inference system (FIS). The 

fraction of the overlapping region among the center 

pixel and the contextual-pixels intensity 

membership functions may be utilized to assess 

pixel intensity similarity. We utilized these 

commonalities as the FIS's input, which may be 

represented as follows: 

 

𝑝1 =
𝜇𝑝(𝑥,𝑦)(𝛿𝑧𝑖,𝑥,𝑦)∪𝜇𝑝(𝑢,𝑣)(𝛿𝑧𝑖,𝑢,𝑣)

min
𝑖,𝑗∈{(𝑥,𝑦),(𝑢,𝑣)}

∑|𝜇𝑝(𝑖,𝑗)(𝛿𝑧𝑖,𝑖,𝑗)|
                (6) 
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Figure. 2 Common region of two context intervals 

 

𝑝2 =
𝜇𝑝(𝑥,𝑦)(𝛿𝑧𝑖,𝑥,𝑦)∪𝜇𝑝(𝑢,𝑣)(𝛿𝑧𝑖,𝑢,𝑣)

max
𝑖,𝑗∈{(𝑥,𝑦),(𝑢,𝑣)}

∑|𝜇𝑝(𝑖,𝑗)(𝛿𝑧𝑖,𝑖,𝑗)|
               (7) 

 

𝑝1  is the ratio of the two contextual periods' 

common area to the lower intensity interval, and 𝑝2 

to the larger interval. This is shown in Fig. 2. 

FIS is used to determine pixel contextual-

dissimilarity. A standard rule indicates that; a 

fuzzifier, an inference engine, and a defuzzifier 

comprise the FIS [23]. 𝑝1 and 𝑝2 generate input and 

have three relationships. If (𝑝1  (max) ≤ 𝑝2  (min)), 

then 𝑖𝑛𝑝𝑢𝑡1 = [𝑝2(𝑚𝑖𝑛) − 𝑝1(𝑚𝑎𝑥)]/∆(𝑝1)  and 

𝑖𝑛𝑝𝑢𝑡 2 = [𝑝2(𝑚𝑖𝑛) − 𝑝1(𝑚𝑎𝑥)]/∆(𝑝2)  

respectively. 

Takagi et al. suggested Mamdani FIS and TSK 

FIS. In Mamdani FIS, the output is a fuzzy set that 

must be defuzzified. TSK FIS maps input variables 

to a clear output. To achieve adaptive picture 

correction, the FIS parameters described in this 

research must be calculated based on the intensity 

interval overlapped region. If TSK FIS is employed, 

the mapping parameters in each rule must be 

computed with global statistical information, which 

increases the computation amount and reduces TSK 

FIS's benefit. Because TSK FIS is a mixture of 

function expressions, it cannot handle uncertainty 

induced by erroneous input data. This paper's input 

originates from the uncertainty of picture pixel 

expression, which is created by erroneous pixel 

expression. This limit TSK FIS. We use Mamdani. 

Set the fuzzy rule using the image's pixels that 

fulfill the previously mentioned requirements. High 

(H) and low (L) 𝑖𝑛𝑝𝑢𝑡1 portions. The membership 

functions are denoted as 𝐺(𝑥, 𝜎1𝐿,𝑚1𝐿)  and 

𝐺(𝑥, 𝜎1𝐻 ,𝑚1𝐻), where: 

 

𝑚1𝐿 = 

min
𝑖∈𝐼𝑗∈𝐼

{
𝑎𝑏𝑠((𝑃𝑖(𝑚𝑖𝑛) − 𝑃𝑗(𝑚𝑎𝑥))

∆(𝑃𝑗)
⁄ )}

𝑗 ∈ 𝑛𝑒𝑖𝑏𝑜𝑟ℎ𝑜𝑜𝑑(𝑖), 𝜎1𝐿 = 𝑚𝐼𝐻 4⁄

,        (8) 

 

𝑚1𝐻 = max
𝑖∈𝐼𝑗∈𝐼

{
((𝑃𝑖(𝑚𝑖𝑛) − 𝑃𝑗(𝑚𝑎𝑥))

∆(𝑃𝑗)
⁄ )}

𝑗 ∈ 𝑛𝑒𝑖𝑏𝑜𝑟ℎ𝑜𝑜𝑑(𝑖), 𝜎1𝐻 = 𝑚𝐼𝐻 4⁄

,  

(9) 

 

Due to 𝑝2's scope, 𝑖𝑛𝑝𝑢𝑡2 is separated into low 

(𝐿), medium (𝑀), and high (𝐻). Gaussian functions 

are used as membership functions and are 

represented as 𝐺(𝑥, 𝜎2𝐿,𝑚2𝐿), 𝐺(𝑥, 𝜎2𝑀,𝑚2𝑀), and 

𝐺(𝑥, 𝜎2𝐻 ,𝑚2𝐻). 
 

𝑚2𝐿 = min
𝑖∈𝐼𝑗∈𝐼

{
𝑎𝑏𝑠((𝑃𝑖(𝑚𝑖𝑛) − 𝑃𝑗(𝑚𝑎𝑥))

∆(𝑃𝑖)
⁄ )}

𝑗 ∈ 𝑛𝑒𝑖𝑏𝑜𝑟ℎ𝑜𝑜𝑑(𝑖), 𝜎2𝐿 = 𝑚2𝐻 5⁄
,       

(10) 

 

𝑚2𝑀 = 𝑚2𝐿 +
(𝑚2𝐻−𝑚2𝐿)

2,⁄ 𝜎2𝑀 =
𝑚2𝑀

5⁄     (11) 

 

𝑚2𝐻 = max
𝑖∈𝐼𝑗∈𝐼

{
((𝑃𝑖(𝑚𝑖𝑛) − 𝑃𝑗(𝑚𝑎𝑥))

∆(𝑃𝑖)
⁄ )}

𝑗 ∈ 𝑛𝑒𝑖𝑏𝑜𝑟ℎ𝑜𝑜𝑑(𝑖), 𝜎2𝐻 = 𝑚2𝐻 5⁄
,        

(12) 

 

Output is pixel similarity. Similarity is [0, 1] . 
Low (𝐿), medium (𝑀), and high (𝐻) production are 

categorized. 𝐺(𝑥, 0.15, 0) , 𝐺(𝑥, 0.1, 0.5) , and 

𝐺(𝑥, 0.15, 1)  are Gaussian membership functions. 

The fuzzy rules employ the Mamdani implication 

[24]. 

 

• If both 𝑖𝑛𝑝𝑢𝑡1 𝑎𝑛𝑑 𝑖𝑛𝑝𝑢𝑡2 are L, the result 

is L. 

• Output is M if 𝑖𝑛𝑝𝑢𝑡1 is H and 𝑖𝑛𝑝𝑢𝑡2is M. 

• If both inputs are H, the result is H. 

 

Multiple rules are combined using minimal (T) 

norm. Fig. 3 shows Mamdani's FIS. 

The defuzzifier uses a centroid defuzzifier as 

shown: 

 

{
 
 

 
 

𝑠(𝑋′) =
∑ 𝐶𝑂𝑆(𝐺𝑙)𝑓𝑙(𝑋′)3
𝑙=1

∑ 𝑓𝑙(𝑋′)3
𝑙=1

=
∑ 𝑐𝑙𝑓𝑙(𝑋′)3
𝑙=1

∑ 𝑓𝑙(𝑋′)3
𝑙=1

𝑓𝑙(𝑋′) =

𝑇𝑖=1
2 𝑓𝑙(𝑥𝑖

′) = 𝑇𝑖=1
2 𝜇

𝑄𝑖
𝑙(𝑋𝑖,𝑚𝑎𝑥

𝑙 |𝑋𝑖
𝑙)

     (13) 

 

𝑠(𝑥, 𝑦) = 0  if 𝑝1(𝑚𝑖𝑛) ≥ 𝑝2(𝑚𝑎𝑥)  or 

𝑝1(𝑚𝑎𝑥) < 𝑝2(𝑚𝑖𝑛) , meaning intensity intervals 

don't overlap. If 𝑝1(𝑚𝑖𝑛) ≤ 𝑝2(𝑚𝑖𝑛) and 

𝑝1(𝑚𝑖𝑛) < 𝑝2(𝑚𝑎𝑥), then 𝑠(𝑥, 𝑦) = 1. The target 

pixel's intensity similarity to neighboring pixels can 

also be determined. 
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Figure. 3 FIS based on Mamdani contextual dissimilarity. FIS, fuzzy inference 

 

𝑠(𝑥, 𝑦) =
1

8
∑ ∑ 𝑜𝑢𝑡𝑝𝑢𝑡(𝑥 + 𝑖, 𝑦 + 𝑗)𝑗∈{−1,1}𝑖∈{−1,1}  

(14) 

 

𝑑𝑖𝑠(𝑥, 𝑦) = �̅�(𝑥, 𝑦)  expresses the fuzzy 

contextual-dissimilarity between the target and 

neighboring pixels. By traversing all the pixels in a 

full picture, we may generate the fuzzy contextual-

dissimilarity histogram 𝐻𝑓𝑑𝑖𝑠. The picture is broken 

into U- and V-shaped blocks. Fuzzy dissimilarity 

histograms are created for each sub image as 

follows: 

 

𝐻𝑓𝑑𝑖𝑠
𝑖𝑗

= {ℎ𝑓𝑑𝑖𝑠(𝑔𝑘)|𝑘 ∈ [0, 𝐿 − 1]}, 𝑖 = 1,… , 𝑢; 𝑗 =

1,… , 𝑣       (15) 

 

ℎ𝑓𝑑𝑖𝑠
𝑖𝑗

(𝑔𝑘) = ∑ ∑ 𝑢𝑔𝑘(𝑥, 𝑦), 𝑖 = 1,… , 𝑢; 𝑗 =
𝑁
𝑦=0

𝑀
𝑥=0

1,… , 𝑣       (16) 

 

𝑢𝑔𝑘(𝑥, 𝑦) = {
𝑑𝑖𝑠(𝑥, 𝑦) 𝑖𝑓 𝑔(𝑥, 𝑦) = 𝑔𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑠
    (17) 

2.3 Equalization and fusion of clip limit 

histograms 

Histogram equalization employs statistical 

information from each sub image’s fuzzy 

contextual-dissimilarity histogram. Because straight 

equalization of the fuzzy contextual-dissimilarity 

histogram of sub-images may produce local over 

enhancement, the maximum sub-image 

enhancement degree is regulated by adding the 

contrast limit threshold, and the clip limit is 

computed as follows: 

 

𝑐𝑙𝑖𝑝 𝑙𝑖𝑚𝑖𝑡 =
max(𝑁)+𝑎𝑣𝑔(𝑁)

2
               (18) 

 

𝑀𝑎𝑥(𝑁)  is the maximum fuzzy contextual-

dissimilarity histogram and 𝑎𝑣𝑔(𝑁) is its average. 

Fuzzy contextual-dissimilarity probability density, 

𝑃𝑓𝑑𝑖𝑠
𝑖𝑗
(𝑔𝑘), is determined by: 

 

𝑃𝑓𝑑𝑖𝑠
𝑖𝑗 (𝑔𝑘) = ℎ𝑓𝑑𝑖𝑠

𝑖𝑗
(𝑔𝑘) ∑ ℎ𝑓𝑑𝑖𝑠

𝑖𝑗
(𝑔𝑘)

𝐿−1
𝑘=0⁄       (19) 

 

From, 𝑃𝑓𝑑𝑖𝑠
𝑖𝑗 (𝑔𝑘) , the cumulative distribution 

function (CDF) is: 

 

𝐶𝑓𝑑𝑖𝑠
𝑖𝑗 (𝑔𝑘) = ∑ 𝑃𝑓𝑑𝑖𝑠

𝑖𝑗 (𝑔𝑘)
𝑘
𝑗=0                    (20) 

 

Like the histogram equalization procedure, it 

may directly balance the probability density 

superposition function to yield the improved picture 

𝐸 = {𝐸(𝑥, 𝑦)|0 ≤ 𝑥 ≤ 𝑀 − 1,0 ≤ 𝑌 ≤ 𝑁 − 1} . Its 

histogram can be represented as: 

 

𝑔𝑘
′ = 𝑔0

′ + 𝐶𝑓𝑑𝑖𝑠
𝑖𝑗 (𝑔𝑘

′ )(𝑔𝐿−1
′ − 𝑔0

′ )         (21) 

 

where 𝑔𝑘
′ is sub-image intensity. To eradicate the 

seam in sub-image block splicing and save 

improved picture information at the seam, the sub-

image blocks are separated with some overlap, and  
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Figure. 4 Subimage splicing diagram. Blue and green 

overlapping sub-image blocks depict one-time and two-

time fusion, respectively 

 

the overlapping portions are weighted fused. 

Consider two neighboring left and right sub-images, 

𝑅𝐹(𝑥, 𝑦)  and 𝑅𝐿(𝑥, 𝑦) . The formula for updating 

the overlapping part's gray value is: 

 

𝑅(𝑥, 𝑦) =
∆𝑑

𝐷
𝑅𝐹(𝑥, 𝑦) + (1 −

∆𝑑

𝐷
)𝑅𝐿(𝑥, 𝑦)   (22) 

 

𝐷 is the overlap width between pixel (𝑥, 𝑦) and 

the right boundary of the preceding sub-image is ∆𝑑. 

Upper and lower neighboring picture subsets are 

fused: 

 

𝑅(𝑥, 𝑦) =
∆𝑑′

𝐷′
𝑅𝑈(𝑥, 𝑦) + (1 −

∆𝑑′

𝐷′
)𝑅𝐷(𝑥, 𝑦)  (23) 

 

As illustrated in Fig. 4, the final enhanced 

picture is created by allocating the overlapped fused 

image component to one of the two sub-images and 

truncating the overlapping sub-image part. 

2.4 Evaluation of image quality 

Contrast enhancement algorithm performance is 

evaluated using quality assessment metrics. Contrast 

improvement index (CII), peak signal-to-noise ratio 

(PSNR), entropy (E), enhancement measures (EME 

and EMEE), quality index based on local variance 

(QILV), and feature similarity (FSIM) index. These 

indices and parameters measure picture quality and 

FICDHE's performance. Contrast improvement 

index (CII) measures the level of contrast 

improvement based on the original and improved 

image's local contrast. Calculating an image's CII 

[4]: 

 

𝐶(𝐼) = ∑ 𝛿(𝑢, 𝑣)2𝑃𝛿(𝑢, 𝑣)
𝐿−1
𝑢,𝑣=0             (24) 

 

𝐶𝐼𝐼 =
𝐶(𝐼′)

𝐶(𝐼)
                                (25) 

 

𝐶(𝐼′) is the improved image's local contrast and 

𝐶(𝐼) is the original's. Higher (𝐶𝐼𝐼) increases visual 

contrast. PSNR is used to determine if improved 

pictures are suitable for consumer electronics [25]. 

The original picture is 𝑔(𝑥, 𝑦) , and the improved 

output image is 𝑔′(𝑥, 𝑦). Calculating PSNR. 

 

𝑃𝑆𝑁𝑅(𝐼) = 10 log10
(𝐿−1)2

1

𝑀𝑋𝑁
∑ ∑ (𝑔(𝑥,𝑦)−𝑔′(𝑥,𝑦))2𝑁

𝑦=1
𝑀
𝑖=1

 

(26) 

 

L=256 for 8-bit grayscale photos. Increasing 

PSNR improves output image visibility and vice 

versa. Entropy measures visual information 

abundance. Entropy increases information. Image 

entropy = 

 

𝐸(𝐼) = ∑ − ln(𝑃𝛿(𝑢, 𝑣))
𝐿−1
𝑢,𝑣=0 𝑃𝛿(𝑢, 𝑣)      (27) 

 

Where 𝛿(𝑢, 𝑣) = |𝑔(𝑢) − 𝑔(𝑣)| represents pixel 

intensity difference. 𝑃𝛿(𝑢, 𝑣)  is the probability 

density between neighboring pixels when 𝛿  is the 

intensity difference. Enhancement measures divide 

the image into sub images without overlapping parts 

and calculate the maximum and minimum intensities 

of each subset. 

 

𝐸𝑀𝐸 =
1

𝑁
∑20 log

𝑔𝑚𝑎𝑥

𝑔𝑚𝑖𝑛
             (28) 

 

𝑁 is the sub-image count. EMEE is related to 

EME and uses entropy. 

 

𝐸𝑀𝐸 =
1

𝑁
∑
𝑔𝑚𝑎𝑥

𝑔𝑚𝑖𝑛
20 log

𝑔𝑚𝑎𝑥

𝑔𝑚𝑖𝑛
              (29) 

 

Images should be separated into the same 

amount of sub images when comparing methods. 

QILV is a local contrast-based image quality index 

[26]. Sub-images must be created for QILV. Use the 

Gaussian function to get each block's weighted 

mean and variance. Weighted sub-image mean and 

variance are used to compute 𝑘. 

 

𝑘(𝑔, 𝑔′) =
∑ (𝜎𝑘

𝑔
−
∑𝜎

𝑘
𝑔

𝑁
)(𝜎𝑘

𝑔′
−
∑𝜎

𝑘
𝑔′

𝑁
)𝑘

𝑁−1
             (30) 

 

Where N represents the number of sub images. 

𝜎𝑘
𝑔

 and 𝜎𝑘
𝑔′

 are original and improved subimage 

variances. Image QILV is: 

 

𝑄𝐼𝐿𝑉 =
4𝑘(𝑔,𝑔′)∑ 𝜎𝑘

𝑔
𝐾 ∑ 𝜎𝑘

𝑔′

𝐾

𝑁2(
∑𝜎

𝑘
𝑔2

𝑁
+
∑𝜎

𝑘
𝑔′
2

𝑁
)(𝜁𝑔

2+𝜁
𝑔′
2 )

             (31) 
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Higher QILV improves image quality. Feature 

similarity (FSIM) index rates image quality based 

on how humans perceive images [27]. Image quality 

is objectively assessed. Local detail is assessed 

using phase consistency matrix and image gradient. 

 

𝐹𝑆𝐼𝑀 =
𝑆𝐿 .𝑃𝐶𝑚

𝑃𝐶𝑚
                                    (32) 

 

𝑃𝐶𝑚 = max(PC1, PC2)  is the original and 

augmented image's maximum local phase 

consistency matrix [28]. 

 

𝑃𝐶(𝑥) =
∑ 𝐸𝜃𝐽(𝑥)𝑗

𝜀+∑ ∑ 𝐴𝑛,𝜃𝑗(𝑥)𝑗𝑛
                  (33) 

 

𝑆𝐿 is the similarity mapping matrix between the 

original and improved images: 

 

𝑆𝐿 = 𝑆𝑃𝐶𝑆𝐺 =
2𝑃𝐶1(𝑥)𝑃𝐶2(𝑥)+𝑇1

𝑃𝐶1
2+𝑃𝐶2

2+𝑇1
.
2𝐺1(𝑥)𝐺2(𝑥)+𝑇2

𝐺1
2+𝐺2

2+𝑇2
    (34) 

 

𝑇1 and 𝑇2 are constants that range from 0 to 1. 

FSIM higher value indicates an improved image 

quality. 

3. Results  

Here, we tested medical graphics. FICDHE was 

compared against fuzzy-based improved particle 

swarm optimization DHE (FIPSODHE), BPDHE, 

and several innovative approaches as TFM-CLAHE, 

FCDAHE, the type II fuzzy enhancement (TIIFE) 

algorithm, ESIHE, and the enhanced cuckoo search 

enhancement (ECSE) algorithm. BPDHE, TIIFE, 

and ESIHE calculation programs were given by 

their authors. We program other algorithms based on 

articles. These algorithms' experimental findings 

were qualitatively and statistically evaluated. Fig. 5 

show improved medical photos and gradation 

histograms. 

Fig. 5 shows the MR Lumbar Spine imaging 

findings of the above-mentioned and suggested 

methods. This part uses section 2's objective metrics 

to assess the proposed algorithm and competing 

approaches. The above-shown photos' objective 

assessment parameters are determined. Images are 

8-bit integer grayscale. Table 1 exhibit quantitative 

enhancement indices. Each row's maximum value is 

bolded. 300 medical photos were randomly picked 

from the BrainWeb simulated dataset to demonstrate 

the proposed algorithm's performance. The test 

dataset has 800 photos. Too many photographs 

make it difficult to illustrate each upgrade in this 

study. 

4. Discussion 

4.1 Qualtive assessment 

An improved image must be visually evaluated. 

No objective picture assessment index exists. 

Visibility may be improved with a higher-quality 

picture. Subjective evaluation determines 

improvement and artifacts. Fig. 5 (b) shows 

FIPSODHE's improved performance. The contrast 

has been substantially increased, but the original 

image's dark parts remain dark. The enhancing 

effects cause the gray distribution to be more 

consistent and stretch to the complete gray spectrum. 

Fig. 5 (c) shows that even though the TFM-CLAHE 

simulation result was visually appealing, the upper-

left region was excessively dark and lacked detail. 

Fig. 5 (d, e) shows BPDHE and FCDAHE's 

insufficient textural features and lack of blood 

vessel enlargement in muscle tissue. BPDHE has an 

inadequate gray-scale range. Fig. 5 (f) shows the 

TIIFE-enhanced picture. Contrast was increased, but 

not uniformly. Overly strong light reduced image  

 

 

Table 1. Objective quantitative MR lumbar image indexes 

Index  FIPSODHE TFM-

CLAHE 

BPDHE FCDAHE TIIHE ESIHE ECSE FICDHE 

CII  03.574 02.422 01.004 03.414 01.346 01.502 01.193 03.603 

FSIM  00.912 0.822 00.912 00.858 00.912 00.918 00.905 00.905 

Entropy  06.546 06.175 05.353 06.327 05.624 05.594 06.043 06.781 

QILV  00.965 00.955 00.602 00.946 00.926 00.953 00.884 00.965 

EME  57.144 57.282 31.827 53.966 13.891 55.001 16.311 56.688 

EMEE   3442.47 3467.22 2626.36 3007.27 88.262 3218.13 103.65 3344.63 

PSNR  20.677 21.325 11.865 20.084 14.837 19.702 16.716 22.877 
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                                          (a)                                                                                                (b) 

 
                                          (c)                                                                                                (d) 

 
                                          (e)                                                                                                (f) 

 
                                          (g)                                                                                                (h) 

 
(i) 

Figure 5. Histograms with MR lumbar spine images. The first row is the original picture and FIPSODHE output. The 

second row is, TFM-CLAHE output and BPDHE output. The third row is, FCDAHE output and TIIFE output. The fourth 

row is, ESIHE output and ECSE output. The last image is the FICDHE output 
 

quality. Fig. 5 (g, h) shows decreased texture details 

and brightness issues. ECE picture quality has 

degraded. Fig. 5 (i) depicts FICDHE image 

enhancement. The article's methodology 

outperformed the others. FICDHE might provide 

pictures with greater visibility and more low-
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contrast detail. Upper left was more contrasty than 

other regions. Histogram illustrates intensity levels 

extended over dynamic range. 

Two algorithms produced the best enhancements. 

By subjectively measuring all output outcomes, the 

suggested technique may increase image quality 

without adding noise or artifacts. It retains textural 

features in medical photographs, facilitating 

diagnosis. 

4.2 Quantitive assessment 

Noise can impact objective evaluation elements' 

correctness. In certain circumstances, one index is 

marginally inferior to others, but that doesn't affect 

the suggested algorithm's performance. Therefore, 

you must blend subjective judgment with objective 

metrics. Most quantitative indexes boosted by the 

FICDHE algorithm were greater than those of the 

compared algorithms, while other indexes were 

similar. 

Higher CII implies the algorithm can increase 

picture contrast more efficiently, and higher entropy 

indicates FICDHE's outputs are more 

comprehensive. Higher PSNR suggests that 

FICDHE didn't add too much noise when improving 

the picture, while other characteristics reflect 

superior visual performance. Some picture objective 

indicators are worse than others. But that doesn't 

mean this paper's algorithm is bad. Distorted 

objective index measurement may generate this 

outcome. The algorithm needs additional photos. 

Although the enhanced image's entropy isn't as high 

as TFMCLAHE's, subjective analysis demonstrates 

that TFM-high CLAHE's entropy is caused by noise. 

The algorithm's results showed clearer photos. 

Visibility and picture quality increased greatly. 

Compared to other methods, FICDHE provides 

better picture enhancement. 

5. Conclusion 

Fuzzy inference based contextual dissimilarity 

histogram equalization (FICDHE) was presented in 

this research. The algorithm considered intensity 

uncertainty and generated pixel intensity intervals. 

The fuzzy inference system for generating 

contextual dissimilarity uses the overlapping 

intervals as input. The contextual dissimilarity 

histogram compares adjacent pixels. FICDHE 

selected the clip-limit and avoided over 

enhancement before equalization. This method 

smoothed the histogram and preserved the images' 

brightness and naturalness. 

The generated image lacked noise and artifacts. 

BrainWeb test datasets were used to evaluate the 

proposed technique qualitatively and quantitatively. 

Experimental results show that the proposed method 

enhances dark areas and preserves global brightness. 

FICDHE enhances contrast locally and globally. 
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