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Abstract: Seamless connectivity is need-of-the-hour for high-speed wireless networks. With the advent of 5th 

Generation (5G) wireless devices, users from different networks require inter-network connectivity with minimum 

packet drops, and maximum bit-rate. In order to perform this task, high efficiency handover models are proposed, 

which evaluate various network-level parameters including trust-levels, capacity, Quality of Service (QoS), etc. 

These algorithms also evaluate various node level metrics which include end-to-end delay, Received Signal Strength 

Indicator (RSSI), movement patterns, etc. in order to map the nodes to relevant networks. The drawback of proposed 

approaches is their inability to cater high-speed environments without causing QoS degradation. Moreover, most of 

these models do not consider node-level augmentations, which restricts their performance when applied to real-world 

scenarios. In order to remove these drawbacks and make the algorithms perform well with high speed environments 

without QoS degradation, we propose the design of a novel Connectivity as a Service (CaaS) model that uses Node-

Level Augmentation & Dynamic Sleep Scheduling (NLADSS) for high efficiency heterogeneous wireless network 

handoffs. It was observed that the proposed algorithm is able to achieve a handoff efficiency of 98% for 5G 

heterogeneous networks, which outperforms most of the recently proposed models. The proposed model also aims at 

providing immutability, traceability, and high-performance distributed computing, while not compromising on QoS 

performance of the network. 
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Nomenclature 

To help readers’ understanding, a notation list is 

added in Table 1, to define the variables in equations. 

1. Introduction 

The design of handover mechanisms for wireless 

networks is a multidomain task, which involves 

estimation of node & network level parameters, their 

correlative analysis, feedback learning, make-

before-break operations, etc. During handover, the 

network controller (or base station) evaluates a wide 

array of parameters, including node score, current 

network score, and target network score. The node 

score is evaluated using Eq. (1) as follows, 

𝑆𝑛𝑜𝑑𝑒 = 𝐹𝑛𝑜𝑑𝑒(𝑁𝑒 , 𝑁𝑑 , 𝑁𝑝, 𝑁𝑟𝑠𝑠𝑖 , 𝑁𝑜𝑡ℎ)       (1) 

 

Where, 𝑆𝑛𝑜𝑑𝑒 , 𝑁𝑒 , 𝑁𝑑 , 𝑁𝑝, 𝑁𝑟𝑠𝑠𝑖 , 𝑎𝑛𝑑 𝑁𝑜𝑡ℎ 

represents node score, residual energy, 

communication delay, received signal strength, and 

other parameters respectively, while Fnode 

represents the node function which combines these 

parameters for obtaining the score value. Similarly, 

the current & target network score is evaluated using 

Eq. (2), 

 

𝑆𝑛𝑒𝑡 = 𝐹𝑛𝑒𝑡(𝑁𝑊𝑐 , 𝑁𝑊𝑏 , 𝑁𝑊𝑑 , 𝑁𝑊𝑜𝑡ℎ)      (2) 

 
Where, 𝑆𝑛𝑒𝑡 , 𝑁𝑊𝑐 , 𝑁𝑊𝑏 , 𝑁𝑊𝑑 , 𝑎𝑛𝑑 𝑁𝑊𝑜𝑡ℎ 

represents network score, network capacity, 

bandwidth, data rate, and other parameters as  
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Table 1. The list of symbols and notations used in this 

paper 

Snode, Ne, Nd, 

Np, Nrssi, Noth 

node score, residual energy, 

communication delay, received signal 

strength, and other parameters. 

Snet, NWc, 

NWb, NWd, 

NWoth 

network score, network capacity, 

bandwidth, data rate, and other parameters 

x, y, NBx, 

NBy 

location of node, and its nearest base 

station 

Qnew, Qold, R new Q value, old Q value, and reward 

value 

RSSI Received Signal Strength Indicator 

Tw, TTC, 

NRselj
 

node’s wake up time, total cycle time, 

node selected using Q-Learning 

Nspeed, 

Nvelocity, 

NRSSI, NBW, 

max(f) 

Speed, Velocity, RSSI, Bandwidth for 

given node I and max values used in order 

to normalize the parameters. 

d(Nr2
B),  E, 

J, PDR, NC 

distance between selected node and base-

station, residual energy, jitter, and 

temporal packet delivery ratio of 

randomly selected node over NC 

communications 

R, NRrandom
, 

NRnode
 

Reward value, Rank of the randomly 

selected node, and rank of the 

communicating node 

 

 

decided by the algorithm, while Fnet  indicates 

network function, which combines all network 

parameters to form a score value. Based on these 

scores, a node-to-network mapping model is 

developed. This model utilizes temporal score 

values in order to handoff nodes from current 

network to target network. 

A survey of such models along with their 

nuances, advantages & limitations can be observed 

from section 2 of this paper. Most of these models 

work by contemplating node & network internals for 

reducing handoff latency, and improving network 

QoS. But these models do not utilize peer-to-peer 

communications & sleep scheduling capabilities for 

further improving handoff performance without 

compromising on network security. Based on this 

observation, section 3 describes design of 

Connectivity as a Service (CaaS) model using Node-

Level Augmentation & Dynamic Sleep Scheduling 

(NLADSS) for heterogenous wireless network 

handoffs. The model also utilizes machine learning 

sidechains for improving attack resilience without 

effecting QoS performance during handoff. This 

model also initially performs node-level clustering, 

which divides them into high, medium & low-

capacity nodes. This division assists in performing 

intra-cluster analysis for improved handover 

performance.  

Furthermore, in order to improve QoS 

performance, the model utilizes dynamic sleep 

scheduling for nodes. Due to which, low-capacity 

nodes are able to conserve their resources, and 

utilize neighbouring high-capacity nodes for 

control-signal transmissions. Sleep cycles of these 

nodes are controlled using an incremental Q-

learning approach, which assists in reducing 

scheduling delay, and improving handoff 

performance. Performance evaluation of the 

NLADSS model was done on a wide variety of 

simulation environments, and it was observed that 

the proposed model is 8% more efficient in terms of 

handoff efficiency, 6% more effective in terms of 

QoS performance, and 14% more efficient in terms 

of connectivity performance when compared with 

recently proposed models. 

The proposed model was tested on different 

network configurations, and its performance can be 

observed from section 4 of this paper. This 

performance was compared with various state-of-

the-art models, and it is observed that the proposed 

model outperforms them with respect to both QoS 

and handoff efficiency parameters. Finally, this 

paper concludes with some interesting observations 

about the proposed model, and recommends various 

enhancements to further improve its scalability & 

performance. 

2. Literature review 

Due to advancements in wireless 

communications, design of effective mechanisms for 

network handoffs is of utmost importance. The work 

in [1-3] propose design of such models wherein 

Named-Data-Network (NDN), QoS-aware resource 

provisioning, and soft logical handover are 

described. These models allow network nodes to 

seamlessly move between different networks, with 

minimal effect of QoS. Due to improper 

authentication & access control protocols, the 

security of networks that use these methods is low, 

due to which they can be attacked by internal & 

external adversaries. These networks also suffer 

from increased delay due to complex handover 

process, which can be reduced using the work in [4, 

5], wherein Distributed Mobility Management 

(DMM), and game theoretical approaches are 

proposed.  

These approaches assist in improving handoff 

efficiency, without compromising on QoS 

performance due to their low complexity. These 

approaches are further extended in [6] wherein 
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cooperative game theory is proposed. This strategy 

can be applied to application specific networks, and 

is not scalable. Scalability of this model must be 

improved using the work in [7], wherein cognitive 

radio based adaptive spectrum handoff strategy are 

defined. This strategy can be applied to a wide 

variety of network scenarios.  

Models that utilize fuzzy & Kalman filtering [8], 

multi-objective model-based handoff [9], trust & 

privacy-based handoff [10], and femtocell 

handovers in dense 5th Generation (5G) 

heterogenous networks [11] are also proposed by 

researchers.  

These algorithms are further extended by the 

work in [12-14], wherein security-based models, 

fuzzy analytic hierarchy process, and secure handoff 

for mobile-based cloud deployments is proposed. 

These models assist in improving security during 

handoffs, thereby reducing attack probability, and 

increasing overall QoS of the heterogeneous 

network. Similar models like, Network Mobility 

(NEMO) based cryptosystem [15], cooperative road 

topology-based handoff [16], and multiple vertical 

handoff decision controllers [17] are proposed by 

researchers. These models have good simulation 

performance, but do not cover majority aspects of 

real time communications including transition 

delays, security overheads, etc. due to which their 

applicability to network deployments is limited.  

A multi-hop cluster-based architecture is 

proposed in [18], wherein high security & low 

overhead handoffs are observed. This model has 

better QoS performance, and is secure against a 

wide variety of attacks. Similar models are proposed 

in [19-21], wherein Trustworthy VANET ROuting 

with grouP autHentication keYs (TROPHY), ad hoc 

TROPHY (TAD-HOC), dynamic edge backup-node 

based handoff, and Light Fidelity (LiFi) schemes are 

defined. These schemes assist in improving handoff 

efficiency by reducing network overheads, and 

incorporating attack resilience models to the 

deployment. Based on this review it is observed that 

cryptographic systems, along with clustering models 

have better handoff performance than their 

counterparts inspired by this observation, the next 

section proposes design of Connectivity as a Service 

(CaaS) model with Node-Level Augmentation & 

Dynamic Sleep Scheduling (NLADSS) for 

heterogeneous wireless network handoffs. The 

proposed algorithm is able to achieve a good 

handoff efficiency for 5G heterogeneous networks, 

which outperforms most of the above recently 

proposed models. The proposed model also aims at 

providing immutability, traceability, and high-

performance distributed computing, while not 

compromising on QoS performance of the network. 

3. Node-level augmentation & dynamic 

sleep scheduling (NLADSS) for 

heterogenous wireless network handoffs 

Mobile Wireless Networks (MWNs) consist of 

nodes with varying movement patterns. These 

patterns must be analysed for effective movement 

prediction, which would assist in seamless handoff. 

Due to variation in node-to-node communication 

interfaces, heterogeneous MWNs have higher level 

of complexity than their homogenous counterparts. 

This complexity varies in terms of evaluation of 

node metrics, evaluation of node-to-node link levels, 

network variations, etc. This adds to the complexity 

of handoff decision making, which reduces network 

performance, and impacts communication QoS. To 

address this issue, the underlying Node-Level 

Augmentation & Dynamic Sleep Scheduling 

(NLADSS) model is proposed.  

The model investigates use of node 

heterogeneity as a parameter for clustering, and 

utilizes these clusters for node-to-base-station 

communications. Nodes belonging to high-capacity 

clusters assist nearby nodes belonging to lower 

capacity clusters, thereby improving final handoff 

decisions. In order to describe the proposed model, 

this section is divided into 4 sub-parts, wherein 

initially a capacity-based clustering model is 

described, followed by Dynamic Sleep Scheduling 

(DSS). The model uses incremental Q-learning in 

order to reduce handover delay, and improve QoS of 

node-to-node communications.  

The Q-Learning approach assists in evaluating 

most probable nodes for communication during 

handovers, which reduces node-level security. In 

order to improve security, a sidechain-based model 

is deployed. This model is useful to reduce attack 

probability during node-to-node communications, 

thereby securing the network against sybil, 

masquerading, and Distributed Denial of Service 

(DDoS) attacks. Moreover, the model for the 

proposed NLADSS method can be observed from 

Fig. 1, wherein models for making handoff 

decisions using dynamic sleep scheduling, 

sidechaining, Q-learning, and clustering are 

visualized. Each of these blocks are described 

individually in the subsequent sub-sections, which 

will assist readers & network designers to replicate 

them for their own network deployments 
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Figure. 1 Model for the proposed NLADSS method 

 

3.1 Novel capacity-based clustering model for 

node-to-node assistance via augmented 

ranking 

The capacity-based clustering model is used to 

facilitate better node-to-node communications, in 

order to maintain high QoS during routing. This 

consists of reducing delay, improving residual 

energy, reducing network jitter, and increasing 

throughput during transmission of data & control 

packets.  

 

𝑁𝑅𝑖
= (

𝑁𝑠𝑝𝑒𝑒𝑑𝑖

𝑀𝑎𝑥(𝑁𝑠𝑝𝑒𝑒𝑑)
+

𝑁𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖

𝑀𝑎𝑥(𝑁𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦)
+

𝑀𝑎𝑥(𝑁𝑅𝑆𝑆𝐼)

𝑁𝑅𝑆𝑆𝐼𝑖

𝑁𝐵𝑊𝑖

𝑀𝑎𝑥(𝑁𝐵𝑊)

) 

× (
(𝑁𝑥×𝑁𝑦)

𝑑(𝑁2𝐵)𝑖
) (3) 

 
The model initially collects node & network-

level data, which includes, node location, node 

speed, movement velocity, Received Signal Strength 

Indicator (RSSI), and network-specific bandwidth. 

Based on this information, an augmented rank value 

(NR) is evaluated for each node using equation 3. 

Where,  𝑁𝑠𝑝𝑒𝑒𝑑 , 𝑁𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑁𝑅𝑆𝑆𝐼 , 𝑎𝑛𝑑 𝑁𝐵𝑊  indicates 

speed, velocity, RSSI, and bandwidth for the given 

node i, and Max(f) represents its maximum value. 

The maximum values are used in order to normalize 

the parameters. Moreover, Nx, Ny, d(N2B)i 

represents x, y  dimension of the network, and 

distance between node to the nearest base station, 

which is evaluated using Eq. (4),  

 

𝑑(𝑁2𝐵)𝑖 = √(𝑥𝑖 − 𝑁𝐵𝑥𝑖
)

2
+ (𝑦𝑖 − 𝑁𝐵𝑦𝑖

)
2
  (4) 

 
Where, 𝑥, 𝑦, 𝑁𝐵𝑥 , 𝑎𝑛𝑑 𝑁𝐵𝑦 indicates location of 

node, and its nearest base station. The calculated 

rank serves as a basis to find node capacity, wherein, 

lower ranks indicate higher capacities. These node 

level ranks are given to a hierarchical clustering 

model, for segregation of nodes into low, medium 

and high-capacity ranges. The clustering model 

works as follows, 

• Initialize 3 random centroids using Eqs. (5) to 

(7), 

 

𝐶1 = 𝑟𝑎𝑛𝑑(0, 𝑚𝑖𝑛(𝑁𝑅))                 (5) 

 

𝐶2 = 𝑟𝑎𝑛𝑑 (𝑚𝑖𝑛(𝑁𝑅) ,
∑ 𝑁𝑅𝑖

𝑁𝑁
𝑖=1

𝑁𝑁
)           (6) 

 

𝐶3 = 𝑟𝑎𝑛𝑑 (
∑ 𝑁𝑅𝑖

𝑁𝑁
𝑖=1

𝑁𝑁
, max(𝑁𝑅))           (7) 

 

Where, 𝑁𝑁  represents number of nodes in the 

network. 

• Based on these initial centroids, a difference 

value is evaluated for each node using Eq. (8), 

 

𝐷𝑖,𝑗 = 𝑁𝑅𝑖
− 𝐶𝑗, 𝑗 ∈ (1,3)               (8) 

 

• Nodes are grouped into cluster j , as per 

condition in Eq. (9), 

 

𝐷𝑐,𝑗 = (𝐷𝑖,𝑗 = 𝑚𝑖𝑛(𝐷𝑗))              (9) 

 
Where, 𝐷𝑐,𝑗  represents probability of node 

belonging to cluster j. 
• Once nodes are clustered, then average of all NR 

values are evaluated for a given cluster, and this 

average is stored as new centroids using Eq. (10), 

 

𝐶𝑛𝑒𝑤𝑗 =
∑ 𝑁𝑅𝑖

𝑁𝑁∈𝑗

𝑖=1

𝑁𝑁∈𝑗
                   (10) 
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• This process is repeated until nodes are statically 

placed in the same cluster, and the centroid 

doesn’t change. 

The clustered nodes are used by a Q-learning 

model for improving node-to-node communications. 

Nodes present in higher capacity cluster, assist 

nodes in lower capacity cluster(s) for improving 

data & control signal communication. This assists in 

improving routing efficiency of the network. Design 

of the Q-learning model can be observed from the 

next sub-section. 

3.2 Q-Learning model for intra-cluster node 

selection 

The capacity-based clustering in the network is 

able to differentiate nodes depending on their 

capability to communicate data. This capability is 

utilized by Q-learning in order to facilitate high 

efficiency node-to-node communications. While 

transferring control-and-data signals from node-to-

base-station, or base-station-to-node, the network 

inspects capacity of transmitter node, and identifies 

its cluster. If the node is in high-capacity cluster, 

then it directly participates in data-transmission 

without any further processing. But if the node is in 

either in lower band of medium or low-capacity 

cluster, then Q-learning model assists in selection of 

the most optimum node in higher capacity cluster. In 

order to perform this task, following Model 1 is 

deployed, 

 
Model 1: To select most optimum node in higher 

capacity cluster 
Initialization of Q-learning parameters, 
o Learning rate (∅) 

o Number of iterations (𝑁𝑖) 

o Number of solutions (𝑁𝑠) 

o Discount factor (𝜕) 

o All the solutions to be modified 

for(i=1 to Ni) do 

      for(i=1 to Ns) do 

           if(solution is marked as ‘not to be modified’) 

                   goto next one 

          else 

                   select a random node from a higher 

capacity cluster, and evaluate 𝐐 value using equation 

11 as follows 

 

𝑄𝑛𝑒𝑤 = 𝑄𝑜𝑙𝑑 +  ∅ × (𝑅 + 𝜕 × (𝑚𝑎𝑥(𝑄) − 𝑄𝑜𝑙𝑑)) (11) 

 

Where, Qnew, Qold, and R  represents new Q 

value, old Q value, and reward value. These ‘Q’ 

values are evaluated from Eq. (12), based on the 

randomly selected node. 

 

𝑄 = (
𝑑(𝑁𝑟2

𝐵)

𝑁𝑥 × 𝑁𝑦
+

𝐸𝑚𝑎𝑥

𝐸(𝑁𝑟)
+

𝐽(𝑁𝑟)

𝐽𝑚𝑎𝑥
) 

×
∑ 𝑃𝐷𝑅(𝑁𝑟)

𝑁𝑐
𝑖=1

𝑁𝑐
 (12) 

 

Where, d(Nr2
B), E, J, PDR, and NC  represents 

distance between selected node and base-station, 

residual energy, jitter, and temporal packet delivery 

ratio of randomly selected node over NC 

communications. The ‘Q’ value is updated for every 

solution, which assists in better node selection. 

Similarly, the reward value is evaluated using Eq. 

(13) as follows, 

 

𝑅 =
𝑁𝑅𝑟𝑎𝑛𝑑𝑜𝑚

𝑁𝑅𝑛𝑜𝑑𝑒

× 𝐷𝑠𝑖𝑧𝑒                (13) 

 
Where, NRrandom

, and NRnode
 represents rank of 

the randomly selected node, and rank of the 

communicating node respectively; while, Dsize 

represents size of data being communicated between 

the node & base station. 

o After each iteration, a threshold ‘Q’ value is 

evaluated using Eq. (14) as follows, 

 

𝑄𝑡ℎ =
∑ 𝑄𝑖

𝑁𝑆
𝑖=1

𝑁𝑆
× ∅                      (14) 

 
o Solutions with ‘Q’ values less than threshold are 

marked as ‘not to be changed’, and other 

solutions are marked as ‘to be changed’. 

o At the end of the last iteration, solution with 

minimum ‘Q’ value is selected, and the given 

node is used for routing. 

The use of ‘Q’ learning, nodes are selected 

based on their capacity, end-to-end communication 

delay, residual energy, jitter, temporal packet 

delivery ratio, and communicated data size. This 

assists in selecting the best communication route, 

thereby improving QoS, while enhancing 

communication efficiency of the network. Once the 

path is selected, then a dynamic sleep scheduling 

model is applied for improving handoff quality. This 

model is described in the next sub-section of this 

paper, and assists in energy conservation via 

offloading major handover decisions to Road Side 

Units (RSUs). 

3.3 Dynamic sleep scheduling (DSS) to improve 

handoff quality 

Depending upon contextual network conditions, 

handovers are either node-initiated, or network-

initiated. In both cases, evaluation of most optimum 
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network for the given node is performed via 

parametric checks. During node-level handover 

initiations, parameters including bandwidth, data 

rate, RSSI, location, speed, and network interest are 

evaluated. These parameters are given to a decision 

engine which evaluates whether the requesting node 

requires handoff or not.  

In such a case, if decision unit evaluates that 

handover must be not be performed, then the 

requesting node resends handover requests 

periodically. Due to this continuous-request-

response model, the RSU’s capacity is inherently 

reduced, which reduces network QoS, and reduces 

handoff efficiency. Moreover, this efficiency also 

reduces during network-level handover initiations, 

when the handoff-node is not ready, or is in sleep 

mode. To remove these drawbacks, a Dynamic 

Sleep Scheduling (DSS) model is deployed. The 

DSS model utilizes node rank in order to estimate 

wake-up and sleep cycles of nodes. For each node j, 
the wakeup time is controlled using Eq. (15), 

 

𝑇𝑊𝑗
= 𝑇𝑇𝐶 ×

𝑁𝑅𝑗

𝑁𝑅𝑗
+𝑁𝑅𝑠𝑒𝑙𝑗

                   (15) 

 
Where, Tw, and TTC  represents node’s wake up 

time, and total cycle time, while NRselj
represents the 

node selected using Q-Learning. If a node is in 

lower capacity cluster, then the value of NR for that 

node will be lower, while its partner node (the one 

selected via Q-Learning), will have larger value of 

NRsel
, thereby considerably reducing its wakeup 

time. Similarly, the higher capacity node will have 

higher wakeup time, thereby assuring that either the 

current node, or its partner node are always in 

wakeup state. During network level handoff 

initiations, the network always inquires higher 

capacity nodes. If the handoff request is meant for 

this higher ranked node, then it is directly accepted. 

But if the request is for its partner node, then the 

partner (lower capacity node) is woken-up, and 

handoff request is accepted. 

In case of node-level initiations, the lower 

capacity node sends request to the partner node, and 

follows its sleep cycle. The partner node (higher 

capacity node) keeps a track of this request, and 

pings the Road-Side-Unit (RSU). The RSU utilizes 

notification channels to inform requesting nodes 

about handover status, which assists in reducing 

power consumption. Moreover, RSUs response is 

forwarded to the lower capacity node, only if 

handover is needed, otherwise the lower capacity 

node maintains it sleep cycles.  

The partner node changes on every 

communication request, thereby changing sleep 

cycles of all nodes. These cycles are controlled by 

the proposed Q-learning model, thus are dynamic in 

nature. Due to these dynamic cycles, partner nodes 

are changed during each communication. This 

causes data dissipation via a wide number of nodes, 

which introduces security loopholes in the system. 

These loopholes can assist an attacker node to inject 

sybil, masquerading, DDoS, and other types of 

attacks.  

To reduce the probability of these attacks, a 

blockchain-powered sidechain model is designed & 

discussed in the next sub-section, which introduces 

immutability, traceability, and trustability to all 

network communications. Moreover, Q-learning, 

and dynamic sleep scheduling models are trained on 

the RSU, thereby providing high speed Connectivity 

as a Service (CaaS) to the vehicular nodes. 

3.4 Design of the sidechain model for attack 

resilience 

The proposed sidechaining model uses smart 

contracts & a machine learning layer to control 

sidechain creation & management. The used data 

storage format can be observed from Table 2, 
wherein entities like previous hash, source address, 

destination address, etc. are stored. 

The storage structure can be used to store any 

kind of data & control signals in the blockchain. 

While storage, the following delays are incurred, 

• Mining delay: It involves the time required to 

generate a nonce number for unique current hash 

values (Dmining) 

• Hashing & encryption delay: It ensures high 

security & privacy to the system (DHE) 

 
Table 2. Data storage structure of the proposed sidechain 

Component Description 

Prev. Hash Hash of the previous block 

Destination Address Receiver node’s address (can be 

IPV4, or IPV6) 

Current Hop 

Address 

Address of the current node 

(where data is routed) 

Data for 

communication 

Actual data or control signals 

being communicated 

Timestamp Data Generation Timestamp  

Nonce number A random number which insures 

uniqueness of this block 

Source Address Address of the source node 

Source Partner Node Address of current partner of the 

source node (controlled by Q-

Learning) 

Hash of current 

block 

Hash (SHA512) of the current 

block 
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• Verification delay: It involves dissipation of 

data to other nodes, and gathering their 

consensus (Ddiss) 

The hashing and encryption delay can only be 

reduced if lower complexity models are used, which 

reduces overall network security. Moreover, this 

delay is infinitesimal when compared with 

dissipation & mining delays, which increase 

exponentially with an increase in chain length. An 

increased chain length causes storage & 

management issues as well. Thus, sidechains are 

formed, and controlled using the following 

algorithm, which assist in reducing overall storage 

delay, while maintaining high network security, 

• Input 

o Total learning iterations (Nr) 

o Total solution combinations (Nc) 

o Learning rate (Lr) 

• To start with, mark all solutions as ‘to be 

modified’ 

• For each iteration in 1 to Nr, perform the 

following tasks, 

o If this solution is marked as ‘not to be 

modified’, then continue to next one. Else, 

follow these steps, 

▪ Generate a random number RL, which will 

decide sidechain length. 

▪ Divide current blockchain into smaller 

chains of length RL. 

▪ Select a random chain Crandom, and add a 

dummy block to this chain. 

▪ Investigate the mining delay, and 

dissipation delay for adding this block. 

▪ For these delay values, find solution fitness 

using Eq. (16), 

 

𝑓𝑖𝑛𝑡𝑒𝑟𝑚 =
(

𝐷𝑚𝑖𝑛𝑖𝑛𝑔

𝐷𝑚𝑎𝑥
+

𝐷𝑑𝑖𝑠𝑠
𝐷𝑚𝑎𝑥

)

2
             (16) 

 

Where, Dmax represents maximum delay needed 

to add a block to the main blockchain 

▪ Repeat this for all rounds, and select the 

sidechain combination that has minimum 

fitness value. This indicates that the 

selected sidechain selection has minimum 

dissipation and mining delays. 

o Perform this task for all combinations, to 

obtain different sidechain variations. 

o Evaluate fitness threshold using Eq. 

(17), 

 

𝑓𝑡ℎ =  ∑
𝑓𝑖𝑛𝑡𝑒𝑟𝑚𝑖

𝑁𝑐
× 𝐿𝑟𝑁𝑐

𝑖=1                (17) 

o Find combinations where fitness is more than 

threshold, and mark them as, ‘to be changed’, 

mark all others as ‘not to be changed’ 

• Finally, select the sidechain length with 

minimum value of finterm , which indicates 

selection of sidechain with minimum dissipation 

and mining delay. 

Repeat this process whenever length of any 

sidechain crosses average length of all sidechains. 

Due to use of cryptographic functions, and hashing, 

these blocks are completely traceable, which 

reduces probability of Masquerading, and Sybil 

attacks. Moreover, in case of any tampering attacks, 

hash values of blocks will change, thereby 

discarding that sidechain, and tracking the 

misbehaving node.  

Due to sidechain creation, DDoS attacks are also 

defeated, because as number of packets are injected 

into the system, a greater number of sidechains will 

be created, thus the system’s performance will not 

degrade, and high QoS will be maintained. Network 

engineers can detect these larger sidechains, and 

traceback the source(s) of DDoS nodes. The 

performance of this integrated system model is 

described in the next section, and is observed in 

terms of end-to-end delay, throughput, residual 

energy, jitter and handoff efficiency parameters. 

4. Result analysis and comparison 

Due to application of Q-learning, DSS, and 

capacity-based clustering, overall QoS during 

handoffs is improved. This QoS is measured in 

terms of end-to-end delay, energy consumption, 

throughput, jitter and handoff efficiency. Moreover, 

due to addition of sidechaining, the model is 

resilient to attacks like Masquerading, Sybil and 

DDoS. Thus, this section compares QoS 

performance of the proposed model with [7, 12, 18], 

with and without attack. In order to enforce 

consistency during evaluation, each of the 

configurations was tested on the network simulation 

conditions as mentioned in Table 3 as follows. 

Using this configuration, number of handoffs & 

communication requests were linearly changed from 

20 to 200. During this simulation, stochastic 

modelling was done, and nodes were selected 

randomly for routing. Moreover, probability of 

attacks was varied between 1% to 20% for 

Masquerading, Sybil and DDoS attacks. QoS 

parameters were evaluated before & after attacks, 

and compared against [7, 12, 18].  

It was observed that the proposed model was 

able to normalized these parameters even after 

attack, which indicates its attack resilience. In order 
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Table 3. Network and node configurations 

Parameter Configured value 

Propagation Model Two Ray Ground 

MAC Version 802.16 

Interface queue (IFQ) type Drop Tail & Priority 

Queue 

Antenna Model Omnidirectional 

Number of vehicles 50 to 1000 

Routing Protocol DSDV 

Network dimensions 0.4 km x 0.4 km 

Vehicle power consumption 

during idle mode 

2 mW 

Vehicle power consumption 

during data reception 

2 mW 

Vehicle power consumption 

during transmission 

4 mW 

Vehicle power consumption 

during sleep mode 

0.002 mW 

Vehicle power required during 

transition from sleep to wakeup 

mode 

0.1 mW 

Delay required for this transition 0.01 s 

Residual energy for each vehicle 

(initially) 

2000 mW 

 

 

to validate the analysis, this section is divided into 2 

sub-parts, wherein section 4.1 indicates handoff 

performance without attack, and section 4.2 

indicates the same performance under different 

attack types. Thereby assisting in evaluation of the 

NLADSS model under different network conditions. 

4.1 QoS handoff performance without attack 

The use of DSS, Q-Learning and capacity-based 

clustering, the proposed model showcases better 

handoff and QoS performance when compared with 

models proposed in [7, 12, 18]. In order to evaluate 

this performance, the number of vehicles were 

varied between 50 and 1000; and performance of 

metrics including end-to-end delay, residual energy, 

throughput and handoff efficiency were evaluated. 

Each of these node variations was accompanied with 

20 to 200 handoff requests (NH), and the QoS 

parameters were averaged for each running cycle. 

This allows true estimation of performance of the 

underlying model, and assists in comparing its 

performance with the existing models. As per this 

evaluation strategy, end-to-end delay (D) 

performance for different protocols is tabulated in 

Table 4 as follows. 

It can be observed from this tabulation that an 

improvement of 10% in terms of delay reduction is 

obtained which is mainly due to incorporation of 

DSS & Q-Learning.  

 

Table 4. Average end-to-end delay for different models 

(50 vehicles) 

No. of Vehicles = 50 
NH D (ms) 

[7] 

D (ms) 

[12] 

D (ms) 

[18] 

D (ms) 

Proposed 

20 0.65 0.67 0.74 0.61 

25 0.69 0.73 0.81 0.66 

30 0.79 0.79 0.87 0.71 

35 0.82 0.82 0.90 0.74 

40 0.84 0.85 0.95 0.78 

45 0.89 0.92 1.01 0.83 

50 0.96 0.97 1.10 0.93 

60 1.00 1.14 1.36 1.18 

70 1.30 1.61 1.85 1.55 

80 1.94 2.00 2.19 1.80 

90 2.08 2.11 2.34 1.94 

100 2.18 2.29 2.59 2.16 

125 2.44 2.66 2.97 2.47 

150 2.93 3.00 3.31 2.74 

175 3.11 3.22 3.66 3.06 

200 3.40 3.85 4.24 3.28 

 
Table 5. Average end-to-end delay for different models 

(1000 vehicles) 

No. of Vehicles = 1000 

NH D (ms) 

[7] 

D (ms) 

[12] 

D (ms) 

[18] 

D (ms) 

Proposed 

20 0.96 0.96 1.11 0.83 

25 1.01 1.05 1.21 0.90 

30 1.16 1.13 1.30 0.96 

35 1.20 1.18 1.35 1.00 

40 1.23 1.23 1.42 1.06 

45 1.31 1.31 1.51 1.13 

50 1.40 1.38 1.64 1.26 

60 1.46 1.63 2.05 1.59 

70 1.91 2.30 2.77 2.11 

80 2.85 2.85 3.29 2.45 

90 3.05 3.03 3.51 2.62 

100 3.20 3.28 3.87 2.92 

125 3.57 3.81 4.46 3.35 

150 4.29 4.28 4.96 3.72 

175 4.56 4.62 5.50 4.31 

200 4.99 5.51 6.36 4.45 

 

 

As the number of vehicles are increased from 50 

to 500, the delay performance is further optimized. 

An improvement of 12% in terms of delay reduction 

is obtained which is mainly due to incorporation of 

DSS, Q-Learning and use of dynamic clustering. As 

the number of vehicles are increased from 500 to 

1000, the delay performance is further optimized. 

This can be observed from Table 5. 

It can be observed that an improvement of 14% 

in terms of delay reduction is obtained due to 

incorporation of Q-learning, DSS & sidechaining.  
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Table 6. Average energy consumption for different 

models (50 vehicles) 

No. of Vehicles = 50 

NH E (mJ) 

[7] 

E (mJ) 

[12] 

E (mJ) 

[18] 

E (mJ) 

Proposed 

20 1.21 2.04 1.91 1.64 

25 1.88 2.51 2.23 1.88 

30 1.91 2.61 2.34 1.97 

35 2.05 2.75 2.46 2.09 

40 2.11 2.92 2.63 2.22 

45 2.32 3.11 2.77 2.34 

50 2.39 3.23 2.88 2.43 

60 2.50 3.36 2.99 2.52 

70 2.59 3.49 3.11 2.62 

80 2.70 3.61 3.25 2.75 

90 2.77 3.87 3.51 2.97 

100 3.08 4.26 3.77 3.16 

125 3.38 4.32 3.78 3.17 

150 3.16 4.24 3.78 3.11 

175 3.28 4.40 3.33 2.53 

200 3.46 4.53 3.70 2.51 

 
Table 7. Average energy consumption for different 

models (1000 vehicles) 

No. of Vehicles = 1000 

NH E (mJ) 

[7] 

E (mJ) 

[12] 

E (mJ) 

[18] 

E (mJ) 

Proposed 

20 1.77 2.92 2.87 1.95 

25 2.76 3.59 3.36 2.24 

30 2.80 3.74 3.51 2.35 

35 3.00 3.94 3.70 2.48 

40 3.10 4.19 3.94 2.63 

45 3.40 4.46 4.16 2.77 

50 3.52 4.63 4.32 2.88 

60 3.66 4.82 4.49 3.00 

70 3.80 5.00 4.66 3.11 

80 3.96 5.18 4.87 3.28 

90 4.07 5.54 5.27 3.53 

100 4.52 6.12 5.67 3.75 

125 4.97 6.19 5.69 3.76 

150 4.63 6.08 5.68 3.68 

175 4.80 6.31 5.01 3.00 

200 5.12 6.64 5.55 3.41 

 

 

The reason for this delay reduction is availability of 

larger number of nodes in the same area, which 

assists in faster data routing.  

Similar observations are done for energy 

performance, this can be observed for 50 nodes from 

Table 6. 

It can be observed that a reduction of 9% in 

terms of energy consumption is obtained due to 

incorporation of the proposed NLADSS model. 

As the number of vehicles is increased from 50 

to 500, the energy consumption is further reduced, 

 
 

Table 8. Average throughput performance for different 

models (averaged between 50, 500 and 1000 vehicles) 

Average of 50, 500 and 1000 Vehicles 

NH T(kbps) 

[7] 

T(kbps) 

[12] 

T(kbps) 

[18] 

T (kbps) 

Proposed 

20 223.1 212.5 249.8 286.3 

25 227.6 215.0 252.2 288.8 

30 228.3 215.9 253.5 290.5 

35 229.4 217.7 255.7 293.1 

40 232.0 219.8 258.1 295.8 

45 234.0 221.7 260.3 298.3 

50 236.0 223.5 262.6 300.8 

60 237.9 225.4 264.7 303.3 

70 239.9 227.2 266.9 305.8 

80 241.9 229.1 269.1 308.3 

90 243.9 230.9 271.3 310.8 

100 245.8 232.8 273.4 313.3 

125 247.8 234.7 275.6 315.8 

150 249.8 236.6 277.8 318.3 

175 251.8 238.5 280.0 320.8 

200 253.7 240.4 282.2 323.3 

 
Table 9. Average handoff efficiency performance for 

different models (averaged between 50, 500 and 1000 

vehicles) 

Average of 50, 500 and 1000 vehicles 

NH Eff.(%) 

[7] 

Eff.(%) 

[12] 

Eff.(%) 

[18] 

Eff. (%) 

Proposed 

20 83.28 83.38 84.39 86.78 

25 84.95 84.34 85.21 87.56 

30 85.22 84.68 85.64 88.06 

35 85.65 85.38 86.38 88.83 

40 86.63 86.23 87.21 89.66 

45 87.36 86.96 87.94 90.42 

50 88.09 87.68 88.68 91.18 

60 88.83 88.42 89.42 91.93 

70 89.57 89.15 90.16 92.69 

80 90.31 89.88 90.89 93.45 

90 91.04 90.61 91.63 94.21 

100 91.78 91.35 92.37 94.96 

125 92.52 92.07 93.11 95.72 

150 93.26 92.80 93.84 96.48 

175 93.99 93.54 94.58 97.24 

200 94.73 94.27 95.32 98.01 

 

 

thus improving overall energy efficiency. It is 

observed that a reduction of 20% in terms of energy 

is obtained due to incorporation of the NLADSS 

model. This energy consumption is further reduced 

as the number of vehicles is increased from 500 to 

1000. This can be observed from Table 7. 

It can be observed that a reduction of 29% in 

terms of energy consumption is obtained due to 

incorporation of NLADSS model. The reason for 

this energy reduction is availability of larger number 
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of nodes in the same area, which assists in having 

better network lifetime.  

Similar observations are done for throughput 

performance, this performance is averaged for 50, 

500 and 100 vehicles; and can be observed from 

Table 8. 

It can be observed that an improvement of 16% 

in terms of throughput is obtained due to 

incorporation of the proposed NLADSS model. The 

reason for this throughput improvement is use of 

QoS related parameters during partner node 

selection.  

Similar observations are done for handoff 

efficiency performance, this performance is 

averaged for 50, 500 and 100 nodes. This is done 

such that the network performance can be evaluated 

for low, medium and large number of nodes; and 

can be observed from Table 9. 

It can be observed that an improvement of 4% in 

terms of handoff efficiency is obtained due to 

incorporation of the NLADSS model. 

The reason for this packet delivery ratio 

improvement is use of sidechaining, DSS and 

hierarchical clustering. These evaluations are 

extended for different number of attacks in the 

network, and can be observed from the next section. 

Due to these observations, the proposed model is 

superior in terms of handoff efficiency, and QoS 

performance with and without attacks. This makes 

the proposed model applicable for a wide variety of 

vehicular network scenarios. 

5. Conclusion and future scope 

The Q-Learning works on a reward function, 

which assists in selecting the most optimum node 

partner for any given node. This when combined 

with dynamic sleep scheduling, and hierarchical 

clustering further assists in improving overall 

handover performance. But this performance is 

limited by the security gaps, which are injected due 

to use of dynamic partner node. Thus, to enhance 

overall security, this paper proposes design of a 

machine learning sidechaining model.  
As a result of these models, the underlying 

system model is capable of reducing end-to-end 

delay by 8% to 15% depending upon network 

configuration, further, it reduces energy 

consumption by over 14% when compared with [7], 

[12], and [18], thereby indicating better network 

lifetime. Moreover, the model is observed to 

outperform existing methods in terms of throughput, 

and overall handoff efficiency, which is mainly due 

to combination of DSS, Q-Learning & dynamic 

clustering approaches.  

The model can be extended to assists in reducing 

probability of network attacks, which is due to 

inclusion of sidechain-based data storage and 

communication capabilities. The model’s 

performance can be further improved via 

exploration of newer blockchain consensus models 

that require lower complexity, and the machine 

learning process can be further fine-tuned via use of 

hyperparameter tuning.  
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