
Received: May 9, 2022. Revised: June 14, 2022. 585

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.53

 Parallel Implementation of 3D Model Reconstruction of Monocular Video

Frames in a Dynamic Environment

Ghada M. Fathy1,2 Hanan A. Hassan1 Walaa M. Sheta1 Fatma Omara2

Emad Nabil3*

1 Informatics Research Institute, City for Scientific Research and Technological Applications, Alexandria, Egypt

2Department of Computer Science, Faculty of Computers and Artificial Intelligence, Cairo University, Giza, Egypt
3Computer Science Department, Faculty of Computer and Information Systems, Islamic University of Madinah,

Madinah, Saudi Arabia

* Corresponding author’s Email: emadnabil@iu.edu.sa

Abstract: Real-time three-dimensional (3D) reconstruction has been widely explored in several domains in motion

capture, robot navigation, augmented reality, and autonomous driving. It is considered one of the most efficient

solutions to overcome several problems, such as occlusion and collision in computer vision and computer graphics.

This process is computationally intensive and it considers a bottleneck for real-time realistic interaction applications

which need a quick response to achieve action in real-time. The Monocular 3D model reconstruction (M3DMR) is

considered one of the possible solutions to build an accurate 3D reconstruction in a dynamic environment. However,

the proposed framework needs a high computational power to create a single frame. Graphics processors unit (GPU)

architecture is used to improve the computational time of M3DMR. This study discussed how to maximize the benefits

of using GPU resources by using several optimization techniques that enable GPU architecture to achieve the best

possible performance for the M3DMR. Different multicore heterogeneous systems are used to evaluate the

performance of the proposed framework. Experimental results confirm that our parallel implementation of 3D Model

Reconstruction of Monocular Video Frames is valid for different GPU architectures. The proposed parallel

implementation can execute 28 FBS compared with the serial version that executes one frame in 30 min.

Keywords: Parallel programming, 3D reconstruction, Real-time, GPU, CUDA.

1. Introduction

Dense three-dimensional (3D) scene

reconstruction in a dynamic environment is a

common challenge in realistic interaction

applications. It is considered the most efficient

solution for many computer vision and computer

graphics problems, such as occlusion and collision.

However, regular 3D reconstruction methods are

costly, time-consuming, and complex computation.

Therefore, they cannot immediately respond when

they are used in time-sensitive applications, such as

augmented reality and auto self-driving cars.
Recently, with the rapid development of graphics

processing unit (GPU) technologies, real-time
applications have become increasingly convenient,

and 3D reconstruction has emerged as a popular
research subject in this context. Traditional methods
of 3D model construction are based on image data at
different viewing angles for 3D scene reconstruction
[1]. However, they have an extended processing
sequence and entail high costs. The environment is
unknown in specific application scenarios, such as
outdoor augmented reality, and 3D scenes should be in
real-time. Microsoft developed Kinect fusion based on
Kinect, which scans the environment by enabling users
to move with the device in hand. Then, it reconstructs
a 3D model of the scanned environment based on the
scanned data [2]. This technique suffers from many
postictal; for example, Kinect is sensitive to distance
and limited range. Hence, it can reconstruct the
environment only within a small range of 3D scenes.

Different techniques, such as structure from

Received: May 9, 2022. Revised: June 14, 2022. 586

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.53

motion [3] and simultaneous localization and mapping

SLAM [4], are used to reconstruct a real environment

in real-time, and they are famous techniques used to

reconstruct scenes. Real-time SLAM methods are used

to combine maps obtained from moving depth sensors.

Subsequently, they are used to navigate and map

several types of autonomous agents for different

applications [4, 5]. Dense SLAM methods based on

RGB-D data are widely used to navigate and generate

scene construction [6, 7]. Such methods are mainly

limited by depth cameras that are mostly based on

active sensing. Thus, they cannot have an accurate

performance under sunlight, So, reconstruction and

mapping in outdoor environments are considered less

accurate. Further studies have been conducted to

improve the accuracy of depth maps by predicting

depth using deep learning techniques [8-10]. Through

these techniques, an absolute scale can be detected

from examples and consequently predicted from a

single image without the need for scene-based

assumptions or geometric restrictions [9-11].

Although the predicted depth map can improve the

performance of monocular SLAM, it remains

inaccurate and performs poorly in a dynamic

environment. The authors in [12, 13] have proposed

the dense 3D reconstruction of a complex dynamic

scene for a single image. In this approach, dynamic

scenes are approximated using numerous piecewise

planar surfaces, and each one has its rigid motion.

[12] presents a 3D reconstruction technique in a

complex dynamic scene using two frames by applying

super-pixel over-segmentation to the image. They

presented a generically dynamic (hence non-rigid)

scene with a piecewise planar and rigid approximation.

Also, they reduced the reconstruction problem to a

“3D jigsaw puzzle” which takes pieces from an

unorganized “soup of super-pixels”.

Another approach is presented using unsupervised

learning and point cloud fusion to reconstruct a 3D

scene in a dynamic environment (M3DMR) [14]. This

approach focuses on applying unsupervised learning to

predict the depth map, camera position, and object

motion through a sequence of video frames. Then, the

sequence of frames is reconstructed via point-cloud

fusion. These approaches achieve high accuracy, but

reconstruction entails high costs and needs 15,30

minutes for a single frame, respectively.

GPUs are widely used to speed up intensive

computation applications in different domains, and

they have provided new opportunities for embedded

systems that fail to perform computationally intensive

tasks in real-time. However, creating a point cloud and

generating 3D reconstruction for a whole scene in

computing unified device architecture (CUDA) are

considered complex tasks. [23, 25] using GPU

architecture to improve the processes of 3D

reconstruction. The authors [23] used neural networks

such as LSTM and GRU to generate a full 3D point

cloud from outdoor LiDAR datasets. The main

purpose is to use the motion-based neural network that

integrates motion features between two consecutive

point clouds. NVIDIA GeForce RTX 2080Ti is used

for training in testing among different datasets, for

example, the KITTI dataset. On the other hand [23]

used GPU with MATLAB platform to segment the

optical flow field for a full dynamic scene.

Table 1. 3D reconstruction time of the most relevant

techniques

Ref. Scene Methods Device Time

(T/F)

[19] Single

Static

object

Monocular

SLAM

NVIDIA

GeForce

TITAN X-

without

CUDA

21 ms

[21] Single

Dynamic

object

Markless

3D human

motion

capture

GeForce

RTX 2070

without

CUDA

40 ms

[22] Single

Dynamic

object

GCN

network

Nvidia

GeForce

RTX 2080Ti

-without

CUDA

23

ms

[20] Full

Static

scene

Online

incremental

mesh

generation

a single

CPU thread

third-party

library

OpenCV 2

57.21

ms

[24] Full

Static

Scene

visual

parallel

SLAM on

UAV

platforms

TX2

embedded

development

module with

CUDA

8.41 s

[23] Full

Dynamic

scene

LSTM and

GRU

networks

NVIDIA

GeForce

RTX

2080Ti-

without

CUDA

56 ms

[25] Full

Dynamic

scene

segments

the optical

flow field

MATLAB

and GPU

1 m

[12] Full

Dynamic

scene

Super-pixel

over-

segmentati

on

Intel core i7 15-20

m

[14] Full

Dynamic

Scene

Unsupervis

ed learning

and point

cloud

fusion

Tesla V100

and Tesla

M10 without

CUDA

30 m

Received: May 9, 2022. Revised: June 14, 2022. 587

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.53

Figure. 1 3D point cloud mapped to 2D image (a) selected input frame (b) Ground truth (c) predicted points [14]

Table 1 summarizes the time of the most relevant

implementations of 3D scene reconstruction. In some

cases, implementing a particular model may even be

impossible because of memory restrictions. CUDA

platforms are used among the essential platforms to

program GPU devices. CUDA is a parallel

computing platform and programming model

developed by NVIDIA for general computing [15].

Several types of research work use GPUs to improve

the performance of applications and reduce

computational time [16, 17]. Ivanavičius et al. [18]

proposed a matching algorithm called Cyclops2 for

Stereo reconstruction. This algorithm produces a

disparity image and provides two rectified grayscale

images.

Matching is based on the concept of minimizing

the calculation of a weight function using the absolute

difference in pixel intensities. The CUDA-parallel

programming library is optimized for the embedded

NVIDIA Jetson platform is used [18].

This work aims to improve the computational

time of the M3DMR framework that is proposed in

our previous work [14]. Profile and complexity

analyses were performed to select the bottleneck time

of serial implementation. In addition, several

optimization techniques are used to maximize the

benefits of using GPU resources to decrease the total

execution time of the reconstruction process and

create a 3D point Cloud scene from a sequence of

monocular RGB video frames in a dynamic

environment. Moreover, to demonstrate the

flexibility of the proposed implementation and

validate the system, we are experimenting with

different multicore heterogeneous systems.

The rest of the paper is organized as follows:

Section 2 gives a brief explanation of Monocular 3D

model reconstruction (M3DMR), the serial

implementation, the profile analysis, and the

complexity analysis of the framework. Section 3

introduces GPU parallel computing architecture.

section 4 illustrates the performance optimization

approaches used in GPU implementation. Section 5

shows experimental results. Section 6 discussion.

Finally, section 7 concludes this research and

suggests future work.

2. Monocular 3D model reconstruction

2.1 Overview of Monocular 3D model

reconstruction (M3DMR)

All M3DMR aims to reconstruct a constant and

accurate 3D scene using a point cloud technique for a

dynamic environment. The framework environment

consists of moving and static background objects.

Fig. 1 shows the output of the M3DMR

framework compared with the ground truth.

Framework uses the updating data from a

sequence of Monocular RGB video frames instead of

the expensive cost of multi-sensor data. M3DMR

consider a suitable solution to solve realistic

interaction problems, such as occlusion and collision.

M3DMR decided into two levels.

Level 1, using an unsupervised learning

technique to estimate object motion, scene depth, and

camera pose during the online refinement process.

Level 2, reconstruct a full 3D scene model through

frame-wise point cloud fusion (see Fig. 2). For more

details, M3DMR is described in [14].

2.2 Serial implementation of M3DMR

The serial implementation is proposed in [14].

The per-frame point cloud 𝑝𝑖 is reconstructed by 𝑫𝒊

is the depth for a single frame, the final Motion 𝑬𝒎
𝑭

consists of individual moving objects 𝜓𝑀𝑜 and

Camera motion 𝜓𝐸𝒊→𝒋 . K is the intrinsic camera

calibration matrix.

𝑝𝑖 = (𝐸𝑚
𝐹)−1 𝜋(𝑢, 𝐷𝑖) (1)

Where 𝑢 denote as homogeneous representation

of a pixel 𝑢 = (𝑥, 𝑦, 1)𝑇 and 𝜋(𝑢) is the back

projection from image to camera coordinate,

Received: May 9, 2022. Revised: June 14, 2022. 588

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.53

Figure. 2 The M3DMR framework overview

𝜋(𝑢, 𝐷𝑖) = 𝐾−1𝐷𝑖𝑢.

In point association process calculated as

𝑢𝑘 = 𝑓 (𝐾 (𝐸𝑚
𝐹)𝑘𝜋(𝑢𝑖)) (2)

The co-visible of keyframe 𝑘1, 𝑘2… . 𝑘𝑛 ∈ 𝐾𝐹

selected according to the length of monocular video

frames on the online refinement process.

The probabilistic filter is used. Each 3D point in

global model P is represented by 𝑝𝑖
𝑛 , and the

confidence counter 𝐶𝑐 is defined as how often the 3D

point is observed in co-visible keyframes. The new

observation available in the latest frame 𝒊 according

to the following equations:

𝑝𝑖
𝑛 =

(𝑤𝐴𝑝𝑖+𝑤0(𝐸𝑚
𝐹)−1 𝜋(𝑢𝑖))

𝑤𝐴+𝑤0 (3)

𝐶𝐶
𝑛 =

(𝑤𝐴𝐶𝑐+𝑤0 ‖(𝐸𝑚
𝐹)−1 𝜋(𝑢𝑖)−𝑝𝑖‖)

𝑤𝐴+𝑤0 (4)

𝑤𝐴
𝑛 = min(𝑤𝐴 +𝑤0,𝑊𝜀) (5)

Where 𝑝𝑖
𝑛 means the newly updated point, 𝑤0is

a constant equal to 1 and 𝑊𝜀 is the truncation

threshold equal to 100.

2.3 Profile analysis of serial M3DMR

implementation

In the analysis of the time consumption of the

Received: May 9, 2022. Revised: June 14, 2022. 589

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.53

Algorithm 1 represents the pseudo code of 3D

model reconstruction process.

Algorithm 1: Generate a 3D Reconstruction for

the dynamic scene (Serial implementation)

Input: P ← global Model, hash map contains 3D

point cloud, confidence counter, average weight,

and point status (Stable, Unstable) with length s

M← point Map, mapping of [x, y] and pointID for

𝑢𝑘 with length s

 L← the 𝑢𝑘 dimension

 F ← total number of frames

 KF ← total number of Co-visible keyframe

1 𝐟𝐨𝐫 𝒊 = 1 → 𝐹 do

2 | % project current frame to world coordinates

3 | 𝑝𝑖 = (𝐸𝑚
𝐹)−1 𝜋(𝑢, 𝐷𝑖)

 4 | for k=1→ KF do

5 | | % project world coordinates to co-visible KF

6 | | 𝑝𝑖 → 𝑢𝑖 → 𝑢𝑘

7 | | 𝑢𝑘 = 𝑓 (𝐾 (𝐸𝑚
𝐹)𝑘𝜋(𝑢𝑖))

8 | | for j=1→ 𝐿 do % point association

9 | | | if j in M:

10 | | | | % point is visible

11 | | | | % current frame-wise 3D point

associated with the 3D global model

12 | | | | % update point info

13 | | | | 𝑝𝑖
𝑛 = (𝑤𝐴𝑝𝑖 +𝑤0(𝐸𝑚

𝐹)−1 𝜋(𝑢𝑖)) /

(𝑤𝐴 +𝑤0)
14 | | | | 𝐶𝐶

𝑛 = (𝑤𝐴𝐶𝑐 +𝑤0 ‖(𝐸𝑚
𝐹)−1 𝜋(𝑢𝑖) −

 𝑝𝑖‖)/(𝑤𝐴 +𝑤0)

15 | | | | 𝑤𝐴
𝑛 = min (𝑤𝐴 +𝑤0,𝑊𝜀)

16 | | | | if 𝐶𝐶
𝑛 < stable_threshold

17 | | | | % point is stable

 18 | | | | else

 19 | | | | % point unstable

20 | | | else

22 | | | | insert 𝑝𝑖 to P % with all point info

23 | | | | insert j to M

24 | | | |___

25 | | |______

26 | |___________

27 | % remove unstable points from P

28 |________________________________

 Output: accumulated global model P for 3D

reconstruction

proposed M3DMR framework, the search on point

map (M) (line 9 in Algorithm 1) is repeatedly

executed L times for each keyframe KF, where L is

equal to the number of keyframe pixels (x, y). The

profile analysis reports that almost 97 % of the total

frame execution time is consumed in the search on

Figure. 3 Profile analysis of serial M3DMR

implementation

the point map (see Fig. 3). However, only 2 % and

1 % are spent adding and updating, filtering noise

processing for a 3D point cloud on the global map P,

and creating the initial 3D point cloud and co-visible

keyframes, respectively.

2.4 Complexity analysis of serial M3DMR

The time complexity of M3DMR consists of

several parts. In Fig. 3, a per-frame point cloud is

created for each frame at 𝑂(𝑛) . All pixels of the

current frame compared with co-visible keyframes

pixels. to generate 𝑢𝑘 with a token of 𝑂(𝑛). The time

complexity of the point association includes a search

on the point map and updating or adding point could

process. A linear search is performed to check the

visibility of pixels in the current frame with all co-

visible keyframes and return pointID for updating.

The time complexity of the linear search is 𝑂(𝑛).
With the system, the linear search is computed for

all keyframe pixels, so 𝑂(𝑛𝑠) is necessary. The total

time complexity of the M3DMR framework is

𝑂(𝑛2) + 𝑂(𝑛𝑠) = 𝑂(𝑛𝑠) (6)

3. GPU parallel computing architecture

NVIDIA launched the concept of CUDA, which

manages GPUs for parallel computing. With CUDA,

general-purpose programming can be achieved

through different languages [27]. The topology of the

CUDA platform supports thread-level parallel

computation by activating thousands of threads to

execute using GPUs. The cost for thread creation and

dispatch is negligible in GPUs because they are

implemented by hardware rather than software as in

a central processing unit (CPU). GPUs are

responsible for intensive floating-point computation,

such as dense vector and matrix operation. Data

exchange occurs between a CPU and GPU through a

PCIe bus. GPUs contain streaming multiprocessors

(SM) which consist of a large number of single- and

double-precision cores. GPUs have different memory

units, such as register, shared memory, constant

Received: May 9, 2022. Revised: June 14, 2022. 590

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.53

memory, texture memory, L2 cache, and global

memory. A GPU function that executes on a device

is called a kernel. Kernels run on a kernel grid

composed of many thread blocks. These thread

blocks are then executed in parallel and unable to

communicate except through a global device memory.

By contrast, all threads in one thread block can

intercommunicate via shared memory or barrier.

Some concepts about CUDA and GPU that

should be considered are listed below [27].

1- Dependency must be avoided as much as possible,

and operations in the algorithm should be

performed concurrently.

2- In NVIDIA’s CUDA architecture, the thread

blocks are executed concurrently using device

kernels. Each thread block includes a group of

warps consisting of 32 threads. Inside warp,

threads simultaneously execute the same branch

of the algorithm time. To get the best performance,

avoid loops, and conditional statements as much

as possible.

3- Read and write operations should be in the range

of neighbouring memory cells. Otherwise,

updates in memory significantly extend the

processing time.

4. Parallel implementation of M3DMR

This section describes the design of the parallel

implementation of a monocular 3D reconstruction

model in a dynamic scene using CUDA and GPU.

Fig. 4 shows the serial framework mapped and

divided among CPUs and GPUs. The left side (Host)

represents the framework parts that run on a CPU,

and the right side (Device) includes the parts that run

on a GPU.

Fig. 4 presents the same equations of the serial

framework used in this study. The parallel design

considers the following:

1) The host allocates memory and controls the outer

portion of loops and the overflow of the

framework.

2) The device (GPU) excites the most intensive

computational parts of the framework.

Algorithm 2 describes the overview pseudo-code

of CUDA-parallel implementation, which involves

three device kernels; parallel linear search, point

cloud addition and update, and unstable point

removal.

4.1 Parallel implementation complexity

As mentioned in section 2.4, the serial time

Algorithm 2: Generate a 3D Reconstruction for

the dynamic scene (CUDA Version)

Input: P ← global Model, arrays contains 3D point

cloud, confidence counter, average weight, and

point status (Stable, Unstable) with length s

M← point Map, mapping of [x, y] and pointID for

𝑢𝑘 with length s

 F ← total number of frames

 KF ← total number of Co-visible keyframe

 𝑝𝑜𝑖𝑛𝑡𝐼𝐷𝑖𝑛𝑑𝑒𝑥 ← the output array of linear search

 1 𝐟𝐨𝐫 𝒊 = 1 → 𝐹 do

 2 | % project current frame to world coordinates

 3 | 𝑝𝑖 = (𝐸𝑚
𝐹)−1 𝜋(𝑢, 𝐷𝑖)

 4 | for k=1→ KF do

 5 | | % project world coordinates to co-visible KF

 6 | | 𝑝𝑖 → 𝑢𝑖 → 𝑢𝑘

 7 | | 𝑢𝑘 = 𝑓 (𝐾 (𝐸𝑚
𝐹)𝑘𝜋(𝑢𝑖))

 8 | | Memory transfer 𝑴, 𝒖𝒌 𝐏,
𝒑𝒐𝒊𝒏𝒕𝑰𝑫𝒊𝒏𝒅𝒆𝒙 from H-D

 9 | | Kernel1_ParallelLinearSearch (𝑢𝑘, M)

10 | | Kernel2_addAndUpdatePointCloud

(P, M, 𝑝𝑜𝑖𝑛𝑡𝐼𝐷𝑖𝑛𝑑𝑒𝑥, 𝑢𝑘)

11 | |___

12 | Kernel3_RemoveUnstablePoint (P, M)

13 | Memory transfer M, P from D-H

|________________________________

Output: accumulated global model P for 3D

reconstruction

complexity is O(n). The parallel implementation

doesn’t change the big O notation. That is because the

parallel simply divides the overall execution time by

the number of parallel executions. However, we can

evaluate the parallel implementation as the

following:

The cost of computational (CoC) is calculated as

shown in Eq. (7).

CoC= total execution time (e) * total number of
processors S(n) (7)

The serial computation:

 𝑡𝑠 = 𝑒 (8)

The cost of parallel computation:

𝐶𝑃 = 𝑡𝑝 ∗ 𝑛 + 𝐶(𝑡) (9)

where 𝑡𝑝 parallel execution time is given by 𝑡𝑠/S(n)

and 𝐶(𝑡)is the communication overhead.

Received: May 9, 2022. Revised: June 14, 2022. 591

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.53

Figure. 4 Parallel design of M3DR in Host (H) and Device (D)

4.2 Kernel 1: Parallel Linear Search

As mentioned before, search on point map is the

most time-consuming process (section 2; line 9

Algorithm 1). The linear search has a time

complexity of 𝑂(𝑛)) and is performed for each pixel

in the current frame. It is also applied to assign each

thread with one pixel in the current frame.

In Fig. 5, the number of threads 𝑁𝑡ℎ𝑟 is equal to

the number of pixels in co-visible Keyframes s. Each

thread searches the point map (M) via the x and y

coordinates. The number of thread block 𝑁𝑏𝑙𝑜𝑐𝑘 is

calculated as follows:

𝑁𝑏𝑙𝑜𝑐𝑘 = (
𝑁𝑡ℎ𝑟

MAXNUMBERthr
) +

((𝑁𝑡ℎ𝑟%MAXNUMBERthr)? 1: 0) (10)

Where MAXNUMBERthr is the maximum

number of active threads. Linear search is considered

the most efficient way because of the following

aspects. First, the point map is unsorted, and linear

search is a suitable solution for unsorted arrays.

Second, other approaches need costly pre-processing,

such as binary search and HashMap. For example, a

system is searched with keyframe pixels x and y, but

using these two values during the search needs

expensive sorting pre-processing and consumes time.

In the proposed parallel implementation, most of the

concepts mentioned in section 3.1 are covered, and

each thread in a warp is read and written in the range

of neighbouring memory cells (Fig. 5).

The searching process is considered independent,

so each thread is responsible for checking one pixel

and does not need to wait for other threads. The

pseudocode of parallel linear search is presented in

Algorithm 3, kernel 1.

4.3 Kernel 2: Add and update point cloud in

global map

After the execution time of the frames via a

parallel search is reduced, the framework time should

Host

Initialization

Calculate per-frame point

cloud

𝑝𝑖 = (𝐸𝑚
𝐹)−1 𝜋(𝑢,𝐷𝑖)

 Alg.1 line 3

Data transfer 𝑢𝑘 ,𝑀

Project world coordinates

 to co-visible keyframes

𝑢𝑘 = 𝑓 (𝐾 (𝐸𝑚
𝐹)𝑘𝜋(𝑢𝑖))

Alg.1 line 7

Render Global Model P

Output

Data transfer P with all

point info

Create a smooth 3D point

cloud and filter out the

noise

Alg.1 lines 16,17,18, 19

Memory allocation

Linear Search on M

If j in M

Alg.1 line 9

Memory allocation

𝑝𝑖
𝑛 =

(𝑤𝐴𝑝𝑖+𝑤0(𝐸𝑚
𝐹)−1 𝜋(𝑢 𝑖))

𝑤𝐴+𝑤0

𝐶𝐶
𝑛 =

(𝑤𝐴𝐶𝑐+𝑤0 ‖(𝐸𝑚
𝐹)−1 𝜋(𝑢 𝑖)−𝑝𝑖‖)

𝑤𝐴+𝑤0

𝑤𝐴
𝑛 = min(𝑤𝐴 + 𝑤0 ,𝑊𝜀)

Alg.1 lines 13,14 and 15

Device

Point cloud for current frame P

Alg.1 line 22,23

𝑓𝑜 𝑖 = 1 → 𝐹

𝑓𝑜 = 1 → 𝐿

Received: May 9, 2022. Revised: June 14, 2022. 592

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.53

Figure. 5 Parallel design for searching on M using linear search

Figure. 6 Add and update global model

be improved further so that it can be accepted for real-

time applications. Adding or updating the 3D point

cloud is chosen as the second phase in parallel

implementation. The global model consists of a list

of 3D point clouds with correlating characteristics,

such as confidence counter, average weight, and

stability flag (Fig. 6).

The 3D point cloud 𝑝𝑖 is updated in case the

search output is not equal to −1, indicating that the

mapped key frame point 𝑢𝑘 is found on point map M.

If 𝑝𝑖 is equal to −1, the estimated 3D point is added

to the global model P, and 𝑢𝑘[𝑥, 𝑦] is added to M.

The number of active threads, 𝑁𝑡ℎ𝑟 , and the

number of thread block 𝑁𝑏𝑙𝑜𝑐𝑘 are calculated as the

same as in kernel 1, and each thread is responsible for

adding or updating one point. Memory is transferred

between a host and a GPU device once for each frame

in video sequence frames to reduce the overhead of

memory traffic. The process of updating and adding

each frame into P is explained in Algorithm 4, Kernel

2.

Received: May 9, 2022. Revised: June 14, 2022. 593

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.53

4.4 Kernel 3: Filtering out the noise (remove

unstable points)

The system starts to filter the noise through a

probabilistic noise filter after a visibility check

between the current frame, and all the selected

keyframes are completed by removing the point record

containing a −1 value, which indicates that this point

is unstable. In Algorithm 5, kernel 3 checks if the point

state flag is set on the update process (kernel 2) and

removes the point record from the global and point

maps by setting them to −1.

5 Experiments

5.1 Experimental configuration

Two different multicore heterogeneous systems

are used to evaluate the performance. The first one is

equipped with PowerEdge Dell 740XD (2× Intel

Xeon Gold 6248 2.5G, 20C/40T, 10.4GTs, 27.5 M

Cache, Turbo, HT [150W] DDR4-2933+384G RAM)

with Tesla V100 GPU [31]. The second system is a

virtual machine on cloud computing with NIVIDIA

Tesla M10 GPU card. Table 2 illustrates the

comparison between two GPU card specs.

The framework is implemented by CUDA 10.1,

Python, and Pycuda library. The experiments are

conducted using the KITTI dataset [29].

Algorithm 4_Kernel 2: Add and update point

cloud

Input: P ← global Model, arrays contains 3D point

cloud p, confidence counter 𝐶𝑐, average weight 𝑊𝐴,

and point_state (Stable, Unstable) with length s

M← point Map, mapping of [x, y] and pointID for 𝑢𝑘

with length s

 L← 𝑢𝑘 length

 𝑝𝑜𝑖𝑛𝑡𝐼𝐷𝑖𝑛𝑑𝑒𝑥 ← the output of linear search with

length L

1 𝑡𝑖𝑑 = 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 ∗ 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 +
𝑡ℎ 𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥

2 𝒊𝒇 𝑡𝑖𝑑 > 𝐿 do

3 𝑒𝑡𝑢 𝑛

4 𝒊𝒇 𝑝𝑜𝑖𝑛𝑡𝐼𝐷𝑖𝑛𝑑𝑒𝑥[𝑡𝑖𝑑]! = −1

5 𝑝𝑖
𝑛[𝑡𝑖𝑑] =

(𝑤𝐴𝑝𝑖+𝑤0(𝐸𝑚
𝐹)−1 𝜋(𝑢𝑖))

(𝑤𝐴+𝑤0)
 %

𝑢𝑝𝑑𝑎𝑡𝑒 3𝐷 𝑃𝑜𝑖𝑛𝑡 𝐶𝑙𝑜𝑢𝑑

6 𝐶𝐶
𝑛[𝑡𝑖𝑑] =

(𝑤𝐴𝐶𝑐+𝑤0 ‖(𝐸𝑚
𝐹)−1 𝜋(𝑢𝑖)−𝑝𝑖‖)

𝑤𝐴+𝑤0 %𝑢𝑝𝑑𝑎𝑡𝑒 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

7 𝑤𝐴
𝑛[𝑡𝑖𝑑] = 𝑤𝐴

𝑛 = min(𝑤𝐴 +
𝑤0,𝑊𝜀) %update Average Weight

8 Check point_state () % check state according

to confidence and set it 0 or 1

9 𝒆𝒍𝒔𝒆:
10 𝑝𝑖[𝑡𝑖𝑑] = 𝑖𝑛𝑠𝑒 𝑡𝑇𝑜𝐺𝑙𝑜𝑏𝑒𝑙𝑀𝑜𝑑𝑒𝑙()
11 𝐶𝐶

𝑛[𝑡𝑖𝑑] = 𝑖𝑛𝑡𝑖𝑎𝑙_𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

12 𝑤𝐴
𝑛 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑤𝑒𝑖𝑔ℎ𝑡

13 point_state=0

 Output: 𝑀 → 𝑝𝑜𝑖𝑛𝑡 𝑀𝑎𝑝 , 𝑃 → 𝐺𝑜𝑙𝑏𝑎𝑙 𝑀𝑜𝑑𝑒𝑙

Algorithm 5_Kernel 3: Remove unstable point

Input: P ← global Model, arrays contains 3D

point cloud p, confidence counter 𝐶𝑐, average

weight 𝑊𝐴, and point_state (Stable, Unstable)

with length s

M← point Map, mapping of [x, y] and pointID

for 𝑢𝑘 with length s

1 𝑡𝑖𝑑 = 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 ∗ 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 +
𝑡ℎ 𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥

2 𝒊𝒇 𝑡𝑖𝑑 > 𝑠 do

3 𝑒𝑡𝑢 𝑛

4 𝒊𝒇 𝑝𝑜𝑖𝑛𝑡_𝑠𝑡𝑎𝑡𝑒 = 0

5 Set P {𝑝𝑖
𝑛[𝑡𝑖𝑑], 𝐶𝐶

𝑛[𝑡𝑖𝑑],
 𝑤𝐴

𝑛[𝑡𝑖𝑑] , 𝑝𝑜𝑖𝑛𝑡𝑠𝑡𝑎𝑡𝑒} = −1
6 Set 𝑀𝑥[𝑡𝑖𝑑], 𝑀𝑦[𝑡𝑖𝑑] = −1

Output: 𝑀 → 𝑝𝑜𝑖𝑛𝑡 𝑀𝑎𝑝 , 𝑃 →
𝐺𝑜𝑙𝑏𝑎𝑙 𝑀𝑜𝑑𝑒𝑙

Algorithm 3 Kernel 1: Parallel linear search

Input: M← point Map, mapping of [𝑀𝑥,

𝑀𝑦] and pointID for 𝑢𝑘 with length s

 𝑢𝑘 (𝑢𝑥
𝑘 , 𝑢𝑦

𝑘) ← project world coordinates to

co-visible keyframe

 L← 𝑢𝑘 𝑙𝑒𝑛𝑔𝑡ℎ

1 𝑡𝑖𝑑 = 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 ∗ 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 +
𝑡ℎ 𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥

2 𝒊𝒇 𝑡𝑖𝑑 > 𝐿 do

3 𝑒𝑡𝑢 𝑛

4 𝐟𝐨𝐫 𝒊 = 0 → 𝐿:
5 𝒊𝒇 𝑢𝑥

𝑘[𝑡𝑖𝑑] = 𝑀𝑥[𝑡𝑖𝑑] && 𝑢𝑦
𝑘[𝑡𝑖𝑑] =

𝑀𝑦[𝑡𝑖𝑑]:

6 𝑝𝑜𝑖𝑛𝑡𝐼𝐷𝑖𝑛𝑑𝑒𝑥[𝑡𝑖𝑑] = 𝑖
7 Break

8 𝒆𝒍𝒔𝒆:
9 𝑝𝑜𝑖𝑛𝑡𝐼𝐷𝑖𝑛𝑑𝑒𝑥[𝑡𝑖𝑑] = −1

 Output: 𝑝𝑜𝑖𝑛𝑡𝐼𝐷𝑖𝑛𝑑𝑒𝑥 ∶
𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑀 𝑜 − 1

Received: May 9, 2022. Revised: June 14, 2022. 594

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.53

Table 2. Specs comparison between Tesla V100 and

Tesla M10 [30]

 NVIDIA Tesla

V100 PCIe 32

GB

NVIDIA

Tesla M10

Technical info

Boost clock speed 1380 MHz 1306 MHz

Core clock speed 1230 MHz 1033 MHz

Floating-point

performance

14,131 gflops 4x 1,672

gflops

Manufacturing

process

technology

12 nm 28 nm

Pipelines 5120 4x 640

Texture fill rate 441.6 GTexel /s 4x 52.24

GTexel / s

billion / sec

Thermal Design

Power (TDP)

250 Watt 225 Watt

Transistor count 21,100 million 1,870 million

Memory

Maximum RAM

amount

32 GB 4x 8 GB

Memory

bandwidth

897.0 GB / s 4x 83.2 GB / s

Memory bus

width

4096 Bit 4x 128 Bit

Memory clock

speed

1752 MHz 5200 MHz

Memory type HBM2 GDDR5

5.2 Experimental results

Experiment 1:

In Experiment 1, the execution time per frame is

evaluated using different multicore heterogeneous

systems. Tesla V100 on a Linux operating system and

Tesla M10 on a virtualized Windows 10 machine are

used. This experiment confirms that the proposed

parallel implementation can reconstruct several

frames in real-time through different configurations

(high and low).

In Fig.7, the evaluation was conducted using a

different number of threads per block from 32 to 1024

threads. Each GPU device has its architecture and

limitations. In Fig. 7, the best performance of a

parallel monocular 3D model reconstruction

framework was using 256 thread blocks on Tesla

V100. By contrast, the best performance was

recorded in grad M10 with 128 thread blocks. Based

on the execution time in Figs. 7, 8 illustrates the

capacity of two devices to reconstruct frames in 1 s.

Experiment 2:

Experiment 2 is performed to measure the effect

of using a different number of key frames in accuracy

and execution time. As mentioned in [15], five key

frames are used and obtained an acceptable result.

However, we cannot evaluate the framework with

more than five key frames because of the long

execution time of serial implementation. In this

experiment, the framework is tested on different key

frames scattered among video frames, starting from 2

to 9 key frames.

The average root mean square error (RMSE) and

the execution time for a single frame are calculated.

In Fig. 9, the RMSE is slightly affected by increasing

number of keyframes, and eight keyframes record the

lowest error in 20 video frames. However, adding

more keyframes increases frame processing and

extends the execution time. Based on Fig. 9, accuracy

is inversely related to execution time; whenever the

number of keyframes increases, the RMSE decreases,

and execution time prolongs. Using five keyframes is

considered the middle of accuracy and execution time.

6 Discussion

The work in this paper presents the CUDA-

parallel implementation of monocular 3D

reconstruction, which has been proposed in our

previous study [14]. The framework aims to generate

a smooth and accurate 3D point cloud from a

sequence of monocular video frames containing

existent moving objects. The framework is split into

two stages using an unsupervised learning technique

to estimate depth from a single RGB frame, camera

position, and object motion. A complete 3D

reconstruction scene is created at the second stage

through frame-wise point cloud fusion. The first

stage is performed in real-time, whereas the model

runs at 30 FPS on advanced GPUs [10]. Most of the

time is consumed at the second stage, which is

executed in an extended time that reaches 15 min per

frame, so it is unacceptable for real-time interactive

applications.

The main objective of this research is to improve

time consumption to generate a 3D point cloud by

using the CUDA platform on different advanced

GPUs. The parallel implementation consists of three

main kernels. The first kernel is used to search the

point map M using a linear search algorithm. In the

second kernel, the point cloud is added and updated

in the global map. In the third kernel, an unstable

point is removed from maps. Table 3 illustrates the

comparison between the average frame time in serial

implementation through a parallel linear search

(kernel 1) and the final execution time after kernels 2

and 3 are applied using Tesla V100 GPU and M10

device.

Received: May 9, 2022. Revised: June 14, 2022. 595

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.53

Figure. 7 The effect of using different number of threads blocks on total execution time

Figure. 8 The effect of using different number of threads blocks on FPS

Figure. 9 RMSE Vs Time using different keyframes

Received: May 9, 2022. Revised: June 14, 2022. 596

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.53

Table 3. Frame time in serial and GPU parallel

implementation

GPU

Device

Serial Apply

kernel 1

Apply kernel 2

and 3

Tesla

V100

30

minutes

 31

second

0.039 second

Tesla

M10

30

minutes

 48

second

0.35 second

In Table 3, the proposed GPU parallel

implementation of the monocular 3D model

reconstruction framework significantly improves the

execution time for a single frame. After kernel 1 is

applied, the speed increases by 58× serial

implementation on Tesla V100. NVIDIA Tesla V100

is the most advanced GPU accelerator built to

expedite AI, HPC, and graphics. Powered by

NVIDIA Volta, the latest GPU architecture, namely,

Tesla V100 offers the performance of up to 100 CPUs

in a single GPU. However, it is expensive and not

popularly used. Therefore, we evaluate our

implementation on different GPU devices, which are

more popular and flexible to virtualize the specs as

needed. The parallel framework on the Tesla M10

device obtains 37.5× speed compared with the serial

implementation. After kernel 1 is applied, time is still

inapplicable to real-time applications. Kernels 2 and

3 improve the total execution time with an average of

0.039 seconds per frame and 0.35 seconds per frame

using Tesla V100 and Tesla M10 respectively. So, it

is acceptable for real-time application. The strength

of the proposed parallel implementation is the

flexibility to be executed on different GPU devices

with different specifications and still maintains the

time speedup.

7 Conclusion and future work

In this study, a CUDA-parallel implementation

was illustrated to improve the total execution time of

point cloud creation for the RGB frame in the

monocular 3D reconstruction framework. The results

showed that the proposed framework enhances the

execution time which would be acceptable for real-

time applications. The serial implementation was

subjected to performance analysis to evaluate the

most time-consuming parts. As a result, three parts

were chosen to complete parallelization, and the point

map M was searched using a linear search technique.

The point cloud in the global map was added and

updated, and the unstable point was removed from

maps. Two multicore heterogeneous systems were

used to evaluate performance. The proposed parallel

design was applied to successfully execute the

framework in real-time. The parallel design was

separated into two phases. First, each pixel was

assigned to one thread to compute the linear search.

The speedup reached 58× for every frame. Second,

the point cloud was updated or inserted into the

global map. The total time of parallel implementation

was 0.03 seconds instead of 30 min of serial

implementation.

In future studies, the proposed framework could

be used for real-time interaction applications, such as

increased reality and application performance

evaluation. Moreover, parallel implementation was

adopted for mobile phones composed of a GPU

device.

Funding

This research is funded by the Deanship of

Scientific Research, Islamic University of Madinah,

Madinah, Saudi Arabia.

Conflicts of interest

The authors declare no conflict of interest.

Author contributions

Conceptualization, Ghada, Hanan and Emad;

methodology, Ghada, Hanan, Fatma, Walaa and

Emad; implementation, Ghada; validation, Ghada,

Hanan, and Fatma Omara; formal analysis, Walaa

and Fatma; investigation, Ghada, Emad; writing—

original draft preparation, Ghada; writing—review

and editing, Fatma, Walaa, Hanan, and Emad;

supervision, Fatma and Walaa.

References

[1] R. Koch and J. M. Frahm, “Visual-Geometric

Scene Reconstruction from Image Streams,” In:

Proc. of the Vision Modeling and Visualization

Conference, pp. 367-374, 2001.

[2] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R.

Newcombe, P. Kohli, J. Shotton, S. Hodges, D.

Freeman, A. Davison, and A. Fitzgibbon,

“ Kinectfusion: real-time 3d reconstruction and

interaction using a moving depth camera”, In:

Proc. of the 24th Annual ACM Symposium on

User Interface Software and Technology, pp.

559–568, 2011.

[3] P. Nyimbili, H. Demirel, D. Z. Seker, and T.

Erden, “ Structure from motion (sfm)-

approaches and applications”, In: Proc. of the

International Scientific Conf. on Applied

Sciences, Antalya, Turkey, pp. 27–30, 2016.

[4] K. Tateno, F. Tombari, I. Laina, and N. Navab,

“Cnn- slam: Real-time dense monocular slam

with learned depth prediction”, In: Proc. of the

IEEE Conf. On Computer Vision and Pattern

Received: May 9, 2022. Revised: June 14, 2022. 597

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.53

Recognition, pp. 6243–6252, 2017.

[5] Y. Saito, R. Hachiuma, M. Yamaguchi, and H.

Saito, “In- plane rotation-aware monocular

depth estimation using slam”, In: Proc. of

International Workshop on Frontiers of

Computer Vision, pp. 305–317, 2020.

[6] M. Keller, D. Lefloch, M. Lambers, S. Izadi, T.

Weyrich, and A. Kolb, “Real-time 3d

reconstruction in dynamic scenes using point-

based fusion”, In: Proc. of 2013 International

Conf. on 3D Vision-3DV, pp. 1–8, 2013.

[7] K. Chen, Yu. Lai, and Shi. Hu, “3d indoor scene

modelling from rgb-d data: a survey”,

Computational Visual Media, Vol. 1, No.4, pp.

267–278, 2015.

[8] F. Liu, C. Shen, G. Lin, and I. Reid, “Learning

depth from single monocular images using deep

convolutional neural fields”, IEEE Transactions

on Pattern Analysis and Machine Intelligence,

Vol. 38, No. 10, pp. 2024–2039, 2015.

[9] I. Laina, C. Rupprecht, V. Belagiannis, F.

Tombari, and N. Navab, “Deeper depth

prediction with fully convolutional residual

networks”, In: Proc. of 2016 Fourth

International Conf. On 3D Vision (3DV), pp.

239–248, 2016.

[10] V. Casser, S. Pirk, R. Mahjourian, and A.

Angelova, “Depth prediction without the

sensors: Leveraging structure for unsuper- vised

learning from monocular videos”, In: Proc. of

the AAAI Conf. on Artificial Intelligence, Vol. 33,

pp. 8001–8008, 2019.

[11] D. Eigen and R. Fergus, “Predicting depth,

surface normals and semantic labels with a

common multi-scale convolutional architecture”,

In: Proc. of the IEEE International Conf. on

Computer vision, pp. 2650–2658, 2015.

[12] S. Kumar, Y. Dai, and H. Li, “Superpixel soup:

Monocular dense 3d reconstruction of a complex

dynamic scene”, IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 43, No.

5, pp. 1705–1717, 2019.

[13] S. Kumar, Y. Dai, and H. Li, “Monocular dense

3d reconstruction of a complex dynamic scene

from two perspective frames”, In: Proc. of the

IEEE International Conf. on Computer Vision,

pp. 4649–4657, 2017.

[14] G. Fathy, H. Hassan, W. Sheta, F. Omara, and E.

Nabil, “A novel no-sensors 3d model

reconstruction from monocular video frames for

a dynamic environment”, PeerJ Computer

Science, Vol. 7, p. e529, 2021.

[15] R. Pickles, “White paper-next generation

graphics gpu shader and compute libraries”, In:

Proc. of 2020 AIAA/IEEE 39th Digital Avionics

Systems Conf. (DASC), pp. 1–6, 2020.

[16] H. Hassan, G. Fathy, Z. Fayez, and W. Sheta,

“Exploring the parallel capabilities of gpu:

Berlekamp-massey algorithm case study”,

Cluster Computing, Vol. 23, No. 2, pp. 1007–

1024, 2020.

[17] G. Fathy, H. Hassan, S. Rahwan, and W. Sheta,

“Parallel implementation of multiple kernel self-

organizing maps for spectral unmixing”, Journal

of Real-Time Image Processing, Vol. 17, N.5, pp.

1267–1284, 2020.

[18] A. Ivanavicˇius, H. Simonavicˇius, J. Gelšvartas,

A. Lauraitis, R. Maskeliu, P. Cimmperman, and

P. Serafi-navicˇius, “Real-time cuda-based

stereo matching using cyclops2 algorithm”,

EURASIP Journal on Image and Video

Processing, No. 1, pp.1–15, 2018.

[19] J. Wang, H. Liu, L. Cong, Z. Xiahou, and L.

Wang, “Cnn-monofusion: online monocular

dense reconstruction using learned depth from

single view”, In: Proc. of IEEE International

Symposium on Mixed and Augmented Reality

Adjunct (ISMAR-Adjunct), IEEE, pp. 57–62,

2018.

[20] X. Yang, L. Zhou, H. Jiang, Z. Tang, Y. Wang,

H. Bao, and G. Zhang, “Mobile3drecon: real-

time monocular 3d reconstruction on a mobile

phone”, IEEE Transactions on Visual-Ization

and Computer Graphics, Vol. 26, No. 12, pp.

3446–3456, 2020.

[21] S. Shimada, V. Golyanik, W. Xu, and C.

Theobalt, “Physcap: Physically plausible

monocular 3d motion capture in real time”, ACM

Transactions on Graphics (TOG), Vol. 39, No.

6, pp.1–16, 2020.

[22] H. Peng, C. Xian, and Y. Zhang, “3d hand mesh

reconstruction from a monocular rgb image”,

The Visual Computer, Vol. 36, No. 10, pp. 2227–

2239, 2020.

[23] F. Lu, G. Chen, Z. Li, L. Zhang, Y. Liu, S. Qu,

and A. Knoll, “Monet: Motion-based point cloud

prediction network”, IEEE Transactions on

Intelligent Transportation Systems, 2021.

[24] F. Huang, H. Yang, X. Tan, S. Peng, J. Tao, and

S. Peng, “ Fast reconstruction of 3d point cloud

model using visual slam on embedded uav

development platform”, Remote Sensing, Vol. 12,

No. 20, pp. 3308, 2020.

[25] R. Ranftl, V. Vineet, Q. Chen, and V. Koltun,

“Dense monocular depth estimation in complex

dynamic scenes”, In: Proc. of the IEEE Conf. on

Computer Vision and Pattern Recognition, pp.

4058–4066, 2016.

[26] CUDA Nvidia. Cuda .Online

http://www.nvidia.com/object/cuda_home_new,

http://www/

Received: May 9, 2022. Revised: June 14, 2022. 598

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022 DOI: 10.22266/ijies2022.0831.53

15, 2006.

[27] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun,

“Vision meets robotics: The kitti dataset”, The

International Journal of Robotics Research, Vol.

32, No. 11, pp. 1231–1237, 2013.

[28] M. Han and T. Kanade, “Multiple motion scene

reconstruction with uncalibrated cameras”,

IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. 25, No. 7, pp. 884-

894, 2003.

[29] R. M. Artal, J. Montiel, and J. Tardos, “Orb-

slam: a versatile and accurate monocular slam

system”, IEEE Transactions on Robotics, Vol.

31, No. 5, pp. 1147–1163, 2015.

[30] askgeek. NIVIDIA. Online :

https://askgeek.io/en/gpus/vs/NVIDIA_Tesla-

V100-PCIe-32-GB-vs-NVIDIA_Tesla-M10

[31] T. NVIDIA. Nvidia tesla v100 gpu architecture,

2017.

https://askgeek.io/en/gpus/vs/NVIDIA_Tesla-V100-PCIe-32-GB-vs-NVIDIA_Tesla-M10
https://askgeek.io/en/gpus/vs/NVIDIA_Tesla-V100-PCIe-32-GB-vs-NVIDIA_Tesla-M10

