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Abstract: As a major piece of equipment in the electrical power transmission and distribution, the rapid and accurate 

assessment of emerging or existing internal faults in power transformers is a key factor in the safe and stable operation 

of the power grid. This paper proposes a hybrid approach to fault diagnosis for these transformers. This approach is 

based on ensemble bagged tree classification and training subsets obtain by a conventional pre-processing method. 

Two pre-processing approaches are performed, the first based on the maximum concentrations of the dissolved gas 

samples and the second based on the minimum concentrations of the dissolved gas samples. For each training subset, 

an ensemble classifier is constructed with as inputs the Rogers ratios, Gouda ratios, dissolved gas concentrations and 

their associations. The proposed hybrid methods are established with 475 samples of training dataset, tested on 117 

samples dissolved gas analysis (DGA) data and validated on International Electrotechnical Commission (IEC) TC10 

database. The performances of the proposed diagnostic models are evaluated and a comparison is done compared with 

the following diagnostic methods: IEC ratios method (IRM), Rogers ratios method (RRM), three ratios technique 

(TRT), Gouda’s triangle (GT), and self-organizing map (SOM) clusters. The results found by computer simulations 

carried out by the matrice laboratory (MATLAB) software show that, of the two pre-processing approaches used, the 

one based on the minimum sample concentration gives better results than the one based on the maximum concentration. 

In terms of fault type, the best diagnostic model using the minimum concentration-based pre-processing approach has 

a diagnostic accuracy of 94.02%, compared to 92.31% for the best diagnostic model using the maximum concentration-

based pre-processing approach. This is lower than the 97.25% for SOM clusters and 96.58% for GT but higher than 

the 59.83% for RRM, 81.19% for IRM and 93.16% for TRT. In terms of fault severity, the best diagnostic model using 

the minimum concentration-based pre-processing approach has a diagnostic accuracy of 81.20%, compared to 74.36% 

for the best diagnostic model using the minimum concentration-based pre-processing approach. This result is lower 

than the 83.76% for TRT and 89.74% for GT but higher than the 49.57% for RRM, 66.67% for IRM and 78.90% for 

SOM clusters. 

Keywords: Hybrid method, Power transformers faults diagnosis, Ensemble bagged trees algorithm, Training subsets, 

Rogers ratios, Gouda ratios. 

 

 

1. Introduction 

The power transformer is one of the most 

expensive and important pieces of equipment in the 

electrical system. As such, it plays a major role in the 

safe and stable operation of the power grid [1]. The 

failure of a power transformer during operation can 

result in a serious breakdown of the power grid, 

leading to interruptions in the transmission and 

distribution of electricity, environmental damage, 

risks of explosion and fire, and costly financial losses 

due to repairs or replacements [2]. Therefore, 

transformer condition analysis for early fault 

detection is extremely important in the process of 

operating and maintaining power networks [2, 3]. 

The dissolved gas analysis (DGA), is one of the most 

widely used techniques for the early detection of 

faults in the active parts of transformers [4]. It 

consists of examining the gases dissolved in the 

transformer oil to diagnose the condition of the 
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transformer. Once the different gases have been 

identified and quantified, the result still needs to be 

interpreted to assess the condition of the transformer. 

Several methods are proposed in the literature to 

predict the occurrence of faults and to determine their 

types by interpreting the concentrations of the gases 

detected. Existing conventional methods for 

diagnosing faults in power transformers mainly 

include rule-based methods documented in Institute 

of Electrical and Electronics Engineers (IEEE) 

C57.104-1991, International Electrotechnical 

Commission (IEC) 60599-1999, and International 

Council on Large Electric Systems (CIGRE) TF 

15.01.01. These methods are based on the analysis of 

the main gases, gas concentration ratios or certain 

proportions of gases such as Rogers ratios method 

(RRM) [5], Doernenburg ratios method [6], Key Gas 

method [7], or conventional IEC ratios method [8]. 

However, conventional DGA methods of 

interpretation have certain drawbacks in terms of 

precision and uncertainty. Limited in terms of data 

for learning because they require interpretation by 

human experts, some measurements may be 

unidentifiable [9]. In order to overcome the 

difficulties posed by traditional methods in 

interpreting test results, a major effort has been made 

to develop intelligent diagnosis in this area. For this 

purpose, several methods have used artificial 

intelligence (AI) including expert system (EPS) [10], 

artificial neural network (ANN) [11], fuzzy logic 

theory [12], rough sets theory (RST) [13], grey 

system theory (GST) [14], swarm intelligence (SI) 

algorithms [15], data mining technology [16], Self-

organizing map (SOM) [17], machine learning (ML) 

[18] and optimized machine learning (OML) [19], to 

the diagnosis of transformer faults based on DGA 

data.  

With the increased ability of computers to process 

data, machine learning (ML) algorithms are 

increasingly being developed for the state of power 

transformers. In [20], SVM is introduced for the first 

time for fault diagnosis of power transformer. The 

diagnosis model includes three-layer SVM classifier 

to identify the fault types. Zang et al. [21] proposed a 

new multiple SVMs to predict the fault of power 

transformer. They are demonstrated that, although a 

simple SVM has a superior generalisation capability, 

the new multiple SVM method has the best 

performance in learning ability and the generalisation 

ability. Li et al. [22] proposed an optimized model 

combining SVM with a genetic algorithm (SVMG) to 

diagnose power transformer faults. The experimental 

results indicated that the SVMG method can achieve 

higher diagnostic accuracy than IEC three ratios, 

normal SVM classifier, and artificial neural network. 

Senoussaoui et al. [23] proposed a synthesis study 

that tests the performance of four  machine learning 

algorithms for  DGA interpretation, namely, the 

Bayes network, the Multi-layer perceptron, the K-

nearest neighbours and the J48 decision tree. In this 

study, the basic algorithms were tested and compared 

with data pre-processing to the improved version of 

these algorithms using an ensemble approach such as 

boosting and bagging. However, intelligent methods 

have certain drawbacks, including the need for a large 

training dataset, dependence on the parameters of the 

algorithm used and dependence on the data used [24]. 

These drawbacks have a negative impact on the 

learning process. In order to minimize their impact on 

the learning process, optimization algorithms are 

used to determine the optimal parameters of the AI 

algorithm, as well as data preprocessing methods [25, 

26]. Although these solutions increase the diagnostic 

accuracy of the proposed methods, they greatly 

complicate them.  

In this paper, another way to optimize the 

learning process of intelligent methods proposed. 

This approach based not on the parameters of the 

algorithm used or on the data, but on the shape of the 

training dataset. The idea is to divide the main 

training dataset into five training subsets defined 

according to conventional pre-processing. The 

conventional pre-processing approach used is to 

group the samples into subsets defined according to 

the maximum or minimum concentrations of the 

samples. The training subsets thus formed constitute 

the new datasets that will be used to build the 

diagnostic model. The subdivision of the main 

training dataset inspired by previous work in the field 

[27] on power transformer fault diagnosis using a 

conventional approach based on the creation of 

training subsets. The proposed diagnostic models are 

established by 475 samples training dataset, tested on 

117 samples DGA data. The classification 

performance of the proposed method is validated on 

IEC TC10 database and compared with the following 

diagnostic methods: IEC ratios method (IRM), 

Rogers ratios method (RRM), three ratios technique 

(TRT), Gouda’s triangle (GT), and self-organizing 

map (SOM) clusters. 

After the Introduction section, the remaining part 

of this paper is organized as follows: A brief 

description of the types of faults detectable by DGA, 

the relationships between the gases produced and the 

corresponding faults, and a presentation of RRM and 

TRT is given in Section 2. Section 3 is devoted to the 

description ensemble bagged tree algorithm. The 

principle and the flowchart of hybrid diagnosis 

approach are presented at Section 4. The 

performances of the classifiers proposed and its 
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comparison with conventional and intelligent 

methods are presented in Section 5. Finally a 

conclusion is given in Section 6. 

2. Fault types and DGA 

2.1 Transformer fault types 

The classification of faults in Publication IEC 

60599 is based on the main types of faults that can be 

reliably identified by visual inspection of the 

equipment after the fault has occurred in service. IEC 

60599 and IEEE C57.104 standards classify 

transformer faults detectable by gas analysis into two 

categories: electrical and thermal faults. Electrical 

faults refer to the deterioration of insulation caused 

by high electrical stress. Thermal faults refer to the 

deterioration of the insulation system because of 

abnormal temperature rises and result from 

overheating of conductors, short circuits, overheating 

of windings due to Foucault’s currents, loose 

connections and insufficient cooling [28]. Based on 

IEC 60599, these major fault types can be further 

classified into 6 types of transformer faults, 

summarized in Table 1. 

2.2 Relationship between faults and dissolved gas 

produced 

The two principal causes of gas formation within 

an operating transformer are electrical disturbances 

and thermal decomposition. Each type of fault 

degrades the oil or paper differently, producing the 

relative amounts of dissolved gas that characterize 

the fault. Gas production is favoured by the 

temperature level and/or the energy produced by the 

fault. Depending on the type of fault, different types 

of decomposition processes may occur. When 

electrical and thermal faults occur in the transformer 

oil, it degrades, generating combustible gases, such 

as hydrogen (H2), methane (CH4), ethane (C2H6), 

ethylene (C2H4) and acetylene (C2H4). When  

 
Table 1. Fault classification according to IEC 60599 and 

IEEE C57.104 standard 

acronyms Faults 

PD Partial discharge 

D1 Low energy discharge 

D2 High energy discharge 

T1 Low temperature thermal fault  

T < 300° C 

T2 Medium temperature thermal fault  

300° C < T < 700° C 

T3 High temperature thermal fault  

T > 700° C 

Table 2. Gas generated according to the type of 

transformer fault [4], [30] 

Fault 

type 

Major gas (es) Minor gas (es) 

PD H2, CH4, CO C2H6, C2H2, CO2 

D1 H2, C2H2 / 

D2 H2, C2H2, CO, CO2 CH4, C2H4, C2H6 

T1 CH4, C2H6, CO, CO2 H2, C2H4 

T2 C2H4, CH4 H2 

T3 C2H4 H2, C2H6 

 

decomposition occurs in cellulosic insulation, the 

gases generated are carbon monoxide (CO) and 

carbon dioxide (CO2), and these gases indicate a 

thermal fault. Other gases such as oxygen (O2) and 

nitrogen (N2) are also produce [4]. The nature of the 

gases formed and their relative proportions provide 

information on the nature of the stress, its intensity 

and the type of materials affected [29]. Table 2 

summarizes the main gases produced according to the 

type of transformer faults. 

2.3 Rogers ratios method 

The Rogers ratios method uses five key gases 

dissolved in oil namely H2, CH4, C2H6, C2H4 and 

C2H2 to compute three ratios and to develop a code 

that is supposed to give an indication of what causes 

the gases to evolve. This method is used to analyse 

six conditions of power transformer. In Table 3, ratio 

range and corresponding code are listed. The  

 
Table 3. Rogers codes 

Ratio Ratio range Code 

R1 = C2H2/C2H4 

R1 < 0.1 0 

0.1 ≤ R1 ≤ 3 1 

R1 > 3 2 

R2 = CH4/H2 

R2 < 0.1 1 

0.1 ≤ R2 ≤ 1 0 

R2 > 1 2 

R3 = C2H4/C2H6 

R3 < 1 0 

1 ≤ R3 ≤ 3 1 

R3 > 3 2 

 

Table 4. Fault diagnosis by RRM 

Fault type 𝑹𝟏 𝑹𝟐 𝑹𝟑 

Normal 0 0 0 

Low energy density arcing-𝑃𝐷 0 1 0 

Arcing-High energy discharge 1 0 2 

Low temperature thermal 0 0 1 

Thermal < 700° C 0 2 1 

Thermal > 700° C 0 2 2 
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Table 5. Gouda codes 

Ratio Ratio range Code 

𝑅1 =
𝐶2𝐻6 + 𝐶2𝐻4
𝐻2 + 𝐶2𝐻2

 

R1 < 0.05 0 

0.05 ≤ R1 ≤ 0.9 1 

R1 > 0.9 2 

𝑅2 =
𝐶2𝐻2 + 𝐶𝐻4

𝐶2𝐻4
 

R2 < 1 0 

1 ≤ R2 ≤ 3.5 1 

R2 > 3.5 2 

𝑅3 =
𝐶2𝐻2
𝐶2𝐻4

 

R3 < 0.05 0 

0.05 ≤ R3 ≤ 0.5 1 

R3 > 0.5 2 

 
Table 6. Fault diagnosis by TRT 

Fault type Severity 

of fault 

𝑹𝟏 𝑹𝟐 𝑹𝟑 

High temperature thermal   T > 700° C T3 1 or 2 0 0 or 1 
Medium temperature thermal 300° C < T < 700° C T2 1 or 2 1 0 or 1 

Low temperature thermal 150° C < T < 300° C T1 1 or 2 2 0 or 1 
Low temperature thermal    T < 150° C T0 1 / 0 

Low partial discharge PD1 0 1 or 2 0 or 1 
High partial discharge PD2 0 1 or 2 2 
High arcing discharge D2 0 or 1 0 or 1 2 
Low arcing discharge D1 1 or 2 2 2 

Mix of electrical and thermal fault DT 2 0 or 1 2 

 

 

corresponding diagnostics for the various code 

combinations are presented in Table 4 [5]. 

2.4 Three ratios technique (TRT) 

The TRT diagnosis technique proposed by Gouda 

et al. [31] suggests three new gas-ratio combinations 

that are able to classify the fault type and its severity 

clearly. The codes for the three-ratio used are given 

in Table 5. 

In this method, the R1 ratio is used to classify 

thermal, arcing and partial discharge faults. The R3 

ratio, used in existing diagnostic techniques 

by Doernenburg, Rogers and IEC, is able to separate 

thermal and electrical faults, so it is used to confirm 

the type of R1 ratio fault. The R2 ratio is used to assess 

the degree of severity of thermal, electrical and 

partial discharge faults. It is used to distinguish 

between low (PD1) and high (PD2) partial discharge 

faults,  low (D1) and high (D2) energy discharge faults 

and also very low (T0), low (T1), medium (T2) and 

high (T3) temperature thermal energy faults [31]. The 

corresponding diagnostics for the various code 

combinations inspired of flowchart describe in [31] 

are presented in Table 6. 

This technique shall be applied when at least one 

of the concentrations of dissolved gases exceeds the 

normal limits as shown in Table 7. 

 

Table 7. Limit concentrations of dissolved gases for the 

application of TRT [31] 

Gas H2 CH

4 

C2H

6 

C2H

4 

C2H

2 

CO CO2 

Limit 

(ppm

) 

10

0 
120 65 50 1 

35

0 

250

0 

 

3. Ensemble bagged tree algorithm 

Machine learning is a field in computer science 

where existing data are used to predict, or respond to, 

future data. In others words, it is the practice of 

programming computers to learn from data called 

training set or training dataset. The goal of ML is to 

find this optimal mapping to enable more accurate 

predictions and judgments of outputs [32]. An 

obvious approach to make decisions more reliable is 

to combine the results of several basic learners as 

members of a set and combine their predictions into 

a single result [33]. The final decision is reached 

based on these diverse opinions. These algorithms, 

called ensemble learning (EL) provides better 

performance compared to using a single classifier 

[34]. Strictly speaking, EL is not considered a type of 

ML algorithm but more of an optimization method or 

strategy [32]. In an ensemble classifier, each base 

classifier can be any kind of supervised classification 
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Figure. 1 Flow chart of ensemble bagged trees training 

[34] 

 

 
Figure. 2 Structure of a simple decision tree [37] 

 

such as decision trees, neural networks, or SVMs. 

The most popular techniques for constructing 

ensembles are boosting, bagging, and stacking. 

Among these, Bootstrap aggregating, also known as 

bagging is the simplest, efficient and highly accurate 

ensemble-based algorithms [34, 35]. Each basic 

classifier in the ensemble is trained on a subset of the 

initial training set. The training subsets are sampled 

by bootstrapping, i.e., by randomly selecting a subset 

of the given data set with replacement. Classification 

of a new sample is based on the simple majority 

voting scheme, i.e., each classifier gives a 

classification for the sample, and the class that has the 

maximum number of votes cast by the base classifiers 

is the final classification [36]. In ensemble bagged 

trees, the basic classifiers are the decision trees. The 

Fig. 1 shows the principle of an ensemble bagging 

trees algorithm. 

The decision tree is a kind of tree structure similar 

to a flowchart, where each inner node expresses test 

or selection for an attribute, and every branch 

represents a tested output, but each leaf node all 

represents class or class distribution [37]. The top 

node in tree is called root node. In the structure of a 

simple decision tree shown in Fig. 2, A, B and C 

represent test attributes, 1, 2, 3, 4 respectively express 

leaf nodes. 

4. Proposed scheme for transformers fault 

diagnosis 

In this paper, a hybrid approach that combines a 

conventional pre-processing and a machine learning 

algorithm to build models for power transformer 

faults diagnosis is proposed. Pre-processing allows 

the creation of training subsets consisting of samples 

with a common characteristic. Two pre-processing 

approaches are performed, the first based on the 

maximum concentrations of the dissolved gas 

samples and the second based on the minimum 

concentrations of the dissolved gas samples. The 

machine learning used is the ensemble bagged tree 

algorithm with Rogers and Gouda ratios as input 

features. As shown in Fig. 3, the main training dataset 

is divided into five subsets defined according to the 

chosen conventional pre-processing approach. The 

training subsets thus formed constitute the new 

training datasets to which the different algorithms of 

the ensemble bagged tree learning will be applied. 

The final diagnostic model includes five ensemble 

bagged tree classifiers (EBTC) which are used to 

identify the faults in the five training subsets. The 

EBTC1 is trained to separate the faults of training 

subset having hydrogen as maximum or minimum 

concentration. The EBTC2 is trained to separate the 

faults of training subset having methane as maximum 

or minimum concentration. The EBTC3 is trained to 

separate the faults of training subset having ethane as 

maximum or minimum concentration. The EBTC4 is 

trained to separate the faults of training subset having 

ethylene as maximum or minimum concentration and 

The EBTC5 is trained to separate the faults of training 

subset having acetylene as maximum or minimum 

concentration. 

Fig. 4 shows the flow chart of the proposed hybrid 

diagnostic model. The different steps in the 

implementation of the method are summarized as 

follows: 

Step 1: Input dissolved gas sample concentrations 

Step 2: Compute the Rogers and Gouda gas ratios 

Step 3: Determination of the sample’s subset 

Step 4: Fault diagnosis using the corresponding 

classifier 

5. Results and discussion 

5.1 Data collection 

The present study was carried out using 592-

labelled samples, collected from several sources and 

covering the six faults classes as presented in Table 8 

below. 144 data samples from [38], 339 data samples 

collected from [39], 64 data samples from [9], 20 data  
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Table 8. Distribution of collected data according to references 

 Fault types 

Ref. PD D1 D2 T1 T2 T3 Total 

[38] 16 35 15 29 19 30 144 

[39] 32 51 74 85 41 56 339 

[9] 0 32 32 0 0 0 64 

[40] 7 2 2 0 5 4 20 

[20] 0 7 18 0 0 0 25 

Total 55 127 141 114 65 90 592 

 

 
Figure. 3 Schematic view of the hybrid diagnostic method 

 

 
Figure. 4 Flow chart of proposed diagnostic model of power transformer according to maximum concentrations approach 
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Table 9. Composition of training and testing dataset 

 Fault types 

PD D1 D2 T1 T2 T3 Total 

Training 

dataset 
45 100 114 92 52 72 475 

Testing 

dataset 
11 25 28 22 13 18 117 

Total 55 127 141 114 65 90 592 

 
Table 10. Composition of training subsets according to 

fault severity 

Major 

gas 

Fault type 

PD D1 D2 T1 T2 T3 Total 

H2 40 82 43 19 3 2 189 

CH4 1 3 3 22 20 2 51 

C2H6 4 0 11 51 0 1 67 

C2H4 0 3 6 3 29 68 109 

C2H2 0 14 51 0 0 0 65 

 
Table 11. Composition of training subsets according to 

fault severity 

Minor 

gas 

Fault type 

PD D1 D2 T1 T2 T3 Total 

H2 0 1 6 3 3 5 18 

CH4 0 2 31 0 0 2 35 

C2H6 8 55 57 1 0 6 127 

C2H4 14 24 18 3 0 0 59 

C2H2 42 14 5 86 51 61 259 

 
samples from table 2 of [40] and 25 data samples 

from Table 1 and Table 2 of [20]. 

In order to conduct the diagnostic models 

proposed, the DGA data is divided into training and 

testing data for the implementation of flow chart and 

verification as shows in Table 9. Table 10 and Table 

11 show the composition of training subsets 

according to fault severity. Table 10 for the 

conventional pre-treatment approach based on 

maximum dissolved gas sample concentrations and 

Table 11 for that based on minimum dissolved gas 

sample concentrations. 

5.2 Analysis and comment 

The different diagnostic models, summarised in 

Table 12 and 13, were made based on input features. 

All proposed diagnostic models and conventional 

methods were implemented using MATLAB 

software and the algorithms were programmed in .m 

code. Table 14 gives an overview of the faults 

diagnostic accuracy obtained with training and 

testing datasets. 

 

Table 12. Different diagnostic models according to 

maximum concentrations approach 

Input features 

Diagnostic 

model 

Key 

gases 

Rogers 

ratios 

Gouda 

ratios 

✓ ✓ ✓ DM1 

✓ ✓  DM2 

✓  ✓ DM3 

 ✓ ✓ DM4 

 ✓  DM5 

  ✓ DM6 

✓   DM7 

 
Table 13. Different diagnostic models according to 

minimum concentrations approach 

Input features 

Diagnostic 

model 

Key 

gases 

Rogers 

ratios 

Gouda 

ratios 

✓ ✓ ✓ DM8 

✓ ✓  DM9 

✓  ✓ DM10 

 ✓ ✓ DM11 

 ✓  DM12 

  ✓ DM13 

✓   DM14 

 

5.3 Validation and comparison with other 

conventional methods using IEC TC10 

database 

The IEC TC10 database contains 117 cases of 

faults in transformers in service, which identified by 

visual inspection [41]. These data are not part of the 

training and testing dataset. In order to validate the 

diagnostic models proposed, this DGA database is 

used and average diagnostic accuracies by equipment 

type are summarized in Table 15. In this Table, the 

fault type refers to the 3 main faults, i.e. partial 

discharges, thermal overheating and arcing while the 

severity discriminates the 3 main faults i.e. PD for 

partial discharge, D1 and D2 for arcing and T1, T2 and 

T3 for thermal overheating. The results obtained are 

compared with those obtained with RRM [5], IRM 

[8], TRT [31], Gouda’s triangle (GT) [42] and SOM 

clusters [17]. Table 16 shows the abbreviations used 

for equipment type of IEC TC10 database. 

Table 17 and 18 summarize the comparison 

between proposed diagnostic models and other 

diagnostic methods obtained with 117 cases of IEC 

TC10 databases. In Table 17, the comparison is done 

in terms of fault type and in Table 18 in terms of 

severity. 
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Table 14. Fault diagnosis accuracies of different diagnostic model based on subsets 

  Fault diagnosis accuracy (%)  

Pre-processing 

approach 

Ensemble tree 

models 
H2 CH4 C2H6 C2H4 C2H2 Total 

Diagnostic models 

based on maximum 

concentrations pre-

processing 

DM1 
Training 98.94 100 100 100 100 99.58 

Testing 86.79 83.33 92.31 95.65 100 90.60 

DM2 
Training 97.88 97.87 100 100 100 98.95 

Testing 86.79 91.67 92.31 91.30 100 90.60 

DM3 
Training 98.94 100 100 99.04 100 99.37 

Testing 84.91 66.67 92.31 73.91 100 83.76 

DM4 
Training 98.94 100 100 99.04 100 99.37 

Testing 79.24 83.33 92.31 95.65 93.33 87.18 

DM5 
Training 98.94 97.87 100 100 100 99.37 

Testing 77.36 100 92.31 95.65 86.67 87.18 

DM6 
Training 98.94 100 100 100 100 99.58 

Testing 62.26 75.00 92.31 73.91 93.33 74.36 

DM7 
Training 98.94 97.87 100 100 100 99.37 

Testing 84.62 75.00 92.31 82.61 100 86.32 

Diagnostic models 

based on maximum 

concentrations 

DM8 
Training 100 100 100 100 98.84 99.36 

Testing 87.50 85.71 88.24 88.00 82.54 87.18 

DM9 
Training 100 100 100 100 99.23 99.58 

Testing 87.50 92.86 88.24 92.00 85.71 89.74 

DM10 
Training 100 100 98.43 100 99.23 99.16 

Testing 87.50 92.86 76.47 84.00 82.54 84.61 

DM11 
Training 100 100 98.43 100 99.23 99.16 

Testing 87.50 92.86 70.59 88.00 84.13 86.32 

DM12 
Training 100 100 99.21 98.31 98.84 99.16 

Testing 87.50 85.71 70.59 88.00 85.71 85.47 

DM13 
Training 100 97.50 100 100 98.84 99.16 

Testing 87.50 92.86 70.59 80.00 76.19 79.49 

DM14 
Training 100 100 99.21 100 99.23 99.16 

Testing 87.50 85.71 94.12 88.00 82.54 86.32 

 

 

The diagnostic accuracies obtained with the 

different methods on the IEC TC10 database are 

presented according to the equipment and distributed 

according to severity and fault type. Considering the 

diagnostic accuracies obtained by equipment, it 

appears that for P-type and U-type transformers, the 

proposed diagnostic models allow the classification 

of faults in terms of fault type. Indeed, 100% 

diagnostic accuracy is achieved with the DM4, DM10, 

DM11, DM12 and DM13 diagnostic models for P-type 

transformers and with the DM6, DM11 and DM13 

models for U-type transformers. For these types of 

equipment, less good performances are achieved in 

terms of fault severity. For the maximum 

concentration-based pre-processing approach, the 

best performances are achieved with the DM5 

diagnostic model, which obtained diagnostic 

accuracies of 77.78% for P-type transformers and 

68.18% for U-type transformers. For the minimum 

concentration-based pre-processing approach, the 

best performances are achieved with the DM10 and 

DM8 diagnostic models, which respectively obtained 

diagnostic accuracies of 80.56% for P-type 

transformers and 81.82% for U-type transformers. 

Out the 117 cases including all types of equipment, 

the best results with the maximum concentration-

based pre-processing approach are achieved in terms 

of fault type by DM5 and DM6 with a diagnostic 

accuracy of 92.31% and in terms of fault severity by 

DM4 and DM5 with a diagnostic accuracy of 74.36%. 

For minimum concentration-based pre-processing  
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Table 15. Average diagnosis accuracy of diagnosis models validated with IEC TC10 database 

 Equipment type  

Ensemble tree models P U R I B C S Vide Total 

DM1 
Severity 75.00 68.18 81.25 50.00 40.00 100.00 85.71 100.00 72.65 

Fault type 97.22 90.91 90.63 58.33 80.00 100.00 100.00 100.00 89.74 

DM2 
Severity 69.44 68.18 71.88 58.33 40.00 100.00 85.71 100.00 69.23 

Fault type 94.44 90.91 87.50 66.67 80.00 100.00 100.00 100.00 88.89 

DM3 
Severity 69.44 63.64 81.25 58.33 40.00 100.00 85.71 100.00 70.94 

Fault type 97.22 86.36 90.63 66.67 80.00 100.00 100.00 100.00 89.74 

DM4 
Severity 75.00 68.18 81.25 66.67 40.00 100.00 85.71 100.00 74.36 

Fault type 100.00 90.91 90.63 66.67 80.00 100.00 100.00 100.00 91.45 

DM5 
Severity 77.78 68.18 75.00 75.00 40.00 100.00 85.71 100.00 74.36 

Fault type 97.22 95.45 90.63 75.00 80.00 100.00 100.00 100.00 92.31 

DM6 
Severity 69.44 68.18 81.25 66.67 40.00 50.00 85.71 100.00 71.79 

Fault type 97.22 100.00 90.63 66.67 80.00 100.00 100.00 100.00 92.31 

DM7 
Severity 61.11 59.09 75.00 58.33 20.00 50.00 85.71 100.00 64.10 

Fault type 91.67 86.36 90.63 66.67 60.00 100.00 100.00 100.00 87.18 

DM8 
Severity 75.00 81.82 87.50 58.33 20.00 100.00 85.71 100.00 76.92 

Fault type 97.22 95.45 93.75 58.33 60.00 100.00 100.00 100.00 89.74 

DM9 
Severity 77.78 72.73 78.13 41.67 20.00 100.00 85.71 100.00 71.79 

Fault type 97.22 86.36 90.63 41.67 60.00 100.00 100.00 100.00 86.32 

DM10 
Severity 80.56 63.64 78.13 58.33 20.00 50.00 85.71 100.00 71.79 

Fault type 100.00 86.36 90.63 66.67 80.00 100.00 100.00 100.00 90.60 

DM11 
Severity 75.00 68.18 87.50 75.00 40.00 50.00 85.71 100.00 76.07 

Fault type 100.00 100.00 93.75 75.00 80.00 100.00 100.00 100.00 94.87 

DM12 
Severity 77.78 77.27 90.63 75.00 40.00 100.00 100.00 100.00 81.20 

Fault type 100.00 95.45 93.75 75.00 80.00 100.00 100.00 100.00 94.02 

DM13 
Severity 66.67 77.27 87.50 66.67 20.00 5000 85.71 100.00 73.50 

Fault type 100.00 100.00 93.75 66.67 60.00 100.00 100.00 100.00 93.16 

DM14 
Severity 63.89 50.00 65.63 50.00 20.00 100.00 85.71 100.00 60.68 

Fault type 94.44 86.36 90.63 66.67 80.00 100.00 100.00 100.00 88.89 

RRM 
Severity 52.77 59.09 56.25 41.66 00.00 50.00 28.57 00.00 49.57 

Fault type 69.44 63.63 65.62 41.66 40.00 50.00 28.57 00.00 59.83 

TRT 
Severity 86.11 95.45 84.37 83.33 20.00 100 71.42 100 83.76 

Fault type 94.44 100 93.75 83.33 60.00 100 100 100 93.16 

IRM 
Severity 63.88 77.27 75.00 58.33 00.00 100 71.42 00.00 66.67 

Fault type 86.11 86.36 87.50 58.33 40.00 100 85.71 00.00 81.19 

GT 
Severity 86.11 95.45 93.75 91.67 60.00 100 85.71 100 89.74 

Fault type 94.44 100 96.88 91.67 100 100 100 100 96.58 

SOM cl. 
Severity 77.78 72.73 84.36 91.67 60.00 50.00 / / 78.90 

Fault type 100 95.45 96.88 100 100 50.00 / / 97.25 

 

approach, the best results are achieved in terms of 

fault type by DM11 with a diagnostic accuracy of 

94.87% and in terms of fault severity by DM12 with a 

diagnostic accuracy of 81.20%. Of the two pre-

processing approaches used, the one based on the 

minimum sample concentration gives better results 

than the one based on the maximum sample 

concentration. Indeed, in terms of fault type, the  

 

Table 16. Abbreviations used for equipment type 

Abbreviations Equipment 

P Power transformer without 

communication OLTC 

U Power transformer with 

communication OLTC 

R Reactor 

I Instrument transformer 

B Bushing 

C Cable 
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Table 17. Comparison between proposed method and conventional methods in terms of fault type 

DGA models Unresolved diagnostic Wrong diagnostic Error Diagnostic accuracy 

DM1 00.00 10.26 10.26 89.74 

DM2 00.00 11.11 11.11 88.89 

DM3 00.00 10.26 10.26 89.74 

DM4 00.00 08.55 08.55 91.45 

DM5 00.00 07.69 07.69 92.31 

DM6 00.00 07.69 07.69 92.31 

DM7 00.00 12.82 12.82 87.18 

DM8 00.00 10.26 10.26 89.74 

DM9 00.00 13.68 13.68 86.32 

DM10 00.00 09.40 09.40 90.60 

DM11 00.00 05.13 05.13 94.87 

DM12 00.00 05.98 05.98 94.02 

DM13 00.00 06.84 06.84 93.16 

DM14 00.00 11.11 11.11 88.89 

RRM 21.89 18.28 40.17 59.83 

TRT 00.85 05.99 06.84 93.16 

IRM 14.53 04.28 18.81 81.19 

GT 00.00 03.42 03.42 96.58 

SOM cl. 00.00 02.75 02.75 97.25 

 

 

Table 18. Comparison between proposed method and 

conventional methods in terms of severity 

DGA 

models 

Unresolved 

diagnostic 

(%) 

Wrong 

diagnostic 

(%) 

Error 

(%) 

Diagnostic 

accuracy 

(%) 

DM1 00.00 27.35 27.35 72.65 

DM2 00.00 30.77 30.77 69.23 

DM3 00.00 29.06 29.06 70.94 

DM4 00.00 25.64 25.64 74.36 

DM5 00.00 25.64 25.64 74.36 

DM6 00.00 28.21 28.21 71.79 

DM7 00.00 35.90 35.90 64.10 

DM8 00.00 23.08 23.08 76.92 

DM9 00.00 28.21 28.21 71.79 

DM10 00.00 28.21 28.21 71.79 

DM11 00.00 23.93 23.93 76.07 

DM12 00.00 18.80 18.80 81.20 

DM13 00.00 26.50 26.50 73.50 

DM14 00.00 39.32 39.32 60.68 

RRM 21.89 28.54 50.43 49.57 

TRT 00.85 15.38 16.24 83.76 

IRM 14.53 18.80 33.33 66.67 

GT 00.00 10.26 10.26 89.74 

SOM 

cl. 
00.00 21.10 21.10 78.90 

 
DM12 diagnostic model has a diagnostic accuracy of 

94.02%, compared to 92.31% for the DM5 diagnostic 

model. This is lower than the 97.25% for SOM 

clusters and 96.58% for GT but higher than the 

59.83% for RRM, 81.19% for IRM and 93.16% for 

TRT. In terms of fault severity, the DM12 diagnostic 

model has a diagnostic accuracy of 81.20%, 

compared to 74.36% for the DM5 diagnostic model. 

This result is lower than the 83.76% for TRT and 

89.74% for GT but higher than the 49.57% for RRM, 

66.67% for IRM and 78.90% for SOM clusters. 

6. Conclusion 

In this paper, a hybrid approach for power 

transformers fault diagnosis is proposed. This 

approach combines a conventional pre-processing 

and a machine learning algorithm. Two pre-

processing approaches are performed, the first based 

on the maximum concentrations of the dissolved gas 

samples and the second based on the minimum 

concentrations of the dissolved gas samples. This 

pre-processing allows us to obtain new training 

subsets with common characteristics. The Ensemble 

bagged tree algorithm is used as machine learning 

algorithm with Rogers and Gouda ratios as input 

features for faults classification. The dataset used in 

this paper contains 709 labelled samples covering six 

fault types. The first group of 592 samples for 

implementation and evaluation of diagnostic models 

proposed. The performances of proposed diagnostic 

models are validated using the second group of data 

consisting of the 117 samples from the IEC TC10 

database. The use of the subsets proposed in this work 

reduces the size of the calculations required for fault 

pattern recognition during training and the number of 

fault patterns to be identified in each subset. A hybrid 

diagnostic approach combining an intelligent pre-

processing allowing the creation of subsets followed 

by a conventional processing of the different subsets 

is a perspective of this work. 
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