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Abstract: Osteoporosis is a condition wherein bone tissue deteriorates and bone strength deteriorates. Over time, the 

disease that can lead bone to become more permeable and fragile makes it more prone to breaking. Early recognition 

of osteoporosis via an X-ray approach will enhance diagnosis and treatment practices, but it will also assist in 

preventing national economic loss via mass screening and awareness. A novel early osteoporosis diagnosis model is 

developed for X-ray images in this research work. The following four primary steps are used to construct a unique 

Osteoporosis detection model in this study: “(a) pre-processing, (b) feature extraction, (c) optimal feature selection, 

and (d) Osteoporosis detection”. Gabor filtering (noise reduction) and histogram equalization are used to pre-process 

the obtained raw data (X-ray) (quality enhancement). Features such as “Active shape model (ASM), active appearance 

model (AAM), gray level co-occurrence matrix (GLCM), mean local gradient pattern (M-LGP), and improved median 

ternary pattern (I-MTP)” are recovered from the pre-processed data. Following that, a new hybrid optimization model 

chooses the best features from the retrieved features. The cat guided hummingbird foraging algorithm (CGHFA) is a 

conceptual combination of the basic artificial hummingbird algorithm (AHM) and the cat hunting optimization 

algorithm (CHOA). The deep learning classifiers in the Osteoporosis detection phase are trained using these ideally 

selected characteristics. The newly created ensemble-of-classifiers model is used to represent the osteoporosis 

diagnostic phase. “Quantum deep neural network (QDNN), improved deep convolution neural network (I-DCNN) and 

recurrent neural network (RNN)” are some of the deep learning classifiers that is employed here. All of these classifiers 

are trained using the optimal features available. The loss function of DCNN is improved via harmonic mean based 

cross-entropy function. The final detection performance will be calculated by combining the results obtained from all 

of these characteristics (by taking the mean). Finally, the effectiveness of the anticipated model is validated by a 

comparative examination. Accordingly, the detection accuracy attained by the proposed deep ensemble model 

+CGHFA at Learn_rate=60 is 90.7%, at Learn_rate=70 is 92.14%, at Learn_rate=80 is 93.482% and at Learn_rate=90 

is 94.8%, which is higher than the existing models.  

Keywords: Osteoporosis detection, X-rays, Early diagnosis, Mean local gradient pattern (M-LGP), Improved median 

ternary pattern (I-MTP); Cat guided hummingbird foraging algorithm (CGHFA), I-DCNN. 

 

 

 

1. Introduction 

Osteoporosis has become more common and 

well-known in recent years, with approximate 200 

million people globally suffering from the disease [1, 

2, 3]. Nonetheless, nearly 75% of such persons are 

misdiagnosed and untreated. The “World health 

organization (WHO)” defines osteoporosis as "a 

systemic skeletal illness deterioration of bone tissue 

and microarchitectural degradation of bone tissue 

with a corresponding increase in bone fragility and 

fracture susceptibility"[4, 5, 6]. Osteoporosis-related 

fractures have a significant risk of the cause of death 

and disability, a lower standard of living, and raised 

medical costs dramatically.  

Early diagnosis is critical for prompt diagnosis 

and therapy of individuals who are at risk for 

osteoporotic fractures. Diagnostic imaging of 

osteoporosis serves two main goals in this frame of 

reference: (1) to detect the existence of osteoporosis 

and (2) to obtain prognostic information on the 

likelihood of future bone deformation from bone 

density ]quantification [7]. The quantitative 

evaluation of BMD, which has now been regarded the 
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greatest indicator of osteoporotic bone fractures, is 

being used to diagnose osteoporosis [8]. Although 

being the gold standard for osteoporosis diagnosis, X-

ray could be extensively employed as an osteoporosis 

screening technique [9]. 

Artificial intelligence (AI) has recently been 

employed in medical image interpretation. 

Furthermore, numerous researchers sought to use AI 

technologies to deliver an effective osteoporosis 

testing method. A few attempts have employed 

machine learning or deep learning algorithms to 

predict osteoporosis based on basic radiography data 

[10, 11].  

The major contribution of this research work is: 

• To extract the M-LGP and I-MTP and the other 

texture and shape-based features. 

• To select the optimal features using the new 

CGHFA, which is indeed the combination of 

standard CHOA and AHM 

• The improved ensemble deep learning classifiers is 

designed in the Osteoporosis detection with 

quantum deep neural network (QDNN), improved 

deep convolution neural network (I-DCNN) and 

recurrent neural network (RNN) 

• The loss function of DCNN is improved via 

harmonic mean based cross-entropy function.  

The rest of this paper is arranged as: section 2 tells 

the literature works done in osteoporosis detection. 

Section 3, section 4, section 5 and section 6 tells about 

proposed osteoporosis detection from bone x-ray 

images, feature extraction, optimal feature selection 

via CGHFA and detection with an improved deep 

ensemble model, respectively. The results acquired 

with the projected model are validated in Section VII. 

This paper is concluded in Section VIII.  

2. Literature review 

Zhang et al. [1] established a DCNN model using 

lumbar spine X-ray images in 2020, to detect 

osteopenia and osteoporosis. Devikanniga et al. [2] 

created an effective classification algorithm for 

osteoporosis diagnosis in 2020. The tried-and-true 

ELM has been chosen for all of this. Furthermore, a 

unique hybrid metaheuristic algorithm has been 

created by mixing two nature-inspired heuristic 

search techniques, such as the “artificial algae 

algorithm with multi-light source and the Monarch 

butterfly optimization method”. Mebarkia et al. [3] 

developed an osteoporosis diagnostic method shape 

and texture assessment in 2021. The feature extraction 

process implements the hierarchical multiscale local 

binary pattern (H-MLBP) approach. Tejaswini et al. 

[4] suggested a simple first-line approach for 

detecting and predicting osteoporosis in 2016. With 

the aid of LabVIEW, an impulse response assessment 

was conducted on the tibial bone to diagnose 

osteoporosis. In 2017, Reshmalakshmi et al. [5] 

proposed a technique for assessing the trabecular 

bone architecture to diagnose osteoporosis condition. 

The goal of such technology has always been to aid 

doctors in detecting, controlling, and treating 

osteoporosis in its initial stages. The severity of the 

illness has been determined by examining the 

trabecular bone structure with a variety of computer 

vision techniques and typical visual quality criteria.  

Numerous methods have been employed for 

osteoporosis detection. But, still there exist a common 

problem like no elimination in variability across 

images owing to various X-ray scan settings [1], low 

classification accuracy [2], low precision [3], 

disturbances due to human contact and other noises 

[4], and high implementation cost and time 

consumption [5]. Hence, in order to solve the 

abovementioned issues, this work proposes a new 

osteoporosis detection model is for X-ray images. 

3. Proposed osteoporosis detection from bone 

X-ray images 

3.1 Architectural description  

In this research work, a novel Osteoporosis 

detection model is developed by following four major 

phases: “(a) pre-processing, (b) feature extraction, (c) 

optimal feature selection and (d) Osteoporosis 

detection”. The architecture of the projected model is 

shown in Fig. 1. Let the collected bone x-ray images 

are denoted as𝑖𝑚𝑔𝑋−𝑟𝑎𝑦, which is further given for 

processing.  

The steps that is followed in the projected model 

is furnished below: 

Step 1- Initially, the collected raw data 

𝑖𝑚𝑔𝑋−𝑟𝑎𝑦is pre-processed via Gabor filtering (noise 

removal) and histogram equalization (quality 

enhancement). The pre-processed images acquired 

from the histogram equalization is denoted as 

𝑖𝑚𝑔𝑖
𝑋𝑝𝑟𝑒

 

Step 2- From 𝑖𝑚𝑔𝑖
𝑋𝑝𝑟𝑒

, the features like 

“Active shape model (ASM) ℎ
𝐴𝑆𝑀

, active appearance 

model (AAM) ℎ
𝐴𝐴𝑀

, GLCM ℎ
𝐺𝐿𝐶𝑀

, mean local 

gradient pattern (M-LGP) ℎ
𝑀−𝐿𝐺𝑃

, improved median 

ternary pattern (I-MTP) ℎ
𝐼−𝑀𝑇𝑃

” are extracted. These 

extracted features are fused together as 𝐻 

=ℎ
𝐴𝑆𝑀

+ℎ
𝐴𝐴𝑀

+ℎ
𝐺𝐿𝐶𝑀

+ℎ
𝑀−𝐿𝐺𝑃

+ℎ
𝐼−𝑀𝑇𝑃

. 

Step 3- Subsequently, the optimal 

features𝐻𝑜𝑝𝑡  is selected from the extracted features 

𝐻 using a new hybrid optimization model. 
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Figure. 1 Architecture of the projected osteoporosis model 

 

The projected hybrid optimization model- CGHFA is 

the conceptual blend of the standard AHM and CHOA, 

respectively. The deep learning classifiers in the 

Osteoporosis detection phase are trained using these 

optimally selected features.  

Step 4- The Osteoporosis detection phase is 

modeled with the newly constructed ensemble-of-

classifiers model. Here, deep learning classifiers like 

QDNN, I-DCNN and RNN are used. All these 

classifiers are trained using the optimally selected 

features𝐻𝑜𝑝𝑡. Finally, the outcome acquired from all 

these features is combined (by taking mean); and this 

is the final detection performance.  

3.2 Pre-processing 

The collected raw X-ray images 𝑖𝑚𝑔𝑋−𝑟𝑎𝑦  are 

pre-processed to enhance the quality of the image, by 

means of suppressing the noise and other artifacts 

within it. The 𝑖𝑚𝑔𝑋−𝑟𝑎𝑦 is first filtered via Gabor 

filtering to remove the noises within it. Fig. 2 depicts 

this phase diagrammatically. Then, onto the filtered 

image𝑖𝑚𝑔𝑖
𝑋𝑓𝑖𝑙𝑡𝑒𝑟

, histogram equalization is applied 

to enhance the quality of the image. The resultant 

acquired from the histogram equalization is the pre-

processed image and it is denoted as𝑖𝑚𝑔𝑖
𝑋𝑝𝑟𝑒

. 

Gabor filtering [14]: the Gabor filter is utilized to 

remove the noise within 𝑖𝑚𝑔𝑋−𝑟𝑎𝑦.  

Histogram equalization [15]: The histogram 

equalization is used to improve the contrast of the 

filtered image 𝑖𝑚𝑔𝑖
𝑋𝑓𝑖𝑙𝑡𝑒𝑟

. Histogram equalization, 

often referred as histogram flattening, is indeed a 

nonlinear lengthening and redistributing of image 

pixel values that results in a relatively equivalent 

amount of pixel values from the mean grey range. 

4. Feature Extraction  

From the pre-processed data𝑖𝑚𝑔𝑖
𝑋𝑝𝑟𝑒

, the features 

like active shape model (ASM), active appearance 

model (AAM), GLCM, mean local gradient pattern 

(M-LGP), and improved median ternary pattern (I-

MTP) are extracted. These extracted features are 

fused together as𝐻.  

4.1 ASM 

The active appearance model (AAM), which is 

well-documented in the scientific literature, is yet 

another version of the ASM technique. In addition, 

the statistical shape model of objects, known as the 

active shape model (ASM), is being used to explain it. 

Shapes are extracted from images using this approach. 

The ASM algorithm is depicted below: 

(1) Align each shape of the sample at first. The 

landmark points 

𝑔1, 𝑜1,

 are determined 

(manually) in a collection of 𝑖𝑚𝑔𝑖
𝑋𝑝𝑟𝑒

 

training images. A point distribution model is 

created from these groupings of landmark 

points. The landmark points in the shape  

 

 

Input data (X-ray 

images) 

 

  

Pre-processing   

Gabor 

filtering 

Histogram 

equalization 

Feature extraction  

• Active Shape Model (ASM) 

• Active Appearance Model (AAM) 
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MTP) 
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RNN  

Mean 
Presence 
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(2) 140 30 240 

130 60 230 

135 20 235 

Figure. 2 Pixel values of original image: an illustration 

 

 

 

 

 

 

 

Figure. 3 Computed mean of the sample image 

 

vector are marked as 𝐺 = (𝑔1, 𝑜1, . . . . 𝑔𝑛, 𝑜𝑛)
𝑇 

here 

𝑔1, 𝑜1,

 refers to the 
𝑜𝑡ℎ

landmark in the thg

shape. (i.e. 

𝑔𝑡ℎ
histogram curve). 

(2)Repeat step 1 until you reach a point of 

convergence:  

(a)calculate the mean shape. The arithmetic mean 

of coordinates representing each element of the 

sample after alignment defines the mean shape. This 

is mathematically shown in Eq. (4). 

 

𝜇 =
1

𝑆
∑ 𝑖𝑚𝑔𝑖

𝑋𝑝𝑟𝑒𝑆
𝑖=1     (4) 

 

(b) Using the obtained mean shape, do PCA on the 

shape vector. 

The covariance matrices 
𝑆

 are indicated as Eq. (5). 

 

𝑆 =
1

𝑠−1
(𝑔𝑖 − 𝑔)(𝑔𝑖 − 𝑔)

𝑇                (5) 

 

The Eigen vectors corresponding to the largest 

Eigen values can be given in the form of matrix as 
𝜕

. 

Now the shape can be given as: 𝐺 ≈ 𝐺 + 𝜕𝑏. Here, 𝑏 

is a vector of elements with parameters, and it can be 

computed as 𝑏 = 𝜕𝑇 . (𝐺 − 𝐺). 
(b) adjust the mean shape:   

 (i) By default, to a size, orientation, and 

origin,  

 (ii) To the first shape,  

(c) Align each shape on the mean shape. 

The extracted feature is pointed as ℎ
𝐴𝑆𝑀

 

4.2 AAM 

The AAM [16, 17] model's algorithm is made up 

of three steps:  

(a) In the training set, linking shape and texture 

vectors towards each AAM, shape and texture vectors 

are coupled in the very same vector: 𝐶𝑖 =

(𝑇𝑖. 𝑖𝑚𝑔𝑖
𝑋𝑝𝑟𝑒

)
𝛵

. For 𝑚𝑡pixel, the texture vector is 

denoted as 𝑇𝑖 

(b) In the training set, calculate the correlation 

coefficient matrix for related shape and texture 

vectors. 

(c) Using PCA analyzes the correlation 

coefficient matrix. The hybrid parameters are the 

eigenvectors 𝑃  of 𝐶 , and they are required for 

monitoring the form and texture of the AAM model. 

𝐶𝑖 = 𝐶 + 𝐴. (𝑃. 𝑏) Can be proposed for each pattern 

in the training program. Here, 𝐴is the diagonal matrix 

and diametrical contrast correspondent to 

𝑖𝑡ℎcoefficient is pointed as𝐶. The extracted feature is 

pointed as ℎ
𝐴𝐴𝑀

. 

4.3 GLCM 

In general, this GLCM [18] in image data is used 

to create a matrix co-occurrence, wherein the features 

matrices function may be obtained. The extracted 

GLCM features are variance, sum variance, sum 

entropy, sum average, mathews correlation 

coefficient (MCC) (2ndhigher eigen value of ), IMC1, 

IMC 2, homogeneity, entropy,  energy, difference 

variance, difference entropy, correlation, contrast. 

The extracted feature is pointed as ℎ
𝐺𝐿𝐶𝑀

. 

4.4 Mean local gradient pattern (M-LGP) 

The LGP operator calculates the gradient values 

of a specified pixel's eight surrounding pixels that are 

computed as absolute values of intensity differences 

between given pixel and its neighbors. It has 

drawbacks, such as (a) producing large histograms, 

which reduces identification speed, and (b) missing 

the local feature in certain instances since the 

influence of the centre pixel also isn't taken into 

account. A unique I-LGP model has been proposed in 

this research work to address all of the aforesaid 

issues. I-steps LGP's are as follows: 

Step 1- The gradient value of the pixels is 

computed by taking the mean of each column (in LGP, 

the gradient pixel value is computed by comparing the 

centre pixel and its neighbors). Let the pixel values of 

𝑖𝑚𝑔𝑖
𝑋𝑝𝑟𝑒

 be, as per shown in Fig. 2. The computed 

mean value is shown in Fig. 3.  

Mathematically, the mean computation can be 

given as per Eq. (6) and Eq. (7). 

 

𝑖𝑚𝑔𝑗
𝑋𝑝𝑟𝑒

=
𝑁

∑
1

𝑖𝑚𝑔
𝑘
𝑋𝑝𝑟𝑒

𝑁−1
𝑘=0

; 𝑗 − 𝑟𝑜𝑤 ; 𝑘 − 𝑐𝑜𝑙𝑢𝑚𝑛   

(6) 

 

Step 2- After computing the mean of the 

columns, find the difference between computed mean  

 

140 0 240 

130 0 230 

135 0 235 

135 0 235 Computed mean 

value 
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140-135 30-30 240-235 

130-135 60-30 230-235 

135-135 20-30 235-235 

Figure. 4 Difference computation 

 

5 0 5 

5 30 5 

0 10 0 

Figure. 5 Computed difference value of the sample image 

 

 
Figure. 6 Computed feature values 

 

0 120 96 

0 95 105 

0 98 101 
 

Figure. 7 Original image: an illustration 

 

-1 1 0 

-1 C 0 

0 0 0 

Figure. 8 I-MTP computation  

 

0 1 0 

0 C 0 

0 0 0 

Figure. 9 Positive parts 

 

 

1 0 0 

1 C 0 

0 0 0 

Figure. 10 Negative parts 

 

values and the column values (pixels values in the 

column). This phase is diagrammatically shown in 

Fig. 4 and Fig. 5. 

 

𝑔 = |𝑖𝑚𝑔𝑖(𝑘)
𝑋𝑝𝑟𝑒

− 𝑖𝑚𝑔𝑖(𝑗,𝑘)
𝑋𝑝𝑟𝑒

|                    (7) 

 

Step 3- Compute the median and replace the 

center pixel. The final outcome is shown in Fig. 6.  

The extracted feature is mathematically shown in 

Eq. (9). 

 

𝑓𝐼−𝐿𝐺𝑃 = ∑ 𝑆(𝑖𝑚𝑔𝑖(𝑘)
𝑋𝑝𝑟𝑒𝑁−1

𝑗=0 − 𝑔). 2𝑛       (9) 

 

The extracted feature is pointed as ℎ
𝑀−𝐿𝐺𝑃

 

4.5 I-MTP 

The MTP involves the integration of the median 

with the quantification of pixel intensities. MTP 

overlooks critical texture features that do 

not consider the intensity variation between adjacent 

pixels, which could significantly influence 

environments with non-monotonic lighting change. 

As a result, a novel I-MTP model is introduced in this 

study. 

The feature representation in the three-level 

coding scheme includes a certain level of magnitude 

variation data, rendering it resilient in the presence of 

non-monotonic illumination variation. The approach 

is more resistant to random noise because using the 

median and the three-level coding method makes it 

simpler to generate texture patterns compatible with 

the local image characteristic (smooth or high-

textured). 

First, a 3 × 3 neighbor is defined around each pixel 

( as shown in Fig. 7) the harmonic mean intensity of 

the nine pixels is calculated. This is mathematically 

shown in Eq. (10). 

 

𝑓𝐼−𝑀𝑇𝑃 =

{
 
 

 
 1 𝑉 >

𝑀𝐶+𝐺𝑀

2
+ 𝑡

0
𝑀𝐶+𝐺𝑀

2
− 𝑡 ≤ 𝑉 ≤

𝑀𝐶+𝐺𝑀

2
+ 𝑡

−1 𝑉 <
𝑀𝐶+𝐺𝑀

2
− 𝑡

 

(10) 

 

Here, 𝑀𝐶, 𝐺𝑀, 𝑡, 𝑉 denotes the local median, 

harmonic mean, and user-specified threshold and 

neighbor gray level, respectively.  

Each MTP code is further split into its 

corresponding positive and negative parts and are 

treated as two separate binary patterns called 

𝑝𝑜𝑠𝐼−𝑀𝑇𝑃and 𝑛𝑒𝑔𝐼−𝑀𝑇𝑃 , respectively. This phase 

is clearly shown in Fig. 8 to Fig. 10, respectively. This 

is mathematically shown in Eqs. (11-14), respectively.  

 

 

 

Pixel value of 

original image  

I-MTP code= (-1) 

(-1) (100000)  

pos I-MTP 

code=0010000

0  

neg -MTP 

code=11000000 
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𝑝𝑜𝑠𝐼−𝑀𝑇𝑃 = ∑ 𝑓𝑝𝑜𝑠
7
𝑝𝑖𝑥=0 (𝑓𝐼−𝑀𝑇𝑃(𝑖𝑝𝑖𝑥)) × 2

𝑝𝑖𝑥

 

(11) 

 

𝑓𝑝𝑜𝑠(𝑉) = {
1 𝑉 = 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

               (12) 

 

𝑛𝑒𝑔𝐼−𝑀𝑇𝑃 = ∑ 𝑓𝑛𝑒𝑔
7
𝑝𝑖𝑥=0 (𝑓𝐼−𝑀𝑇𝑃(𝑖𝑝𝑖𝑥)) × 2

𝑝𝑖𝑥

 

(13) 

 

𝑓𝑛𝑒𝑔(𝑉) = {
1 𝑉 = −1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

            (14) 

 

The extracted feature is pointed as ℎ
𝐼−𝑀𝑇𝑃

. 

These extracted features are fused together as𝐻 

=ℎ
𝐴𝑆𝑀

+ℎ
𝐴𝐴𝑀

+ℎ
𝐺𝐿𝐶𝑀

+ℎ
𝑀−𝐿𝐺𝑃

+ℎ
𝐼−𝑀𝑇𝑃

. 

5. Optimal Feature Selection via CGHFA 

5.1 Hybrid optimization Model-CGHFA 

A new hybrid optimization approach-CGHFA is 

proposed in this research work for optimum feature 

selection (i.e. picking the relevant features by 

separating them from the irrelevant features).  

The following are the stages used in the newly 

proposed hybrid optimization model: 

Step 1- Initialization Phase: The 𝑃 search 

agents (hummingbird and cats [13]) are initialized. 

The position of the search agents𝐻𝑖 are initialized.  

Step 2- Generate the solution using the 

opposition learning (proposed) to enhance the 

convergence of the solutions and to limit the solution 

from getting trapped into local optima.  

Step 3- Cat guiding foraging: As per the 

proposed concept, each hummingbird (search 

agents) has an inherent wish to travel the food source 

(feature) with the most nectar quantity, implying that 

a target supply has to have a high nectar-refilling rate 

as well as a lengthy duration between visits by that 

hummingbird (search agents). According to AHA, a 

hummingbird should identify the sources of food with 

the greatest visitation frequency for directed foraging 

behavior, then select one with the maximum nectar-

refilling frequency as its targeted food source 

(optimal feature or relevant feature). By incorporating 

a heading switch vector into the AHA algorithm, three 

flying talents, encompassing "omnidirectional, 

diagonal, and axial flights", be appropriately utilized 

and represented during foraging. These flight patterns 

may be extended to a d-D space by defining the axial 

flight as shown in Eqs. (17-21), respectively.  

 

𝐷(𝑖) = (
1 𝑖𝑓𝑖 = 𝑟𝑎𝑛𝑑([1, 𝑑])
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (17) 

 

The following is the definition of diagonal flight: 

 

𝐷(𝑖) = 

(
1

𝑖𝑓𝑖 = 𝑃(𝑗), 𝑗 ∈ [1, 𝑘],

𝑃 = 𝑟𝑛𝑎𝑑𝑝𝑒𝑟𝑚(𝑘) ; 𝑘 =
[2, [𝑟𝑎𝑛𝑑1. (𝑑 − 2) + 1]

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (18) 

 

The following is the definition of omnidirectional 

flight:  

𝐷(𝑖) = 1 ; 𝑖 = 1,2, . . . 𝑑               (19) 

 

Here, 𝑟𝑛𝑎𝑑𝑝𝑒𝑟𝑚(𝑘)  creates a random 

permutation of integers from 1 to k, and 𝑟𝑎𝑛𝑑1is a 

random number generated between [0, 1].  

The following is the mathematical equation for 

replicating guided foraging behavior using the cats 

tracking model and a suitable food source 

(proposed): 𝑉𝑖(𝑖𝑡𝑟 + 1) = 𝐻𝑑(𝑖𝑡𝑟) + 𝑟𝑎𝑛𝑑2. 𝐶 ×

(𝐻𝑑
𝑏𝑒𝑠𝑡 −𝐻𝑑(𝑖𝑡𝑟)) 
 

𝑟𝑎𝑛𝑑2 =
1−√𝐶𝑘+1).𝑟𝑎𝑛𝑑.𝑖𝑡𝑟

𝐶𝑘.𝑚𝑎𝑥
𝑖𝑡𝑟 ; 𝑘 = 1,2       (20) 

 

Here, 𝑚𝑎𝑥𝑖𝑡𝑟 is the maximal iteration and 𝑖𝑡𝑟is 

the current iteration. 𝑟𝑎𝑛𝑑2Is a random number and 

𝐻𝑑
𝑏𝑒𝑠𝑡is the search agent with best fitness. 𝐶1, 𝐶2Are 

set relatively small.  

The ith food source's location (feature) is updated 

as follows: 

𝐻𝑖(𝑖𝑡𝑟 + 1) = 

(
𝐻𝑖(𝑖𝑡𝑟) 𝑓(𝐻𝑖(𝑖𝑡𝑟)) ≤ 𝑓(𝑉𝑖(𝑖𝑡𝑟 + 1))

𝑉𝑖(𝑖𝑡𝑟 + 1) 𝑓(𝐻𝑖(𝑖𝑡𝑟)) > 𝑓(𝑉𝑖(𝑖𝑡𝑟 + 1))
 (21) 

 

𝑓(. )is the function fitness value. This function 

fitness value 𝑓(. ) of this research work is the 

minimization of the detection errors𝑑𝑒𝑟𝑟𝑜𝑟, and this is 

the overall objective of this research work. This is 

mathematically shown in Eq. (22). 

 

𝑓 = 𝑚𝑖𝑛( 𝑑𝑒𝑟𝑟𝑜𝑟)        (22) 

 

Step 4- circle map territorial foraging: A 

hummingbird is more highly likely to hunt for a new 

food source after visiting its target food source 

(optimal feature), where the flower nectar has indeed 

been consumed, rather than visiting other existing 

sources of food. As a result, a hummingbird could 

indeed easily migrate to a close vicinity inside its 

territory (do not get trapped into local optima), where 

a new source of food might well be discovered as a 

https://www.sciencedirect.com/topics/computer-science/random-permutation
https://www.sciencedirect.com/topics/computer-science/random-permutation
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feasible solution that is potentially preferable to the 

current one. The following is the mathematical 

equation (Eq. (23)) for modeling the local search of 

hummingbirds in their circle map territorial foraging 

strategy and a possible food source 

 

𝑉𝑖(𝑖𝑡𝑟 + 1) = 𝐻𝑖(𝑖𝑡𝑟) + 𝑏. 𝐷.𝐻𝑖(𝑖𝑡𝑟)       (23) 

 

Here, 𝑏is the a territorial factor that is computed 

using the circle chaotic map to enhance the 

convergence speed of solutions (proposed) 

Step 5- Migration Foraging: When a 

hummingbird's favorite foraging spot runs out of food, 

the hummingbird will travel towards a more faraway 

source of food. A migration coefficient is specified 

inside the AHA method. The hummingbird finding 

there at prey species with worst nectar-refilling rate 

would travel toward a food source created random in 

the whole solution space if the number of iterations 

exceeds the threshold value of the migration factor. 

This hummingbird then will forsake the old source 

and eat at the new one, as well as the visitation table 

would be modified automatically. A hummingbird's 

migratory foraging from the fountain with the lowest 

nectar refilling rate toward a new one created at 

randomness can be defined as per Eq. (24). 

 

𝐻𝑤𝑜𝑟𝑠𝑡(𝑖𝑡𝑟 + 1) = 𝐿𝐵 + 𝑟𝑎𝑛𝑑3. (𝑈𝐵 − 𝐿𝐵)     
(24) 

 

𝐻𝑤𝑜𝑟𝑠𝑡Is the food source with the worst nectar-

refilling rate in the population.  

Step 6- Return the best position of the 

solutions (i.e. optimal features𝐻𝑏𝑒𝑠𝑡).  

6. Detection with improved deep ensemble 

model 

6.1 Improved deep ensemble model 

The Osteoporosis detection phase is modeled with 

the newly constructed ensemble-of-classifiers model. 

Here, deep learning classifiers like quantum deep 

neural network (QDNN), improved deep convolution 

neural network (I-DCNN) and recurrent neural 

network (RNN) are used. All these classifiers are 

trained using the optimally selected features𝐻𝑜𝑝𝑡 . 

Finally, the outcome acquired from all these features 

is combined (by taking mean); and this is the final 

detection performance.  

QDNN 

The quantum deep neural network [19] includes 

𝑁𝑖 inputs 𝑁𝐻 hidden layer and 𝑁𝑜 output layers. The 

weight between the output unit 𝑧and hidden unit𝑣is 

denoted as 𝑊𝑢𝑣. The weight between the hidden 𝑣and 

input unit 𝑢is denoted as 𝑊𝑢𝑧. The input to 𝑣𝑡ℎhidden 

unit from the 𝑖𝑡ℎpattern of 𝐻𝑏𝑒𝑠𝑡 , and 𝑖𝑡ℎpattern of 

𝐻𝑏𝑒𝑠𝑡, the response of 𝑣𝑡ℎhidden unit is described as 

per Eq. (25) and Eq. (26), respectively. It is trained 

with 𝐻𝑏𝑒𝑠𝑡. 
 

ℎ𝑖𝑑𝑣,𝑖 = ∑ 𝑊𝑣𝑧
𝑁𝑖
𝑧=0 . 𝐻𝑧,𝑖

𝑏𝑒𝑠𝑡  (25) 

 

ℎ𝑖�̑�𝑣,𝑖 =
1

𝑁𝑆
∑ ℎ𝑖𝑑𝑣,𝑖

𝑟𝑁𝑠
𝑟=1 =

1

𝑁𝑆
𝑠𝑔𝑚(𝜕ℎ𝑖𝑑       

(ℎ𝑖𝑑𝑣,𝑖 − 𝜃𝑣
𝑟)    (26) 

 

Here, 𝜕ℎ𝑖𝑑is a slope factor and 𝑁𝑆is the count of 

levels and 𝜃𝑣
𝑟is the transfer function. 

From 𝑖𝑡ℎ pattern vector to the output unit, and 

response of output unit 𝑢to the 𝑖𝑡ℎpattern of 𝐻𝑏𝑒𝑠𝑡is 

given as per Eq. (27) and Eq. (28), respectively.  

 

𝑜𝑢𝑡𝑢,𝑖 = ∑ 𝑊𝑢𝑣
𝑁ℎ
𝑣=0 . ℎ𝑖�̑�𝑣,𝑖  (27) 

 

𝑜𝑢�̑�𝑢,𝑖 = 𝑠𝑔𝑚(𝜕𝑜𝑢𝑡(𝑜𝑢𝑡𝑢,𝑖)   (28) 

 

Here, 𝜕𝑜𝑢𝑡 is the slope factor of output transfer 

functions. During the training phase, the variables of 

the QNN are modified. There are two phases in the 

QNN learning process. The synaptic weights are 

established initially in order to divide the feature 

space uniformly. The unpredictability of the feature 

space must still be learnt in the following stage by 

optimizing the parameters. The outcome is pointed as 

𝑜𝑢𝑡𝑄𝐷𝑁𝑁. 

6.2 IDCNN 

IDCNN is a deep learning model with diverse 

layers. It is trained with 𝐻𝑏𝑒𝑠𝑡. 
Convolutional layer: The convolution layer being 

the first layer is used to extract specific maps from the 

input image (while keeping relationships between 

pixels). 

Pooling layer: This layer down samples feature 

maps to lower their dimension and enhance feature 

extraction. To reduce the dimension, the pooling layer 

combines a local receptive field into a single neuron.  

Batch normalization layer: Each batch's prior 

layer activations are normalized to keep the mean 

activation value near to 0 as well as the standard 

deviation activation rate close to 1. It may 

substantially speed up convergence, decrease over 

fitting, minimize initial weight insensitivity, as well 

as allow us to employ a faster information gain. 
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Figure. 11 Sample normal images and their corresponding outcomes 
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Figure. 12 Sample abnormal images and their corresponding outcomes 

 

Flatten layer: By transforming the input from 

multi-dimensional space to one-dimensional space, 

the flattening layer is commonly used to transition 

from a convolutional layer to a fully connected layer. 

Dropout Layer: The dropout process sets the 

neuron value to 0 at arbitrary with a chance of 50% 

within every training batch. As a consequence of this 

process, the CNN will become less receptive to 

specific groupings of neurons, which help in 

decreasing the contact among hidden layer neurons, 

avoid overfitting, and enhance the model's 

generalization capacity [20]. 

Proposed loss function- improved cross-entropy: 

The consistency of the network's output is quantified 

by the loss function. Instead of using the cross-

entropy, an improved cross-entropy function is used 

in I-DCNN. This is mathematically shown in Eq. (30). 

 

𝑒𝑟𝑟𝑜𝑟 = −
𝐻𝑀

∑
1

𝑝.𝑖.𝑙𝑜𝑔𝑞𝑖 +(1−𝑝𝑖) 𝑙𝑜𝑔(1−𝑞𝑖)
𝑁
𝑖=1

        (30) 

 

Here, 𝐻𝑀 denotes the harmonic mean. The 

outcome is pointed as 𝑜𝑢𝑡𝐼−𝐷𝐶𝑁𝑁 

6.3 RNN 

The output from the previous step is provided as 

input to the next step in a recurrent neural network 

(RNN) [20]. RNNs have a "memory" that stores all of 

the data about the computation. It utilizes the very 
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same variables for every input since it produces the 

outcome by performing the same function on all 

inputs or hidden layers. In contrast to other neural 

networks, this reduces the complexity of the 

parameters. It is trained with 𝐻𝑏𝑒𝑠𝑡. 
The current state 𝑐𝑡is computed as per Eq. (31). 

 

𝑐𝑡 = 𝑓(𝑐𝑡−1, 𝑋𝑡)           (31) 

 

Here, 𝑐𝑡−1is a previous state and 𝑋𝑡is input state. 

The activation function (𝑡𝑎𝑛ℎ ) is computed as per 

Eq. (32). 

 

𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎℎ𝑐𝑡−1 +𝑊𝑋𝑐 . 𝑋𝑡)      (32) 

 

Here,𝑊ℎℎand 𝑊𝑋𝑐weight of recurrent neuron as 

input neuron, respectively.  

The output is computed as per Eq. (33). 

 

𝑦𝑡 = 𝑊𝑐𝑦. 𝑐𝑡   (33) 

 

Here, 𝑦𝑡and 𝑊𝑐𝑦denoted the output and weight of 

output layer, respectively. The outcome is pointed as 

𝑜𝑢𝑡𝑅𝑁𝑁 

The mean of the outcome from quantum deep 

neural network (QDNN), improved deep convolution 

neural network (I-DCNN) and recurrent neural 

network (RNN) are computed, and it is the final 

outcome.  

 

𝑜𝑢𝑡 =
𝑜𝑢𝑡𝑅𝑁𝑁+𝑜𝑢𝑡𝐼−𝐷𝐶𝑁𝑁+𝑜𝑢𝑡𝑄𝐷𝑁𝑁

3
  (34) 

 

The final outcome is acquired from 𝑜𝑢𝑡. 

7. Result and discussion  

7.1 Simulation procedure 

The proposed model has been implemented in 

python. The improved deep ensemble model 

+CGHFA is evaluated with the data collected from: 

https://www.kaggle.com/parv619/data-sprint-35-

osteoarthritis-knee-xray. The samples images are 

shown in Fig. 11 and Fig. 12, respectively. Among the 

collected data, 70% of the information is used for 

training and the rest 30% is used for testing purposes. 

The assessments were carried out at different learning 

rates of 60, 70, 80, and 90, respectively. Positive 

performance (specificity, sensitivity, precision, and 

accuracy) and negative performance (FPR, FNR) and 

other metrics are used to assess the suggested 

classifier and method (F1-score and MCC). Positive 

parameters of the proposed osteoporosis detection 

from X-ray, such as specificity, sensitivity, precision, 

and accuracy, should be kept as high as feasible, while 

negative measurements, such as FPR and FNR, 

should be kept as low as possible.  

7.2 Performance analysis  

On analyzing the acquired outcomes the improved 

deep ensemble model +CGHFA has recorded the 

highest accuracy for every variation in the learn_rate. 

The results acquired are shown in Table 1- Table 5, 

respectively. The detection accuracy recorded by the 

improved deep ensemble model +CGHFA at 

learn_rate=60 is 90.7%, at learn_rate=70 is 92.14%, 

at learn_rate=80 is 93.482% and at learn_rate=90 is 

94.8%.  The accuracy of the improved deep ensemble 

model +CGHFA has attained higher value when 

compared with the conventional models SVM, RF, 

DCNN[1], ELM+HMBA[2], BI-LSTM, BI-GRU, 

DBN, CSOA+ improved deep ensemble model, 

SSA+ improved deep ensemble model, BOA+ 

improved deep ensemble model, AHM+ improved 

deep ensemble model, and CSA+ improved deep 

ensemble model. The major reason behind the 

enhancement in the detection performance with the 

improved deep ensemble model +CGHFA is due to 

the inclusion of the improved deep ensemble model 

for making the ultimate decisions regarding the 

presence/ absence of osteoporosis. Improvements 

with the improved deep ensemble model +CGHFA 

are due to the selection of the optimal features for 

training the classifier that makes the detections. In 

addition, the improved deep ensemble model 

+CGHFA have recorded the least error value for 

every variation in the learn_rate. Thus, the objective 

of minimization of detection errors is said to have 

been achieved.  

7.2 Convergence analysis  

In this research work, a new optimization model 

referred as CGHFA (AHM+CSA) is introduced to 

select the optimal features for training the model. The 

objective function of this research work is the 

minimization of detection accuracy (i.e. classification 

accaurcy). The model that recorded the minimal cost 

function is hence said to be the optimal one. On 

analysing the acquired outcomes, the projected model 

has recorded the minima cost function that the 

existing models at the highest iteration count. Thus, it 

is said to have achieved the objective function. At the 

50th iteration, the cost function recorded by the 

projected model is 1.028, which is the least value and 

the most favourable value than the existing models 

(CSAO=1.035, SSA=1.034, BOA=1.0343,  

https://www.kaggle.com/parv619/data-sprint-35-osteoarthritis-knee-xray
https://www.kaggle.com/parv619/data-sprint-35-osteoarthritis-knee-xray
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Table 1. Performance analysis of the projected osteoporosis detection model in terms of accuracy 

Learn_

rate 

(%) 

SVM RF 
DCNN[

1] 

ELM+H

MBA[2] 

BI-

LST

M 

BI-

GRU 
DBN 

CSOA+ 

improved 

deep 

ensemble 

model 

SSA+ 

improve

d deep 

ensembl

e model 

BOA+ 

improve

d deep 

ensembl

e model 

AHM+ 

improved 

deep 

ensemble 

model 

CSA+ 

improved 

deep 

ensemble 

model 

improved 

deep 

ensemble 

model 

+CGHFA 

60 78.99 77.73 86.67 86.45 78.58 83.99 85.01 78.08 81.79 85.70 83.37 88.15 90.72 

70 82.48 79.06 88.66 87.54 79.64 86.08 85.70 79.07 83.55 85.95 84.60 90.65 92.42 

80 86.36 79.69 90.23 88.78 79.96 87.45 87.57 80.90 85.84 87.31 85.15 91.98 93.48 

90 87.67 80.96 91.93 90.34 82.05 89.10 88.92 83.01 86.96 88.99 86.85 93.29 94.86 

Table 2. Performance analysis of the projected osteoporosis detection model in terms of sensitivity 

Learn_

rate 

(%) 

SVM RF 
DCNN

[1] 

ELM

+HM

BA[2] 

BI-

LSTM 

BI-

GRU 
DBN 

CSOA+ 

improved 

deep 

ensemble 

model 

SSA+ 

improve

d deep 

ensembl

e model 

BOA+ 

improved 

deep 

ensemble 

model 

AHM+ 

improved 

deep 

ensemble 

model 

CSA+ 

improved 

deep 

ensemble 

model 

improved 

deep 

ensemble 

model 

+CGHFA 

60 78.87 80.78 83.00 85.36 73.06 85.24 83.05 72.18 81.89 80.48 77.86 88.29 89.67 

70 80.55 85.89 87.78 86.43 74.87 87.03 85.20 73.91 83.84 80.90 79.93 88.68 90.78 

80 82.17 86.01 89.81 88.30 75.40 88.68 87.23 76.93 85.86 83.15 80.85 90.62 92.56 

90 88.31 87.47 91.62 89.99 78.73 88.78 88.16 80.19 87.55 85.79 83.53 92.19 94.55 

 
Table 3. Performance analysis of the projected osteoporosis detection model in terms of specificity 

Learn_r

ate (%) 

SVM RF 
DCNN[

1] 

ELM+

HMBA

[2] 

BI-

LST

M 

BI-GRU DBN 

CSOA+ 

improved 

deep 

ensemble 

model 

SSA+ 

improved 

deep 

ensemble 

model 

BOA+ 

improved 

deep 

ensemble 

model 

AHM+ 

improved 

deep 

ensemble 

model 

CSA+ 

improve

d deep 

ensembl

e model 

improved 

deep 

ensemble 

model 

+CGHFA 

60 78.87 80.78 83.00 85.36 73.06 85.24 83.05 72.18 81.89 80.48 77.86 88.29 89.67 

70 80.55 85.89 87.78 86.43 74.87 87.03 85.20 73.91 83.84 80.90 79.93 88.68 90.78 

80 82.17 86.01 89.81 88.30 75.40 88.68 87.23 76.93 85.86 83.15 80.85 90.62 92.56 

90 88.31 87.47 91.62 89.99 78.73 88.78 88.16 80.19 87.55 85.79 83.53 92.19 94.55 

 
Table 4. Performance analysis of the projected osteoporosis detection model in terms of precision 

Learn_rat

e (%) 

SV

M 
RF 

DCNN[1

] 

ELM+HMBA[2

] 

BI-

LST

M 

BI-

GRU 
DBN 

CSOA+ 

improve

d deep 

ensembl

e model 

SSA+ 

improve

d deep 

ensembl

e model 

BOA+ 

improve

d deep 

ensembl

e model 

AHM+ 

improve

d deep 

ensembl

e model 

CSA+ 

improve

d deep 

ensembl

e model 

improve

d deep 

ensemble 

model 

+CGHF

A 

60 
82.7

1 

78.3

4 
87.34 87.11 76.72 

84.6

4 

83.6

1 
75.94 83.29 84.06 81.51 88.84 93.82 

70 
84.4

6 

78.6

1 
89.28 88.18 78.31 

86.6

8 

85.3

4 
77.47 85.68 84.42 83.34 91.28 94.11 

80 
86.4

1 

80.2

5 
90.72 89.31 78.77 

87.9

2 

86.2

5 
80.11 85.79 86.39 84.13 92.49 94.11 

90 
88.9

2 

81.4

0 
92.19 90.69 81.66 

89.3

4 

87.9

0 
82.91 88.97 88.67 86.46 93.07 95.13 

AHM=1.033 and CSA=1.032). The major reason 

behind the enhancement in convergence perforce of 

CGHFA is the utilization of the circle map and cat-

guided solution updating. The convergence speed of 

the solutions. The results acquired are shown in Fig. 

13. 

7.3 Analysis of projected model: with Vs without 

feature selection  

The feature selection has a significant impact on the 

model's computational complexity. When the features 

are picked by PCA in the projected model, the 

detection accuracy is just 90.5 percent. Furthermore, 

the detection accuracy of 88.6 percent and 90.9  
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Table 5. Performance analysis of the projected osteoporosis detection model in terms of FNR

Learn_rat

e (%) 

SV

M 
RF 

DCNN[1

] 

ELM+HMBA[2

] 

BI-

LST

M 

BI-

GRU 
DBN 

CSOA+ 

improve

d deep 

ensembl

e model 

SSA+ 

improve

d deep 

ensembl

e model 

BOA+ 

improve

d deep 

ensembl

e model 

AHM+ 

improve

d deep 

ensembl

e model 

CSA+ 

improve

d deep 

ensembl

e model 

improve

d deep 

ensemble 

model 

+CGHF

A 

60 
21.1

3 

19.2

2 
17.00 14.64 26.94 

14.7

6 

16.9

5 
27.82 18.11 19.52 22.14 11.71 10.33 

70 
19.4

5 

14.1

1 
12.22 13.57 25.13 

12.9

7 

14.8

0 
26.09 16.16 19.10 20.07 11.32 9.22 

80 
17.8

3 

13.9

9 
10.19 11.70 25.13 

11.3

2 

12.7

7 
23.07 14.14 16.85 19.15 9.38 7.44 

90 
11.6

9 

12.5

3 
8.38 10.01 25.13 

11.2

2 

11.8

4 
19.81 12.45 14.21 16.47 7.81 5.45 

 
Figure. 13 Convergence analysis  

 
Table 6. Analysis on the projected model: feature 

extraction and selection  

Metrics 

Proposed 

work 

with PCA 

Proposed 

work 

with 

LDA 

Proposed 

work 

with chi-

square 

Proposed 

work 

without 

feature 

selection 

Proposed 

work 

with 

optimal 

feature 

selection 

Specificity 0.913 0.843 0.904 0.911 0.936 

Sensitivity 0.899 0.702 0.866 0.908 0.921 

Precision 0.913 0.747 0.890 0.915 0.935 

NPV 0.899 0.811 0.883 0.904 0.921 

MCC 0.839 0.552 0.771 0.878 0.856 

FPR 0.087 0.157 0.096 0.089 0.064 

FNR 0.101 0.298 0.134 0.092 0.079 

F1-score 0.906 0.724 0.877 0.911 0.928 

Accuracy 0.906 0.787 0.886 0.910 0.928 

 
Table 7. Analysis on feature size 

Approach 

Feature size 

Before Feature Selection 760 

After Feature Selection with PCA 557 

After Feature Selection LDA 4 

After Feature Selection with Chi-square  76 

After Feature Selection with CGHFA 423 

 

Table 8. Statistical analysis 

Method 

Standard 

Deviation 
Mean Median Max Min 

CSOA+ improved 

deep ensemble 

model 

0.004 1.035 1.034 1.054 1.034 

SSA+ improved 

deep ensemble 

model 

0.004 1.034 1.032 1.060 1.032 

BOA+ improved 

deep ensemble 

model 

0.006 1.037 1.035 1.054 1.035 

AHM+ improved 

deep ensemble 

model 

0.004 1.032 1.031 1.060 1.031 

CSA+ improved 

deep ensemble 

model 

0.000 1.032 1.032 1.033 1.032 

CGHFA+ 

improved deep 

ensemble model 

0.003 1.031 1.031 1.035 1.028 

 

percent can only be obtained when the features are 

picked using LDA and the Chi-square model. When 

the best characteristics are chosen, however, the 

projected model has the best detection accuracy of 

92.8 percent. This also helps to reduce the model's 

computational complexity. Furthermore, the smallest 

mistakes have been captured using appropriate 

feature selection. This is, in fact, one of the reasons 

behind the decrease in categorization errors (as only 

relevant features have been selected for training the 

classifier that makes the detection process). The 

results acquired are shown in Table 6. 

7.4 Analysis on projected model: size of selected 

features  

The optimal feature selection is suggested as an 

approach for reduction in the detection errors. The 

size of optimal features selected for training the 

classifier model is manifested in Table 7.  
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7.5 Statistical analysis  

The statistical performance recorded by the 

projected model is shown in Table 8. On analyzing 

the outcomes, the projected model has recorded the 

minimal mean value (since, objective function is 

minimization function). The mean value recorded by 

the projected model is 1.03097996, which is indeed 

the least value while compared to CSOA+ improved 

deep ensemble model= 1.0350964, SSA+ improved 

deep ensemble model= 1.03408544684, BOA+ 

improved deep ensemble model= 1.0368292, AHM+ 

improved deep ensemble model= 1.0320322783 and 

CSA+ improved deep ensemble model= 1.032102898. 

The selection of the improved features, and the 

improved deep learning model for classification, has 

bought this improvement.  

7. Conclusion 

In this research work, a novel osteoporosis 

detection model has been developed.  Initially, the 

collected raw data was pre-processed via Gabor 

filtering (noise removal) and histogram equalization 

(quality enhancement). From the pre-processed data, 

the features like active shape model (ASM), active 

appearance model (AAM), GLCM, improved local 

gradient pattern (I-LGP), and improved median 

ternary pattern (I-MTP) has been extracted. 

Subsequently, the optimal features has been selected 

from the extracted features using a new hybrid 

optimization model. The projected hybrid 

optimization model has been the conceptual blend of 

the standard artificial hummingbird algorithm (AHM) 

[34] and cat hunting optimization algorithm (CHOA) 

[35], respectively. Using these optimally selected 

features, the deep learning classifiers in the 

Osteoporosis detection phase has been trained. The 

Osteoporosis detection phase has been modeled with 

the newly constructed ensemble-of-classifiers model. 

Here, deep learning classifiers like quantum deep 

neural network (QDNN), improved deep convolution 

neural network (I-DCNN) and recurrent neural 

network (RNN) has been used. All these classifiers 

has been trained using the optimally selected features.  
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