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Abstract: In this paper, an improved variant of nature-inspired meta-heuristic algorithm inspired by the pollination 

process of flowering plants called improved flower pollination algorithm (IFPA) is utilized for solving the optimal 

allocation of capacitor banks (CBs) and distribution-static synchronous compensator (DSTATCOM) problem 

considering electric vehicle (EV) load growth. In IFPA, a new double-direction learning strategy to advance local 

searching capacity, a novel dynamic switching probability method to balance global and local searching, and a new 

greedy technique to increase population diversity. A multi-objective function is formulated for minimizing the real 

power loss and installation cost of CBs/DSTATCOM. The search space of the multiple CBs/DSTATCOMs is 

primarily reduced using voltage stability index (VSI) and later the best locations and sizes of CBs/DSTATCOMs are 

determined by implementing IFPA. The proposed hybrid VSI-FPA approach is applied to solve the DSTATCOM 

allocation problem in standard IEEE 33-bus radial distribution systems (RDS). The effectiveness of the proposed 

approach is compared with the similar types of heuristic approaches in the literature. The comparative results shown 

that the IFPA is outperformed than other algorithms by providing minimum losses, reduced installation cost, and 

consequently improved voltage profile as well as voltage stability irrespective of EV load growth via allocating the 

CBs/DSTATCOM optimally in the RDS. The basic network profited from CBs and DSTATCOMs by a loss 

reduction of 34.71% and 29.50%, respectively, according to the results. The loss, on the other hand, increases to 

88.69 percent when the network is filled with 50% EV load. With CBs and DSTATCOMs, however, the higher 

losses are just 37.07% and 37.26%, respectively. 

Keywords: Improved flower pollination algorithm, Capacitor bank, DSTATCOM, Radial distribution system, Loss 

minimization, Voltage stability index, Electric vehicle load. 

 

 

1. Introduction 

Optimization of distribution system performance 

is always an important criterion in power system 

operation and control. Network reconfiguration, 

installation of capacitor banks (CBs) and 

distribution-static synchronous compensators 

(DSTATCOMs), and integration of distribution 

generation (DGs) are some of the remedial ways for 

some extent to improve the radial distribution 

system (RDS) performance without curtailing the 

load. The major objective of optimal allocation of 

CBs/DSTATCOMs problem is to improve the 

distribution system performance and maximization 

of economic benefits to the utilities. In literature, 

many researchers have been contributed for this 

OAC problem using various heuristic algorithms. In 

[1], Grey wolf optimization (GWO), dragonfly 

optimization (DFO), moth–flame optimization 

(MFO), and particle swarm optimization (PSO) are 

used solved the CBs allocation problem considering 

minimization of loss cost and CBs cost. Loss 

sensitivity factors (LSFs) and voltage sensitivity 

factors (VSFs) have used to identify the potential 

candidates and then GWO, DFO, MFO and PSO are 

used to optimize locations and sizes. In [2], flower 

pollination algorithm (FPA) and power loss index 
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(PLI) have been used for operating cost 

minimization and thus, maximization of net savings 

by installing CBs in RDS optimally. In [3], clonal 

selection algorithm (CSA) is proposed for CBs 

allocation towards loss minimization and voltage 

profile improvement. In [4], LSFs and voltage 

stability indices (VSIs) are used to determine 

candidate locations and then improved bacterial 

foraging optimization algorithm (IBFOA) is utilized 

to deduct the optimal locations and sizes of CBs 

considering loss minimization and voltage stability 

enhancement under different loading conditions. In 

[5], techno-economic-environmental aspects have 

been optimized by installing CBs and DGs 

optimally in RDS using salp swarm algorithm (SSA). 

In [6], loss reduction, annual savings, and 

optimization of VSI and load balancing indices are 

focused in CBs allocation using brain storm 

optimization algorithm (BSOA). In [7], water cycle 

algorithm (WCA) is introduced for integrating CBs 

and DGs considering various techno-economic-

environmental aspects in RDS operation and control. 

Similarly, a comprehensive literature survey on 

various meta-heuristic approaches for optimal 

integration of CBs can be seen in [8].  

On the other hand, optimal integration of 

DSTATCOMs in RDS is also attained high attention 

for its versatile operation and applications. However, 

the targeted benefits of DSTATCOM can be 

attained when they integrate optimally in the 

network. In [9], new voltage stability index (NVSI) 

is proposed for identifying DSTATCOM location 

and then the optimal sizes are determined for loss 

reduction considering different load models. In [10], 

loss reduction, voltage profile improvement, and 

maximizing net savings are aimed via optimally 

integration DSTATCOM using gravitational search 

algorithm (GSA). In [11], DSTATCOM and unified 

power quality conditioner (UPQC) are used for 

reactive power cost savings considering different 

load growth scenarios. PLIs are used for identifying 

the candidate locations. For different loading 

conditions, the RDS performance is optimized for 

both technical and economical aspects by optimizing 

the DSTATCOMs using bat algorithm (BAT) [12]. 

In [13], improved bald eagle search (IBES) is 

introduced for optimal location and sizing the 

DSTATCOM for different types of load modelling. 

DE [14], immune algorithm (IA) and genetic 

algorithm (GA) [15], and Voltage Stability Indicator 

(VSI) [16] are such approaches for DSTATCOM 

allocation. Similarly, a comprehensive review on 

different meta-heuristic approaches for optimal 

allocation of DSTATCOMs in RDS can be found in 

[17].    

From the literature, the following are the major 

observations and motivations to this research work. 

Many of these works are solved in two stages. In 

stage 1, the potential candidate locations for 

CBs/DSTATCOMs are predetermined by sensitivity 

analysis. In stage 2, algorithms are used to 

determine optimal locations and sizes of CBs. 

Limited works only are used directly to determine 

both locations and sizes of CBs/DSTATCOMs using 

algorithms. On the other side, the technical benefits 

aimed to achieve via CBs/DSTATCOMs allocation 

are mainly loss reduction, voltage profile 

improvement, voltage stability enhancement and 

annual net savings. These objectives are handled 

either single or multi-objective functions. The sizing 

of CBs/DSTATCOMs are determined for either 

100% load level as given in the standard test system 

details or multiple loading levels like 50%, 75%, 

100%, 125% and 160% etc. Majority of the works 

have handled with constant power (CP) load model, 

in which the power rating of any location is 

independent of its associated bus voltage magnitude. 

In reality, this may not be correct. Hence these is a 

need to address this CBs/DSTATCOMs allocation 

problem considering emerging loads like electric 

vehicles (EVs), which are highly dependent on 

voltage profile.  

In these aspects, the following are the major 

contributions: 

• The objective of optimal allocation of 

CBs/DSTATCOMs problem in RDS is reframed 

considering technical and economical benefits 

under electric vehicle (EV) load growth.  

• In order to reduce the search space of 

CB/DSTATCOM locations, VSIs are used. Later, 

a recent powerful and efficient nature-inspired 

heuristic algorithm called flower pollination 

algorithm (FPA) [18] is proposed for deducing 

the optimal locations and their sizes towards 

minimizing the objective function.  

• In order to avoid local optima, improvements in 

terms of double-direction learning strategy at the 

global searching process, greedy strategy at local 

searching process and dynamically switching 

probability strategy for balancing between global 

search and local search and termed as improved 

flower pollination algorithm (IFPA) [19].  

• Initially the efficiency of proposed methodology 

is compared with existing type of works without 

considering EV load growth. Later, the 

simulations are extended for different for EV 

load growth scenarios considering different EV 

load penetration levels in the network. 
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The remainder of the paper is structured out as 

follows: The mathematical modelling of EV load 

development is described in Section 2. In Section 3, 

you'll find a problem formulation with several equal 

and unequal limits. The updated enhanced flower 

pollination algorithm, as well as its modelling, is 

explained in Section 4. The simulation results on 

IEEE 33-bus RDN are explained in Section 5. The 

important contributions of this study are summarised 

in Section 6 at the conclusion.    

2. Modelling of EV load growth 

For the system operator, it is essential to know 

the load growth of a particular load type for 

planning studies and control operations. Here, it is 

assumed here that all types of Electric Vehicle (EV) 

are integrated to utility via AC/DC converter or 

charging port. Since EV is basically powered by 

batteries, its corresponding load is modeled by 

considering voltage dependent load modeling [20]. 

The following Eqs. (1) and (2) represents the real 

and reactive power demand at bus-n after EV 

integration respectively.  

 

𝑃𝑑(𝑛)
𝑡 = 𝑃𝑑(𝑛)

0 + 𝜌𝑒𝑣𝑃𝑑(𝑛)
0 (

|𝑉(𝑛)|

|𝑉(𝑟)|
)

𝛼𝑒𝑣

      (1) 

 

𝑄𝑑(𝑛)
𝑡 = 𝑄𝑑(𝑛)

0 + 𝜌𝑒𝑣𝑃𝑑(𝑛)
0 𝑡𝑎𝑛(∅𝑒𝑣) (

|𝑉(𝑛)|

|𝑉(𝑟)|
)

𝛽𝑒𝑣

 (2) 

 

where𝑃𝑑(𝑛)
0 and 𝑄𝑑(𝑛)

0  are nominal real and reactive 

power loads at bus-n respectively; 𝑃𝑑(𝑛)
𝑡 and 𝑄𝑑(𝑛)

𝑡  

are modified real and reactive powers at location n 

after integration of EV load respectively; 𝜌𝑒𝑣is the 

scaling factor to define EV load penetration, |𝑉(𝑛)| 

and |𝑉𝑟|  are the voltage magnitude of bus-n at 

nominal and reference voltage, respectively; ∅𝑒𝑣  is 

the is the operating power factor (p.f.) angle of 

AC/DC converter, 𝛼𝑒𝑣  
and 𝛽𝑒𝑣 are the exponents of 

EV’s real and VAr loads respectively [21]. 

3. Problem formulation 

Minimization of total real power loss cost, 

installation cost of CBs and consequently 

maximization of net savings is considered as the 

objective function. 

 

𝑂𝐹 = 𝑘𝑝[𝑃𝑙𝑠(𝑏) − 𝑃𝑙𝑠(𝑐)] − ∑ 𝑘𝑐(𝑖)𝑄𝑐(𝑖)
𝑛𝑐
𝑖     (3) 

 

where 𝑃𝑙𝑠(𝑏) and𝑃𝑙𝑠(𝑐) are the total real power losses 

before and after installation of CBs/DSTATCOMs 

in distribution system, are determined using NR load 

flow [22]; 𝑘𝑝 
is the cost of power in $/kW; 𝑘𝑐(𝑖) is 

the cost of CBs [23] or DSTATCOMs in $/kVAr 

[11]; 𝑄𝑐(𝑖) is the reactive power compensation or 

size of CBs/DSTATCOMs in kVAr. 

 The 𝑂𝐹 is subjected to the following equal and 

unequal constraints such as (i) supply-demand 

balance, (ii) voltage limits, (iii) branch current/MVA 

limits, and (iv) reactive power compensation limit, 

which are expressed in Eqs. (4) to (8) respectively. 

 

𝑃𝑒𝑓𝑓(𝑠𝑢𝑏) = 𝑃𝑙𝑠 + ∑ 𝑃𝑑(𝑖)
𝑛𝑏𝑢𝑠
𝑖             (4) 

 

𝑄𝑒𝑓𝑓(𝑠𝑢𝑏) = 𝑄𝑙𝑠 + ∑ 𝑄𝑑(𝑖)
𝑛𝑏𝑢𝑠
𝑖            (5) 

 

|𝑉(𝑛)|
𝑚𝑖𝑛

≤ |𝑉(𝑛)| ≤ |𝑉(𝑛)|
𝑚𝑎𝑥

           (6) 

 

|𝐼(𝑘)| ≤ |𝐼(𝑘)|
𝑚𝑎𝑥

                    (7) 

 

∑ 𝑄𝑐(𝑖) ≤𝑛𝑐
𝑖 ∑ 𝑄𝑑(𝑖)

𝑛𝑏𝑢𝑠
𝑖=1                 (8) 

 

where 𝑃𝑒𝑓𝑓(𝑠𝑢𝑏)  and 𝑄𝑒𝑓𝑓(𝑠𝑢𝑏)  are the active and 

reactive powers of substation, respectively; 𝑃𝑙𝑠 and 

𝑄𝑙𝑠  are the active and reactive power losses, 

respectively; 𝑃𝑑(𝑖)  and 𝑄𝑑(𝑖)  are the active and 

reactive power loads at bus-i, respectively; |𝑉(𝑛)|
𝑚𝑖𝑛

 

and |𝑉(𝑛)|
𝑚𝑎𝑥

 are the voltage magnitude minimum 

and maximum limits, respectively; |𝐼(𝑘)| and 

|𝐼(𝑘)|
𝑚𝑎𝑥

 are the branch current and its maximum 

limit, respectively; 𝑛𝑏𝑢𝑠 and 𝑛𝑐 are the number of 

buses and number of compensators (either CBs or 

DSTATCOMs), respectively. 

4. Improved flower pollination algorithm 

From the last two decades, nature–inspired 

meta–heuristic optimization algorithms got high 

attention in all engineering optimization problems 

due to their easiness in adoptability and 

computational efficiency. With their stochastic 

nature, a set of random solutions may generate at 

first stage and improves the solution based on 

mechanism of the algorithm at second stage. The 

second stage continues by mimicking the nature of 

an element and stops when stopping criterion 

reaches. A comprehensive literature survey on 

different heuristic algorithms can be found in [24]. 

One of such recent algorithms, Flower Pollination 

Algorithm (FPA), introduced by Yang, X. S in 2012 

[18], is so simple and easy to implement by having a 

small number of parameters and works efficiently as 

compared with similar type of algorithms. 
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4.1 Modeling of flower pollination algorithm  

Basically, FPA works with the process of 

transferring flowers’ pollens. Generally, bees, birds, 

bats, butterflies, insects, other animals and some 

extend even wind play a key role to transfer these 

pollens. Nature had also created some extended 

bond between some specified flowers and insects so 

called ‘flower–pollinator partnership’. The basic 

mode of pollination in flowering plants can take 

place by either biotic/cross–pollination or 

abiotic/self–pollination. Around 90% of flowering 

plants depend on biotic/cross–pollination, in which 

bees, birds, bats, butterflies, insects and other 

animals act like pollinators. On the other side, 

around 10% of flowering plants may do pollination 

by self using wind and diffusion. In biotic, the 

motion of pollinators can be considered as global 

search where as in abiotic, they are called as local 

search due to their limited boundary. Sometimes, it 

is also possible to have flower–pollinator 

partnership for constancy. Under this behaviour, the 

pollinators like humming birds visit only a specific 

type of flowering plants which may offer sufficient 

nectar reward to the pollinators so as to encourage 

frequent visits and consequently there is a guarantee 

for constancy and successful reproduction rate with 

energy saving.   

Using this naturist relation between flowering 

plants and pollinators, the main characteristics of 

pollinators and corresponding components of FPA 

are reframed and summarized here. The pollinators 

(insects, butterflies and birds) are represented as 

variables and pollen/flowers as solution vector in the 

optimization problem. In case, there are similar 

solutions in the vector, it can be treated as flower 

constancy. The biotic pollination represents global 

search and where as abiotic pollination is 

represented as local search. The initial random 

solution vector can be corrected using a step size 

with Lévy flight, and the evolution of new flowers 

can be represented as a new solution vector in each 

iteration. Lastly, the best solution found after the 

most iterations can be thought of as the best way for 

a flower to reproduce. 

As described in [15], the biotic pollination for 

global search or rule 1 is represented as: 

 

𝑣𝑖
𝑘+1 = 𝑣𝑖

𝑘 + 𝛾𝐿(𝑣𝑏𝑒𝑠𝑡
𝑘 − 𝑣𝑖

𝑘)            (9) 

 

where 𝑣𝑖
𝑘 is pollen i or solution vector i at iteration 

k; 𝑣𝑏𝑒𝑠𝑡
𝑘  is the best pollen found among all pollens at 

iteration k; L is a step size, essentially used to 

represents strength of pollination. It can be obtained 

using Lévy flight as given in Eq. (10), 

 

𝐿~
𝜇Γ(𝜇)𝑠𝑖𝑛(

𝜋𝜇

2
)

𝜋

1

𝑠1+𝜇 , (𝑠 ≥ 0)            (10) 

 

where Γ(𝜇) ddenotes the standard gamma function 

and this distribution is valid for large steps 𝑠 ≥

0 ;  𝜇 = 1.5  and 𝑠 = 𝑢 𝑣
1

𝜇⁄⁄ . Here 𝑣  is a random 

number with standard normal distribution and 𝑢 is 

Gaussian distribution with variance 𝛿2.  

Similarly, abiotic pollination or rule 2 is 

represented as:  

 

𝑣𝑖
𝑘+1 = 𝑣𝑖

𝑘 + 𝜀(𝑣𝑙
𝑘 − 𝑣𝑚

𝑘 )              (11) 

 

where 𝑣𝑖
𝑘  and 𝑣𝑚

𝑘  are the pollens from different 

flowers of the same plant type at iteration k;   is a 

random distribution in [0, 1].  

This step ensures the exploration or global 

search space from exploitation or local search space. 

For each population/flower, the type of pollination is 

defined by a switching parameter p and its best 

value is 0.8 after testing by Yang. If the random 

number generated for ε is greater than p, then local 

pollination carried out and that provides exploitation 

property to the algorithm else it follows global 

pollination, which provides exploration property to 

the algorithm. This process continues until the 

convergence criterion satisfies i.e., number of 

maximum iterations.  

4.2 Improved flower pollination algorithm 

Despite of its simple and easy way to implement 

for any optimization problem, the basic FPA has 

been suffered with local minima while solving some 

complex and high-dimensional optimization 

problems. To overcome this, various improvements 

have been introduced and a comprehensive literature 

survey on various variant of PFA for improving its 

performance can be found in [25]. As presented in 

[19], the following are the basic steps involved in 

the Improved Flower Pollination Algorithm (IFPA) 

for solving the CBs/DSTATCOMs problem. 

St. 1)  Read system bus data, branch data and the 

annual EV load growth, number of 

CBs/DSTATCOMs locations with their 

minimum and maximum range, 

CBs/DSTATCOMs sizes with their minimum 

and maximum range. Also FPA controlling 

parameters such as number of flowers (𝑛𝑓 ), 

switching probability limits [𝑝𝑎,𝑚𝑖𝑛, 𝑝𝑎,𝑚𝑎𝑥] , 

and maximum iterations (𝑘𝑚𝑎𝑥). 
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St. 2)  Generate initial random population vector or 

pollinators consists of the vector of locations 

and sizes of CBs/DSTATCOMs.  

St. 3)  Using all the control variables generated at 

step 2, determine total loss using load flow 

[22] and VSI given in [21], and corresponding 

function value. Repeat step 3 for all 

populations and find the current best fitness 

value (𝑣𝑏𝑒𝑠𝑡
𝑘 ) over the initial population. 

St. 4)  Set iteration count 𝑘 = 1. Update switching 

probability dynamically as given by: 

 

𝑝𝑎
𝑘 = 𝑝𝑎,𝑚𝑖𝑛 

+𝑒𝑥𝑝 (−10
𝑘

𝑘𝑚𝑎𝑥
) (𝑝𝑎,𝑚𝑎𝑥 − 𝑝𝑎,𝑚𝑖𝑛) (12) 

 

St. 5)  Run the for loop 𝑛𝑓 times: if 𝑟𝑎𝑛𝑑 < 𝑝𝑎
𝑘

, 

search for global pollinators using Eq. (9) and 

also a greedy solution as defined by Eq. (13). 

 

𝑣𝑖
′𝑘+1 = 𝑣𝑖

𝑘 + 𝛾𝐿(𝑣𝑚
𝑘 − 𝑣𝑖

𝑘)          (13) 

 

Here,  𝑣𝑚
𝑘 is a random individual from the 

population. Find the best among greedy 

solution 𝑣𝑖
′𝑘+1 and 𝑣𝑖

𝑘+1, else, search for local 

best using Eqs. (14) and (15), and end the 

loop. 

 

𝑣𝑖
𝑘+1 = 𝑣𝑖

𝑘 + 𝜀(𝑣𝑗
𝑘 − 𝑣𝑖

𝑘) + 𝑆        (13) 

 

𝑆 = 𝛼{𝜔(𝑣𝑏𝑒𝑠𝑡
𝑘 − 𝑣𝑖

𝑘)

+ (1 − 𝜔)(𝑣𝑏𝑒𝑠𝑡
𝑘−1 − 𝑣𝑖

𝑘)} 

(14) 

 

where 𝑣𝑏𝑒𝑠𝑡
𝑘  and𝑣𝑏𝑒𝑠𝑡

𝑘−1  are the best solutions of 

k and (k-1) iterations respectively;   is a 

weighting coefficient for obtaining the 

proportion of (𝑣𝑏𝑒𝑠𝑡
𝑘 − 𝑣𝑖

𝑘) and (𝑣𝑏𝑒𝑠𝑡
𝑘−1 − 𝑣𝑖

𝑘); 

𝛼 ∈ (0,1)
 
is the scaling factor for adjusting 

the step size.  

St. 6)  Evaluate the new fitness value with the 

pollinators determined at step 5 and set 

iteration count 𝑘 = 1 + 1. 

St. 7)  Repeat step 4 and step 6 until 𝑘 = 𝑘𝑚𝑎𝑥. At 

each iteration, compare the new fitness value 

with the global fitness so far. If current fitness 

is better than global fitness, then replace 

global fitness by current fitness and current 

pollinators as global solution vector.  

St. 8)  Display the global fitness and global solution 

vector and stop. 

 

 

5. Results and discussion 

The simulations are performed in a PC with 

specification of 4 GB, 64-bit OS and Intel® Core™ 

i5-2410M CPU @ 2.30 GHz processor using 

MATLAB program. Simulations are performed for 

two scenarios. In Scenario-1, the simulations are 

performed without considering EV load penetrations. 

And in Scenario-2, EV load penetration is 

considered. Again, in each scenario, two cases are 

considered. Case-1, network performance 

optimization using CBs allocation and in Case-2, 

network performance optimization using 

DSTATCOM allocation. The cost of real power loss 

is selected as 168 $/kWh/year and practically 

available capacitor sizes in kVAr and their prices in 

$/kVAr taken from [23]. The cost of DSTATCOM 

and annual savings are estimated as given in [12]. 

Simulations are done on standard IEEE 33-bus test 

system [26]. 

This test system consists of 33 buses 

interconnected by 32 branches, and total real and 

reactive power demands of 3.715 MW and 2.30 

MVAr respectively. The NR load flow [21] is 

performed by choosing the base values of 100 MVA 

and 12.66 kV. The uncompensated system has 

suffering with 202.6706 kW of real power loss and 

135.1366 kVAr of reactive power loss. It has lowest 

voltage of 0.9131 p.u. at bus-18. By computing the 

VSI as defined in [18], it has 0.694 and system is 

said to be low voltage stability. Under this case, the 

overall operating cost is 34048.66 $.  

5.1 Scenario – 1: without EV load 

In this section, optimal allocation of CBs 

problem is performed for two cases. Case-1 

represents the results for without considering EV 

load growth and Case-2 represents results for with 

EV load growth.  

5.1.1. Case-1: allocation of CBs 

In this Case-1, optimal allocation of CBs 

problem is handled without considering EV load 

growth and compared the results obtained via 

proposed IFPA with existing literature works. 

The search space for IFPA is defined as follows. 

The number of CB locations is 3. The minimum and 

maximum limits for the CB locations are [2, 33]. 

Since, the system has 2.3 MVAr reactive load, the 

compensation using standard sizes can be done 

between 150 kVAr and 2.25 MVAr, which can be 

found in [20]. Hence, the minimum and maximum 

limits for CB locations [bus-2, bus-33] and the sizes  
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Table 1. The optimal allocation of CBs and comparison with literature 

Algorithm IBFOA [4] SSA [5] 
MFO, GWO, 

DFO, PSO [1] 
CSA [3] WCA [7] IFPA 

CB Sizes (kVAr) 

and locations 

695 (18) 

525 (25) 

850 (30) 

450 (10) 

450 (23) 

1050 (29) 

450 (8) 

300 (13) 

900 (30) 

400 (12) 

550 (24) 

600 (30) 

397.3 (14) 

451.1 (24) 

1000 (30) 

390 (14) 

600 (24) 

1000 (30) 

% kVAr Comp. 86.52 95.25 89.11 88.60 79.80 88.37 

CB Cost ($/kVAr)A 0.205 0.177 0.180 0.185 0.181 0.185 

CB Cost ($)    471.500 436.703 472.673 513.677 528.451 565.236 

Ploss (kW) 147.8886 135.814 134.1471 132.8662 132.4272 132.3156 

Qloss (kVAr) 102.4581 90.4472 89.5245 88.7456 88.4819 88.4727 

Vmin (p.u.) 0.945 0.936 0.9395 0.9341 0.9397 0.9397 

VSI 0.7968 0.7663 0.7778 0.7602 0.7786 0.7787 

Ploss Cost ($)B  24845.28 22816.75 22536.71 22321.52 22247.77 22229.02 

Total Cost ($)A+B  25316.78 23253.46 23009.39 22835.20 22776.22 22794.26 

% Savings 25.65 31.71 32.42 32.93 33.11 33.05 

% Ploss Reduction 27.03 32.99 33.81 34.44 34.66 34.71 

 
Table 2. The optimal allocation of DSTATCOM and comparison with literature 

Algorithm VSI [16] IA [15] GA [15] DE [14] BA [12] IFPA 

DSTATCOM (kVAr) 

and location 
3386 (30) 962.49 (12) 1114.2 (12) 1252.7 (30) 1150 (30) 1278.7 (30) 

% kVAr Comp. 147.217 41.847 48.443 54.465 50.000 55.596 

DSTATCOM Cost ($)A    169300 48124.5 55710 62635 57500 63935 

Ploss (kW) 280.174 169.513 171.101 142.902 143.446 142.879 

Qloss (kVAr) 196.913 113.698 114.986 95.917 96.076 95.957 

Vmin (p.u.) 0.9458 0.9264 0.9279 0.9260 0.9250 0.9262 

VSI 0.8002 0.7366 0.7414 0.7352 0.7319 0.7360 

Annual savings ($) -58694.75 12322.83 10683.47 24770.12 25029.07 24644.29 

% Ploss Reduction -38.24 16.36 15.58 29.49 29.22 29.50 

 

are chosen correspondingly between [1, 46], 

considering 50 kVAr as step size of CB. 

In Table 1, the results obtained with IFPA are 

compared with the existing works. The 

methodologies using IBFOA [4], SSA [5], MFO [1], 

GWO [1], DFO [1], PSO [1], CSA [3] and WCA [7] 

are taken in to consideration for comparison. In 

order to maintain uniformity in comparison, the 

results presented are given based on our load flow 

program and hence the reader may observe slightly 

deviation when compared with the actual works.  

By implementing the proposed IFPA, the best 

locations for CBs are bus-14. 24 and 30. The sizes 

are 390, 600 and 1000 kVAr respectively. By having 

these VAr injections in the system, it is observed 

that the system has real power loss of 132.3156 kW 

(34.71% reduction as compared with base case) and 

reactive power loss of 88.4727 kVAr respectively. 

The minimum voltage at bus-18 is raised to 0.9397 

p.u. from 0.9131 p.u. And the voltage stability index 

is raised to 0.7787 from 0.694. Also, the total 

operating cost includes CB installation cost is only 

22794.26 $. This is around 33.05% net savings as 

compared to uncompensation system performance. 

By observing the results of other approaches, it can 

be said that the proposed IFPA is outperformed by 

resulting minimum losses and maximum net savings 

as compared with other works. Also, the system 

voltage profile and stability are improved than 

uncompesnation case. 

5.1.2. Case-2: allocation of DSTATCOM 

The similar procedure of CBs is implemented 

for DSTATCOM allocation also. By implementing 

the proposed IFPA, the best location for 

DSTATCOM is bus-30 and the size is 1278.7 kVAr, 

respectively. By having this VAr injection in the 

system, it is observed that the system has real power 

loss of 142.879 kW (i.e., 29.51% reduction as 

compared with base case) and reactive power loss of 

95.957 kVAr respectively. The minimum voltage at 

bus-18 is raised to 0.9262 p.u. from 0.9131 p.u. And 

the voltage stability index is raised to 0.736 from 

0.694. The annual savings are around 24644.29$.  By 

observing the results of other approaches as given in 

Table 2 for VSI [16], IA and GA [15], DE [14] and  
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Table 3. Network performance under EV load growth (without CBs/DSTATACOMs) 
Annual EV load 

growth (%) 
Pload (kW) Qload (kVAr) Ploss (kW) Qloss (kVAr) Vmin,18 (p.u.) VSI 

0 3715.00 2300.00 202.677 135.141 0.9131 0.6575 

10 4041.30 2367.18 231.876 154.541 0.9068 0.6417 

20 4367.60 2445.30 264.272 176.065 0.9002 0.6256 

30 4693.90 2534.36 300.033 199.825 0.8935 0.6094 

40 5020.21 2634.35 339.348 225.948 0.8866 0.5929 

50 5346.51 2745.29 382.424 254.573 0.8794 0.5735 

 
Table 4. Network performance under EV load growth with CBs 

𝝆𝒆𝒗 (%) Locations Sizes Ploss (kW) Qloss (kVAr) Vmin,18 (p.u.) VSI 

0 24 30 12 450 1050 450 132.371 88.404 0.9366 0.7495 

10 24 30 10 600 1050 450 156.680 104.577 0.9302 0.7276 

20 24 30 13 600 1050 450 183.074 122.167 0.9280 0.7191 

30 7 14 30 600 300 1050 213.752 142.768 0.9249 0.7077 

40 30 24 13 1200 600 450 243.547 162.474 0.9164 0.6801 

50 10 24 30 600 600 1200 277.802 185.132 0.9092 0.6571 

 
Table 5. Network performance under EV load growth with DSTATCOMs 

𝝆𝒆𝒗 (%) Locations Sizes Ploss (kW) Qloss (kVAr) Vmin,18 (p.u.) VSI 

0 30 15 24 1048 364 533 132.521 88.651 0.9403 0.7616 

10 13 30 3 377 1028 930 157.634 105.423 0.9323 0.7341 

20 12 32 30 512 230 872 186.949 124.437 0.9254 0.7109 

30 24 13 30 636 432 1111 211.960 141.430 0.9216 0.6977 

40 13 24 30 459 637 1147 243.405 162.349 0.9163 0.6798 

50 30 9 24 1104 670 681 278.201 185.395 0.9068 0.6501 

 

BA [12], it can be said that the proposed IFPA is 

outperformed by resulting minimum losses and 

maximum net savings as compared with other works. 

Also, the system voltage profile and stability are 

improved significantly when compared with 

uncompensation case. 

5.2 Scenario – 2: with EV load growth 

In this Scenario-2, the optimal allocation of 

CBs/DSTATCOMs problem is solved only using 

IFPA for different annual EV load growths 

expressed in terms of total percentage of load 

increment to the base case load.  The performance of 

EDN under different EV load growth scenarios is 

given in Table 3 without compensation. The 

operating power factor of the charging infrastructure 

of EVs is taken as 0.98, correspondingly EV real 

and reactive power loads are estimated. From the 

results, it is clear that the EDN performance is 

degraded with increased losses, reduced voltage 

profile and decreased VSI, as EV loading increases. 

Thus, in this section, it is aimed to optimize the 

EDN performance by allocating either three CBs or 

three DSTATCOMs optimally using IFPA. The 

simulations are performed in two scenarios. In 

scenario 1, 3 CBs and in scenario 2, 3 

DSTATCOMs are integrated. 

5.2.1. Case 1: allocation of CBs 

For this Case-1, the performance of the system 

w.r.t. annual load growth after VAr compensation 

using IFPA is given in the Table 4. For each EV 

load growth, the optimized CB locations and sizes in 

kVAr are given in the same table. The optimized 

kVAr compensation levels and correspondingly the 

obtained system performance in terms of Ploss 

reductions w.r.t. different annual EV load growth 

scenarios are determined.  

At this movement, it can be said that the 

percentage of net savings are almost equal to the 

percentage of Ploss reduction.  In addition, the lowest 

voltage in the system before compensation and 

improved lowest voltage after CBs integration 

optimally are given for different EV load growth 

scenarios. Similarly, the improved voltage stability 

indices at each EV load growth with CBs are also 

given. 

5.2.2. Case 2: allocation of DSTATCOM 

For this Case-1, the performance of the system 

w.r.t. annual load growth after VAr compensation 

using IFPA is given in the Table 5. For each EV 

load growth, the optimized DSTATCOMs locations 

and sizes in kVAr are given in the same table. The 
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optimized kVAr compensation levels and 

correspondingly the obtained system performance in 

terms of Ploss reduction w.r.t. annual EV load growth 

are determined.  

At this movement, it can be said that the 

percentage of net savings are almost equal to the 

percentage of Ploss reduction. In addition, the lowest 

voltage in the system before compensation and 

improved lowest voltage after DSTATCOMs 

integration optimally are given for different EV load 

growth scenarios. Similarly, the improved voltage 

stability indices with DSTATCOMs for each EV 

load growth scenarios are also given in Table 5. 

6. Conclusion 

The optimal allocation of capacitor banks (CBs) 

and distribution-static synchronous compensator 

(DSTATCOM) problems are solved using a new 

and efficient nature-inspired meta-heuristic method 

flower pollination algorithm (FPA). An improved 

flower pollination algorithm uses a new double-

direction learning technique to boost local search 

(IFPA). CB/DSTATCOM actual power loss and 

installation cost are minimized using a multi-

objective function. The search space for numerous 

CBs/DSTATCOMs is first minimized using VSI, 

and then the ideal locations and sizes are identified 

using IFPA. The proposed optimization problem 

needs to solve for discrete (locations) and 

continuous (sizes) variables. The search space can 

be reduced for locations by using voltage stability 

index (VSI) based pre-defined locations. Thus, the 

algorithm can deduce the optimal locations 

effectively. In addition, the modifications to the 

basic FPA by a new double-direction learning 

strategy to advance local searching capacity, a novel 

dynamic switching probability method to balance 

global and local searching, and a new greedy 

technique to increase population diversity. These 

strategies can increase searching precision and make 

solution more accurate. To handle the DSTATCOM 

allocation problem in IEEE 33-bus radial 

distribution systems, a hybrid VSI-FPA solution is 

proposed (RDS). The proposed approach's 

effectiveness is compared to other heuristic 

approaches in the literature. The IFPA outperforms 

existing algorithms in terms of minimal losses, 

decreased installation costs, and enhanced voltage 

profile and voltage stability regardless of EV load 

growth.  
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