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Abstract: Real-time three-dimensional (3D) reconstruction has been widely explored in several domains in motion 

capture, robot navigation, augmented reality, and autonomous driving. It is considered one of the most efficient 

solutions to overcome several problems, such as occlusion and collision in computer vision and computer graphics. 

This process is computationally intensive and it considers a bottleneck for real-time realistic interaction applications 

which need a quick response to achieve action in real-time. The Monocular 3D model reconstruction (M3DMR) is 

considered one of the possible solutions to build an accurate 3D reconstruction in a dynamic environment. However, 

the proposed framework needs a high computational power to create a single frame. Graphics processors unit (GPU) 

architecture is used to improve the computational time of M3DMR.  This study discussed how to maximize the benefits 

of using GPU resources by using several optimization techniques that enable GPU architecture to achieve the best 

possible performance for the M3DMR. Different multicore heterogeneous systems are used to evaluate the 

performance of the proposed framework. Experimental results confirm that our parallel implementation of 3D Model 

Reconstruction of Monocular Video Frames is valid for different GPU architectures. The proposed parallel 

implementation can execute 28 FBS compared with the serial version that executes one frame in 30 min. 

Keywords: Parallel programming, 3D reconstruction, Real-time, GPU, CUDA. 

 

 

1. Introduction 

Dense three-dimensional (3D) scene 

reconstruction in a dynamic environment is a 

common challenge in realistic interaction 

applications. It is considered the most efficient 

solution for many computer vision and computer 

graphics problems, such as occlusion and collision. 

However, regular 3D reconstruction methods are 

costly, time-consuming, and complex computation. 

Therefore, they cannot immediately respond when 

they are used in time-sensitive applications, such as 

augmented reality and auto self-driving cars. 
Recently, with the rapid development of graphics 

processing unit (GPU) technologies, real-time 
applications have become increasingly convenient, 

and 3D reconstruction has emerged as a popular 
research subject in this context. Traditional methods 
of 3D model construction are based on image data at 
different viewing angles for 3D scene reconstruction  
[1]. However, they have an extended processing 
sequence and entail high costs. The environment is 
unknown in specific application scenarios, such as 
outdoor augmented reality, and 3D scenes should be in 
real-time. Microsoft developed Kinect fusion based on 
Kinect, which scans the environment by enabling users 
to move with the device in hand. Then, it reconstructs 
a 3D model of the scanned environment based on the 
scanned data [2]. This technique suffers from many 
postictal; for example, Kinect is sensitive to distance 
and limited range. Hence, it can reconstruct the 
environment only within a small range of 3D scenes.  

Different techniques, such as structure from 
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motion [3] and simultaneous localization and mapping 

SLAM [4], are used to reconstruct a real environment 

in real-time, and they are famous techniques used to 

reconstruct scenes. Real-time SLAM methods are used 

to combine maps obtained from moving depth sensors. 

Subsequently, they are used to navigate and map 

several types of autonomous agents for different 

applications [4, 5]. Dense SLAM methods based on 

RGB-D data are widely used to navigate and generate 

scene construction [6, 7]. Such methods are mainly 

limited by depth cameras that are mostly based on 

active sensing. Thus, they cannot have an accurate 

performance under sunlight, So, reconstruction and 

mapping in outdoor environments are considered less 

accurate. Further studies have been conducted to 

improve the accuracy of depth maps by predicting 

depth using deep learning techniques [8-10]. Through 

these techniques, an absolute scale can be detected 

from examples and consequently predicted from a 

single image without the need for scene-based 

assumptions or geometric restrictions [9-11]. 

Although the predicted depth map can improve the 

performance of monocular SLAM, it remains 

inaccurate and performs poorly in a dynamic 

environment.  The authors in [12, 13] have proposed 

the dense 3D reconstruction of a complex dynamic 

scene for a single image. In this approach, dynamic 

scenes are approximated using numerous piecewise 

planar surfaces, and each one has its rigid motion. 

[12] presents a 3D reconstruction technique in a 

complex dynamic scene using two frames by applying 

super-pixel over-segmentation to the image. They 

presented a generically dynamic (hence non-rigid) 

scene with a piecewise planar and rigid approximation.  

Also, they reduced the reconstruction problem to a 

“3D jigsaw puzzle” which takes pieces from an 

unorganized “soup of super-pixels”. 

Another approach is presented using unsupervised 

learning and point cloud fusion to reconstruct a 3D 

scene in a dynamic environment (M3DMR) [14]. This 

approach focuses on applying unsupervised learning to 

predict the depth map, camera position, and object 

motion through a sequence of video frames. Then, the 

sequence of frames is reconstructed via point-cloud 

fusion. These approaches achieve high accuracy, but 

reconstruction entails high costs and needs 15,30 

minutes for a single frame, respectively.  

GPUs are widely used to speed up intensive 

computation applications in different domains, and 

they have provided new opportunities for embedded 

systems that fail to perform computationally intensive 

tasks in real-time. However, creating a point cloud and 

generating 3D reconstruction for a whole scene in 

computing unified device architecture (CUDA) are 

considered complex tasks. [23, 25] using GPU 

architecture to improve the processes of 3D 

reconstruction. The authors [23] used neural networks 

such as LSTM and GRU to generate a full 3D point 

cloud from outdoor LiDAR datasets. The main 

purpose is to use the motion-based neural network that 

integrates motion features between two consecutive 

point clouds. NVIDIA GeForce RTX 2080Ti is used 

for training in testing among different datasets, for 

example, the KITTI dataset. On the other hand [23] 

used GPU with MATLAB platform to segment the 

optical flow field for a full dynamic scene.  
 

Table 1. 3D reconstruction time of the most relevant 

techniques 

Ref. Scene Methods Device Time 

(T/F) 

[19] Single 

Static 

object 

Monocular 

SLAM 

NVIDIA 

GeForce 

TITAN X-

without 

CUDA 

21 ms 

[21] Single 

Dynamic 

object 

Markless 

3D human 

motion 

capture 

GeForce 

RTX 2070 

without 

CUDA 

40 ms 

[22] Single 

Dynamic 

object 

GCN 

network 

Nvidia 

GeForce 

RTX 2080Ti 

-without 

CUDA 

23 

ms  

[20] Full 

Static 

scene  

Online 

incremental 

mesh 

generation 

a single 

CPU thread 

third-party 

library 

OpenCV 2 

57.21 

ms  

[24] Full 

Static 

Scene  

visual 

parallel 

SLAM on 

UAV 

platforms 

TX2 

embedded 

development 

module with 

CUDA 

8.41 s 

[23] Full 

Dynamic 

scene 

LSTM and 

GRU 

networks 

NVIDIA 

GeForce 

RTX 

2080Ti- 

without 

CUDA 

56 ms 

[25] Full 

Dynamic 

scene 

segments 

the optical 

flow field 

MATLAB 

and GPU 

1 m 

[12] Full 

Dynamic 

scene 

Super-pixel 

over-

segmentati

on 

Intel core i7 15-20 

m 

[14] Full 

Dynamic 

Scene 

Unsupervis

ed learning 

and point 

cloud 

fusion 

Tesla V100 

and Tesla 

M10 without 

CUDA 

30 m  



Received:  May 9, 2022.     Revised: June 14, 2022.                                                                                                         587 

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022           DOI: 10.22266/ijies2022.0831.53 

 

 
Figure. 1 3D point cloud mapped to 2D image (a) selected input frame (b) Ground truth (c) predicted points [14] 

 

Table 1 summarizes the time of the most relevant 

implementations of 3D scene reconstruction. In some 

cases, implementing a particular model may even be 

impossible because of memory restrictions. CUDA 

platforms are used among the essential platforms to 

program GPU devices. CUDA is a parallel 

computing platform and programming model 

developed by NVIDIA for general computing [15]. 

Several types of research work use GPUs to improve 

the performance of applications and reduce 

computational time [16, 17]. Ivanavičius et al. [18] 

proposed a matching algorithm called Cyclops2 for 

Stereo reconstruction. This algorithm produces a 

disparity image and provides two rectified grayscale 

images.  

Matching is based on the concept of minimizing 

the calculation of a weight function using the absolute 

difference in pixel intensities. The CUDA-parallel 

programming library is optimized for the embedded 

NVIDIA Jetson platform is used [18]. 

This work aims to improve the computational 

time of the M3DMR framework that is proposed in 

our previous work [14]. Profile and complexity 

analyses were performed to select the bottleneck time 

of serial implementation. In addition, several 

optimization techniques are used to maximize the 

benefits of using GPU resources to decrease the total 

execution time of the reconstruction process and 

create a 3D point Cloud scene from a sequence of 

monocular RGB video frames in a dynamic 

environment. Moreover, to demonstrate the 

flexibility of the proposed implementation and 

validate the system, we are experimenting with 

different multicore heterogeneous systems.  

The rest of the paper is organized as follows: 

Section 2 gives a brief explanation of Monocular 3D 

model reconstruction (M3DMR), the serial 

implementation, the profile analysis, and the 

complexity analysis of the framework. Section 3 

introduces GPU parallel computing architecture. 

section 4 illustrates the performance optimization 

approaches used in GPU implementation. Section 5 

shows experimental results. Section 6 discussion. 

Finally, section 7 concludes this research and 

suggests future work. 

2. Monocular 3D model reconstruction  

2.1 Overview of Monocular 3D model 

reconstruction (M3DMR) 

All M3DMR aims to reconstruct a constant and 

accurate 3D scene using a point cloud technique for a 

dynamic environment. The framework environment 

consists of moving and static background objects.  

Fig. 1 shows the output of the M3DMR 

framework compared with the ground truth. 

Framework uses the updating data from a 

sequence of Monocular RGB video frames instead of 

the expensive cost of multi-sensor data. M3DMR 

consider a suitable solution to solve realistic 

interaction problems, such as occlusion and collision. 

M3DMR decided into two levels. 

Level 1, using an unsupervised learning 

technique to estimate object motion, scene depth, and 

camera pose during the online refinement process. 

Level 2, reconstruct a full 3D scene model through 

frame-wise point cloud fusion (see Fig. 2). For more 

details, M3DMR is described in [14].  

2.2 Serial implementation of M3DMR 

The serial implementation is proposed in [14]. 

The per-frame point cloud 𝑝𝑖 is reconstructed by 𝑫𝒊 

is the depth for a single frame, the final Motion 𝑬𝒎
𝑭  

consists of individual moving objects 𝜓𝑀𝑜  and 

Camera motion 𝜓𝐸𝒊→𝒋 . K is the intrinsic camera 

calibration matrix.  

 

𝑝𝑖 = (𝐸𝑚
𝐹 )−1 𝜋(𝑢, 𝐷𝑖)                              (1) 

 

Where 𝑢 denote as homogeneous representation 

of a pixel 𝑢 = (𝑥, 𝑦, 1)𝑇  and 𝜋(𝑢)  is the back 

projection from image to camera coordinate,  
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Figure. 2 The M3DMR framework overview 

 

𝜋(𝑢, 𝐷𝑖) = 𝐾−1𝐷𝑖𝑢. 

In point association process calculated as 

 

𝑢𝑘 = 𝑓 (𝐾 (𝐸𝑚
𝐹 )𝑘𝜋(𝑢𝑖))                             (2) 

 

The co-visible of keyframe 𝑘1, 𝑘2… . 𝑘𝑛 ∈ 𝐾𝐹 

selected according to the length of monocular video 

frames on the online refinement process.  

The probabilistic filter is used. Each 3D point in 

global model P is represented by 𝑝𝑖
𝑛 , and the 

confidence counter 𝐶𝑐 is defined as how often the 3D 

point is observed in co-visible keyframes. The new 

observation available in the latest frame 𝒊 according 

to the following equations:  

𝑝𝑖
𝑛 =

(𝑤𝐴𝑝𝑖+𝑤0(𝐸𝑚
𝐹 )−1 𝜋(𝑢𝑖))

𝑤𝐴+𝑤0                         (3) 

 

𝐶𝐶
𝑛 =

(𝑤𝐴𝐶𝑐+𝑤0 ‖(𝐸𝑚
𝐹 )−1 𝜋(𝑢𝑖)−𝑝𝑖‖)

𝑤𝐴+𝑤0                  (4) 

 

𝑤𝐴
𝑛 = min(𝑤𝐴 +𝑤0,𝑊𝜀)                           (5) 

 

Where 𝑝𝑖
𝑛 means the newly updated point, 𝑤0is 

a constant equal to 1 and 𝑊𝜀  is the truncation 

threshold equal to 100. 

2.3 Profile analysis of serial M3DMR 

implementation  

In the analysis of the time consumption of the 
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Algorithm 1 represents the pseudo code of 3D 

model reconstruction process. 

Algorithm 1: Generate a 3D Reconstruction for 

the dynamic scene (Serial implementation) 

Input: P ← global Model, hash map contains 3D 

point cloud, confidence counter, average weight, 

and point status (Stable, Unstable) with length s 

M← point Map, mapping of [x, y] and pointID for 

𝑢𝑘 with length s 

 L← the 𝑢𝑘  dimension 

 F ← total number of frames 

 KF ← total number of Co-visible keyframe 

 

1  𝐟𝐨𝐫 𝒊 = 1 → 𝐹 do 

2   | % project current frame to world coordinates  

3   | 𝑝𝑖 = (𝐸𝑚
𝐹 )−1 𝜋(𝑢, 𝐷𝑖) 

 4   | for k=1→ KF do 

5   | | % project world coordinates to co-visible KF     

6   | |    𝑝𝑖 → 𝑢𝑖 → 𝑢𝑘 

7   | |    𝑢𝑘 = 𝑓 (𝐾 (𝐸𝑚
𝐹 )𝑘𝜋(𝑢𝑖)) 

8   | |    for j=1→ 𝐿 do % point association 

9   | |     | if j in M: 

10 | |     |   | % point is visible  

11 | |     |   | % current frame-wise 3D point      

associated with the 3D global model 

12 | |     |   | % update point info 

13 | |     |   | 𝑝𝑖
𝑛 = (𝑤𝐴𝑝𝑖 +𝑤0(𝐸𝑚

𝐹 )−1 𝜋(𝑢𝑖)) /

(𝑤𝐴 +𝑤0)                 
14 | |     |   | 𝐶𝐶

𝑛 = (𝑤𝐴𝐶𝑐 +𝑤0 ‖(𝐸𝑚
𝐹 )−1 𝜋(𝑢𝑖) −

                       𝑝𝑖‖)/(𝑤𝐴 +𝑤0)    

15 | |     |   | 𝑤𝐴
𝑛 = min (𝑤𝐴 +𝑤0,𝑊𝜀)  

16 | |     |   | if  𝐶𝐶
𝑛  < stable_threshold 

17 | |     |   |     % point is stable 

 18 | |     |   | else  

 19 | |     |   |    % point unstable  

20 | |     | else  

22 | |     |   | insert 𝑝𝑖 to P % with all point info 

23 | |     |   | insert j to M  

24 | |     |   |___ 

25 |     |     |______                                         

26 |     |___________ 

27 |     % remove unstable points from P 

28 |________________________________ 

 

 Output: accumulated global model P for 3D 

reconstruction 

 

proposed M3DMR framework, the search on point 

map (M) (line 9 in Algorithm 1) is repeatedly 

executed L times for each keyframe KF, where L is 

equal to the number of keyframe pixels (x, y). The 

profile analysis reports that almost 97 % of the total 

frame execution time is consumed in the search on  

 

 
Figure. 3 Profile analysis of serial M3DMR 

implementation 

 

the point map (see Fig. 3). However, only 2 % and 

1 % are spent adding and updating, filtering noise 

processing for a 3D point cloud on the global map P, 

and creating the initial 3D point cloud and co-visible 

keyframes, respectively. 

2.4 Complexity analysis of serial M3DMR 

The time complexity of M3DMR consists of 

several parts. In Fig. 3, a per-frame point cloud is 

created for each frame at 𝑂(𝑛) . All pixels of the 

current frame compared with co-visible keyframes 

pixels. to generate 𝑢𝑘  with a token of 𝑂(𝑛). The time 

complexity of the point association includes a search 

on the point map and updating or adding point could 

process. A linear search is performed to check the 

visibility of pixels in the current frame with all co-

visible keyframes and return pointID for updating. 

The time complexity of the linear search is 𝑂(𝑛).  
With the system, the linear search is computed for 

all keyframe pixels, so 𝑂(𝑛𝑠) is necessary. The total 

time complexity of the M3DMR framework is  

 

𝑂(𝑛2) + 𝑂(𝑛𝑠) = 𝑂(𝑛𝑠)                           (6) 

3. GPU parallel computing architecture  

NVIDIA launched the concept of CUDA, which 

manages GPUs for parallel computing. With CUDA, 

general-purpose programming can be achieved 

through different languages [27]. The topology of the 

CUDA platform supports thread-level parallel 

computation by activating thousands of threads to 

execute using GPUs. The cost for thread creation and 

dispatch is negligible in GPUs because they are 

implemented by hardware rather than software as in 

a central processing unit (CPU). GPUs are 

responsible for intensive floating-point computation, 

such as dense vector and matrix operation. Data 

exchange occurs between a CPU and GPU through a 

PCIe bus. GPUs contain streaming multiprocessors 

(SM) which consist of a large number of single- and 

double-precision cores. GPUs have different memory 

units, such as register, shared memory, constant 
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memory, texture memory, L2 cache, and global 

memory. A GPU function that executes on a device 

is called a kernel. Kernels run on a kernel grid 

composed of many thread blocks. These thread 

blocks are then executed in parallel and unable to 

communicate except through a global device memory. 

By contrast, all threads in one thread block can 

intercommunicate via shared memory or barrier. 

Some concepts about CUDA and GPU that 

should be considered are listed below [27]. 

 

1- Dependency must be avoided as much as possible, 

and operations in the algorithm should be 

performed concurrently. 

2- In NVIDIA’s CUDA architecture, the thread 

blocks are executed concurrently using device 

kernels. Each thread block includes a group of 

warps consisting of 32 threads.  Inside warp, 

threads simultaneously execute the same branch 

of the algorithm time. To get the best performance, 

avoid loops, and conditional statements as much 

as possible. 

3- Read and write operations should be in the range 

of neighbouring memory cells. Otherwise, 

updates in memory significantly extend the 

processing time. 

4. Parallel implementation of M3DMR 

This section describes the design of the parallel 

implementation of a monocular 3D reconstruction 

model in a dynamic scene using CUDA and GPU.  

Fig. 4 shows the serial framework mapped and 

divided among CPUs and GPUs. The left side (Host) 

represents the framework parts that run on a CPU, 

and the right side (Device) includes the parts that run 

on a GPU.  

Fig. 4 presents the same equations of the serial 

framework used in this study. The parallel design 

considers the following:  

 

1) The host allocates memory and controls the outer 

portion of loops and the overflow of the 

framework.  

2) The device (GPU) excites the most intensive 

computational parts of the framework.  

 

Algorithm 2 describes the overview pseudo-code 

of CUDA-parallel implementation, which involves 

three device kernels; parallel linear search, point 

cloud addition and update, and unstable point 

removal. 

4.1 Parallel implementation complexity 

As mentioned in section 2.4, the serial time 

 

Algorithm 2: Generate a 3D Reconstruction for 

the dynamic scene (CUDA Version) 

Input: P ← global Model, arrays contains 3D point 

cloud, confidence counter, average weight, and 

point status (Stable, Unstable) with length s 

M← point Map, mapping of [x, y] and pointID for 

𝑢𝑘 with    length s 

     F ← total number of frames 

     KF ← total number of Co-visible keyframe 

     𝑝𝑜𝑖𝑛𝑡𝐼𝐷𝑖𝑛𝑑𝑒𝑥 ← the output array of linear search 

 1    𝐟𝐨𝐫 𝒊 = 1 → 𝐹 do 

 2   | % project current frame to world coordinates  

 3   | 𝑝𝑖 = (𝐸𝑚
𝐹 )−1 𝜋(𝑢, 𝐷𝑖) 

 4   |    for k=1→ KF do 

 5   |     | % project world coordinates to co-visible KF 

 6   |     |    𝑝𝑖 → 𝑢𝑖 → 𝑢𝑘 

 7   |     |      𝑢𝑘 = 𝑓 (𝐾 (𝐸𝑚
𝐹 )𝑘𝜋(𝑢𝑖)) 

  8  |     | Memory transfer 𝑴,   𝒖𝒌 𝐏,
𝒑𝒐𝒊𝒏𝒕𝑰𝑫𝒊𝒏𝒅𝒆𝒙  from H-D  

 9   |     |   Kernel1_ParallelLinearSearch ( 𝑢𝑘, M) 

10  |     |   Kernel2_addAndUpdatePointCloud 

(P, M, 𝑝𝑜𝑖𝑛𝑡𝐼𝐷𝑖𝑛𝑑𝑒𝑥, 𝑢𝑘)  

11   |     |___ 

12   |     Kernel3_RemoveUnstablePoint (P, M) 

13   |     Memory transfer M, P from D-H   

|________________________________ 

 

Output: accumulated global model P for 3D 

reconstruction 
 

complexity is O(n). The parallel implementation 

doesn’t change the big O notation. That is because the 

parallel simply divides the overall execution time by 

the number of parallel executions. However, we can 

evaluate the parallel implementation as the 

following: 

The cost of computational (CoC) is calculated as 

shown in Eq. (7). 

 
CoC= total execution time (e) * total number of 
processors S(n)                                                          (7) 

 

The serial computation: 

 

 𝑡𝑠 = 𝑒                                                           (8) 

 

The cost of parallel computation:  

 
𝐶𝑃 = 𝑡𝑝 ∗ 𝑛 + 𝐶(𝑡)                                           (9) 

  
where 𝑡𝑝 parallel execution time is given by 𝑡𝑠/S(n) 

and 𝐶(𝑡)is the communication overhead. 
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Figure. 4 Parallel design of M3DR in Host (H) and Device (D) 

 

4.2 Kernel 1: Parallel Linear Search  

As mentioned before, search on point map is the 

most time-consuming process (section 2; line 9 

Algorithm 1). The linear search has a time 

complexity of 𝑂(𝑛)) and is performed for each pixel 

in the current frame. It is also applied to assign each 

thread with one pixel in the current frame. 

In Fig. 5, the number of threads  𝑁𝑡ℎ𝑟 is equal to 

the number of pixels in co-visible Keyframes s. Each 

thread searches the point map (M) via the x and y 

coordinates. The number of thread block 𝑁𝑏𝑙𝑜𝑐𝑘  is 

calculated as follows: 

 

𝑁𝑏𝑙𝑜𝑐𝑘 = (
𝑁𝑡ℎ𝑟

MAXNUMBERthr
) + 

((𝑁𝑡ℎ𝑟%MAXNUMBERthr)? 1: 0)      (10) 

 

Where MAXNUMBERthr is the maximum 

number of active threads. Linear search is considered 

the most efficient way because of the following 

aspects. First, the point map is unsorted, and linear 

search is a suitable solution for unsorted arrays. 

Second, other approaches need costly pre-processing, 

such as binary search and HashMap. For example, a 

system is searched with keyframe pixels x and y, but 

using these two values during the search needs 

expensive sorting pre-processing and consumes time. 

In the proposed parallel implementation, most of the 

concepts mentioned in section 3.1 are covered, and 

each thread in a warp is read and written in the range 

of neighbouring memory cells (Fig. 5).  

The searching process is considered independent, 

so each thread is responsible for checking one pixel 

and does not need to wait for other threads. The 

pseudocode of parallel linear search is presented in 

Algorithm 3, kernel 1. 

4.3 Kernel 2: Add and update point cloud in 

global map 

After the execution time of the frames via a 

parallel search is reduced, the framework time should 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Host 

Initialization  

Calculate per-frame   point 

cloud                                                 

𝑝𝑖 =    (𝐸𝑚
𝐹 )−1 𝜋(𝑢,𝐷𝑖) 

 Alg.1 line 3 

Data transfer 𝑢𝑘 ,𝑀 

 

Project world coordinates 

 to co-visible keyframes                                  

𝑢𝑘 = 𝑓 (𝐾 (𝐸𝑚
𝐹 )𝑘𝜋(𝑢𝑖)) 

Alg.1 line 7 

Render Global Model P 

Output 

Data transfer P with all 

point info 

Create a smooth 3D point 

cloud and filter out the 

noise 

Alg.1 lines 16,17,18, 19 

Memory allocation 

Linear Search on M 

If j in M 

Alg.1 line 9 

Memory allocation 

 

𝑝𝑖
𝑛 =

(𝑤𝐴𝑝𝑖+𝑤0(𝐸𝑚
𝐹 )−1 𝜋(𝑢 𝑖))

𝑤𝐴+𝑤0     

𝐶𝐶
𝑛 =

(𝑤𝐴𝐶𝑐+𝑤0  ‖(𝐸𝑚
𝐹 )−1 𝜋(𝑢 𝑖)−𝑝𝑖‖)

𝑤𝐴+𝑤0   

𝑤𝐴
𝑛 = min(𝑤𝐴 + 𝑤0 ,𝑊𝜀) 

Alg.1 lines 13,14 and 15 

 

Device 

Point cloud for current frame P 

Alg.1 line 22,23 
 

𝑓𝑜  𝑖 = 1 → 𝐹 

𝑓𝑜  = 1 → 𝐿 
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Figure. 5 Parallel design for searching on M using linear search 

 

 
Figure. 6 Add and update global model 

 

be improved further so that it can be accepted for real-

time applications. Adding or updating the 3D point 

cloud is chosen as the second phase in parallel 

implementation. The global model consists of a list 

of 3D point clouds with correlating characteristics, 

such as confidence counter, average weight, and 

stability flag (Fig. 6). 

The 3D point cloud 𝑝𝑖  is updated in case the 

search output is not equal to −1, indicating that the 

mapped key frame point 𝑢𝑘 is found on point map M. 

If 𝑝𝑖 is equal to −1, the estimated 3D point is added 

to the global model P, and 𝑢𝑘[𝑥, 𝑦] is added to M.  

The number of active threads, 𝑁𝑡ℎ𝑟 , and the 

number of thread block 𝑁𝑏𝑙𝑜𝑐𝑘  are calculated as the 

same as in kernel 1, and each thread is responsible for 

adding or updating one point. Memory is transferred 

between a host and a GPU device once for each frame 

in video sequence frames to reduce the overhead of 

memory traffic. The process of updating and adding 

each frame into P is explained in Algorithm 4, Kernel 

2.  



Received:  May 9, 2022.     Revised: June 14, 2022.                                                                                                         593 

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022           DOI: 10.22266/ijies2022.0831.53 

 

4.4 Kernel 3: Filtering out the noise (remove 

unstable points)  

The system starts to filter the noise through a 

probabilistic noise filter after a visibility check 

between the current frame, and all the selected 

keyframes are completed by removing the point record 

containing a −1 value, which indicates that this point 

is unstable. In Algorithm 5, kernel 3 checks if the point 

state flag is set on the update process (kernel 2) and 

removes the point record from the global and point 

maps by setting them to −1. 

5 Experiments  

5.1 Experimental configuration 

Two different multicore heterogeneous systems 

are used to evaluate the performance. The first one is 

equipped with PowerEdge Dell 740XD (2× Intel 

Xeon Gold 6248 2.5G, 20C/40T, 10.4GTs, 27.5 M 

Cache, Turbo, HT [150W] DDR4-2933+384G RAM) 

with Tesla V100 GPU [31]. The second system is a 

virtual machine on cloud computing with NIVIDIA 

Tesla M10 GPU card. Table 2 illustrates the 

comparison between two GPU card specs. 

The framework is implemented by CUDA 10.1, 

Python, and Pycuda library. The experiments are 

conducted using the KITTI dataset [29]. 

 

Algorithm 4_Kernel 2: Add and update point 

cloud 

Input: P ← global Model, arrays contains 3D point 

cloud p, confidence counter 𝐶𝑐, average weight 𝑊𝐴, 

and point_state (Stable, Unstable) with length s 

M← point Map, mapping of [x, y] and pointID for 𝑢𝑘 

with length s 

 L← 𝑢𝑘  length  

 𝑝𝑜𝑖𝑛𝑡𝐼𝐷𝑖𝑛𝑑𝑒𝑥 ← the output of linear search with  

length L 

 

1 𝑡𝑖𝑑 = 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 ∗ 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 +
𝑡ℎ 𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 

2 𝒊𝒇 𝑡𝑖𝑑 > 𝐿 do 

3        𝑒𝑡𝑢 𝑛 

4 𝒊𝒇 𝑝𝑜𝑖𝑛𝑡𝐼𝐷𝑖𝑛𝑑𝑒𝑥[𝑡𝑖𝑑]! = −1 

5      𝑝𝑖
𝑛[𝑡𝑖𝑑] =

(𝑤𝐴𝑝𝑖+𝑤0(𝐸𝑚
𝐹 )−1 𝜋(𝑢𝑖))

(𝑤𝐴+𝑤0)
        %

𝑢𝑝𝑑𝑎𝑡𝑒 3𝐷 𝑃𝑜𝑖𝑛𝑡 𝐶𝑙𝑜𝑢𝑑 

6      𝐶𝐶
𝑛[𝑡𝑖𝑑] =

(𝑤𝐴𝐶𝑐+𝑤0 ‖(𝐸𝑚
𝐹 )−1 𝜋(𝑢𝑖)−𝑝𝑖‖)

𝑤𝐴+𝑤0   %𝑢𝑝𝑑𝑎𝑡𝑒 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒  

7      𝑤𝐴
𝑛[𝑡𝑖𝑑] = 𝑤𝐴

𝑛 = min(𝑤𝐴 +
𝑤0,𝑊𝜀)   %update Average Weight 

8      Check point_state () % check state according 

to confidence and set it 0 or 1 

9 𝒆𝒍𝒔𝒆: 
10       𝑝𝑖[𝑡𝑖𝑑] = 𝑖𝑛𝑠𝑒 𝑡𝑇𝑜𝐺𝑙𝑜𝑏𝑒𝑙𝑀𝑜𝑑𝑒𝑙() 
11      𝐶𝐶

𝑛[𝑡𝑖𝑑] = 𝑖𝑛𝑡𝑖𝑎𝑙_𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 

12      𝑤𝐴
𝑛 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑤𝑒𝑖𝑔ℎ𝑡  

13      point_state=0 

 

  Output:   𝑀   → 𝑝𝑜𝑖𝑛𝑡 𝑀𝑎𝑝  , 𝑃 → 𝐺𝑜𝑙𝑏𝑎𝑙 𝑀𝑜𝑑𝑒𝑙 
 

Algorithm 5_Kernel 3: Remove unstable point  

Input: P ← global Model, arrays contains 3D 

point cloud p, confidence counter 𝐶𝑐, average 

weight 𝑊𝐴, and point_state (Stable, Unstable) 

with length s 

M← point Map, mapping of [x, y] and pointID 

for 𝑢𝑘 with length s             

 

1 𝑡𝑖𝑑 = 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 ∗ 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 +
𝑡ℎ 𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 

2 𝒊𝒇 𝑡𝑖𝑑 > 𝑠 do 

3        𝑒𝑡𝑢 𝑛 

4 𝒊𝒇  𝑝𝑜𝑖𝑛𝑡_𝑠𝑡𝑎𝑡𝑒 = 0 

5     Set P {𝑝𝑖
𝑛[𝑡𝑖𝑑],     𝐶𝐶

𝑛[𝑡𝑖𝑑],
 𝑤𝐴

𝑛[𝑡𝑖𝑑] ,   𝑝𝑜𝑖𝑛𝑡𝑠𝑡𝑎𝑡𝑒} = −1       
6    Set  𝑀𝑥[𝑡𝑖𝑑], 𝑀𝑦[𝑡𝑖𝑑] = −1 

Output:   𝑀   → 𝑝𝑜𝑖𝑛𝑡 𝑀𝑎𝑝  , 𝑃 →
𝐺𝑜𝑙𝑏𝑎𝑙 𝑀𝑜𝑑𝑒𝑙 

 

Algorithm 3 Kernel 1: Parallel linear search 

Input:   M← point Map, mapping of [𝑀𝑥, 

𝑀𝑦] and pointID for 𝑢𝑘 with length s 

 𝑢𝑘  (𝑢𝑥
𝑘 , 𝑢𝑦

𝑘 ) ← project world coordinates to 

co-visible keyframe 

 L← 𝑢𝑘   𝑙𝑒𝑛𝑔𝑡ℎ 

 

1 𝑡𝑖𝑑 = 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 ∗ 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 +
𝑡ℎ 𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 

2 𝒊𝒇 𝑡𝑖𝑑 > 𝐿 do 

3        𝑒𝑡𝑢 𝑛 

4 𝐟𝐨𝐫 𝒊 = 0 → 𝐿:  
5        𝒊𝒇 𝑢𝑥

𝑘[𝑡𝑖𝑑] = 𝑀𝑥[𝑡𝑖𝑑] && 𝑢𝑦
𝑘[𝑡𝑖𝑑] =

𝑀𝑦[𝑡𝑖𝑑]:   

6              𝑝𝑜𝑖𝑛𝑡𝐼𝐷𝑖𝑛𝑑𝑒𝑥[𝑡𝑖𝑑] = 𝑖  
7             Break 

8      𝒆𝒍𝒔𝒆: 
9              𝑝𝑜𝑖𝑛𝑡𝐼𝐷𝑖𝑛𝑑𝑒𝑥[𝑡𝑖𝑑] = −1  

 

 Output:    𝑝𝑜𝑖𝑛𝑡𝐼𝐷𝑖𝑛𝑑𝑒𝑥   ∶
𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑀 𝑜 − 1 
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Table 2. Specs comparison between Tesla V100 and 

Tesla M10 [30] 

 NVIDIA Tesla 

V100 PCIe 32 

GB 

NVIDIA 

Tesla M10 

Technical info 

Boost clock speed 1380 MHz 1306 MHz 

Core clock speed 1230 MHz 1033 MHz 

Floating-point 

performance 

14,131 gflops 4x 1,672 

gflops 

Manufacturing 

process 

technology 

12 nm 28 nm 

Pipelines 5120 4x 640 

Texture fill rate 441.6 GTexel /s  4x 52.24 

GTexel / s 

billion / sec 

Thermal Design 

Power (TDP) 

250 Watt 225 Watt 

Transistor count 21,100 million 1,870 million 

Memory 

Maximum RAM 

amount 

32 GB 4x 8 GB 

Memory 

bandwidth 

897.0 GB / s 4x 83.2 GB / s 

Memory bus 

width 

4096 Bit 4x 128 Bit 

Memory clock 

speed 

1752 MHz 5200 MHz 

Memory type HBM2 GDDR5 

5.2 Experimental results  

Experiment 1:  

In Experiment 1, the execution time per frame is 

evaluated using different multicore heterogeneous 

systems. Tesla V100 on a Linux operating system and 

Tesla M10 on a virtualized Windows 10 machine are 

used. This experiment confirms that the proposed 

parallel implementation can reconstruct several 

frames in real-time through different configurations 

(high and low). 

In Fig.7, the evaluation was conducted using a 

different number of threads per block from 32 to 1024 

threads. Each GPU device has its architecture and 

limitations. In Fig. 7, the best performance of a 

parallel monocular 3D model reconstruction 

framework was using 256 thread blocks on Tesla 

V100. By contrast, the best performance was 

recorded in grad M10 with 128 thread blocks. Based 

on the execution time in Figs. 7, 8 illustrates the 

capacity of two devices to reconstruct frames in 1 s. 

Experiment 2: 

Experiment 2 is performed to measure the effect 

of using a different number of key frames in accuracy 

and execution time. As mentioned in [15], five key 

frames are used and obtained an acceptable result. 

However, we cannot evaluate the framework with 

more than five key frames because of the long 

execution time of serial implementation. In this 

experiment, the framework is tested on different key 

frames scattered among video frames, starting from 2 

to 9 key frames. 

The average root mean square error (RMSE) and 

the execution time for a single frame are calculated. 

In Fig. 9, the RMSE is slightly affected by increasing 

number of keyframes, and eight keyframes record the 

lowest error in 20 video frames. However, adding 

more keyframes increases frame processing and 

extends the execution time. Based on Fig. 9, accuracy 

is inversely related to execution time; whenever the 

number of keyframes increases, the RMSE decreases, 

and execution time prolongs. Using five keyframes is 

considered the middle of accuracy and execution time. 

6 Discussion 

The work in this paper presents the CUDA-

parallel implementation of monocular 3D 

reconstruction, which has been proposed in our 

previous study [14]. The framework aims to generate 

a smooth and accurate 3D point cloud from a 

sequence of monocular video frames containing 

existent moving objects. The framework is split into 

two stages using an unsupervised learning technique 

to estimate depth from a single RGB frame, camera 

position, and object motion. A complete 3D 

reconstruction scene is created at the second stage 

through frame-wise point cloud fusion. The first 

stage is performed in real-time, whereas the model 

runs at 30 FPS on advanced GPUs [10]. Most of the 

time is consumed at the second stage, which is 

executed in an extended time that reaches 15 min per 

frame, so it is unacceptable for real-time interactive 

applications.  

The main objective of this research is to improve 

time consumption to generate a 3D point cloud by 

using the CUDA platform on different advanced 

GPUs. The parallel implementation consists of three 

main kernels. The first kernel is used to search the 

point map M using a linear search algorithm. In the 

second kernel, the point cloud is added and updated 

in the global map.  In the third kernel, an unstable 

point is removed from maps. Table 3 illustrates the 

comparison between the average frame time in serial 

implementation through a parallel linear search 

(kernel 1) and the final execution time after kernels 2 

and 3 are applied using Tesla V100 GPU and M10 

device. 
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Figure. 7 The effect of using different number of threads blocks on total execution time 

 

 
Figure. 8 The effect of using different number of threads blocks on FPS 

 

 
Figure. 9 RMSE Vs Time using different keyframes 
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Table 3. Frame time in serial and GPU parallel 

implementation 

GPU 

Device 

Serial  Apply 

kernel 1 

Apply kernel 2 

and 3 

Tesla 

V100 

30 

minutes  

      31 

second  

0.039 second 

 

Tesla 

M10  

30 

minutes 

      48 

second  

0.35 second  

 

In Table 3, the proposed GPU parallel 

implementation of the monocular 3D model 

reconstruction framework significantly improves the 

execution time for a single frame. After kernel 1 is 

applied, the speed increases by 58× serial 

implementation on Tesla V100. NVIDIA Tesla V100 

is the most advanced GPU accelerator built to 

expedite AI, HPC, and graphics. Powered by 

NVIDIA Volta, the latest GPU architecture, namely, 

Tesla V100 offers the performance of up to 100 CPUs 

in a single GPU. However, it is expensive and not 

popularly used. Therefore, we evaluate our 

implementation on different GPU devices, which are 

more popular and flexible to virtualize the specs as 

needed. The parallel framework on the Tesla M10 

device obtains 37.5× speed compared with the serial 

implementation. After kernel 1 is applied, time is still 

inapplicable to real-time applications. Kernels 2 and 

3 improve the total execution time with an average of 

0.039 seconds per frame and 0.35 seconds per frame 

using Tesla V100 and Tesla M10 respectively. So, it 

is acceptable for real-time application. The strength 

of the proposed parallel implementation is the 

flexibility to be executed on different GPU devices 

with different specifications and still maintains the 

time speedup.  

7 Conclusion and future work 

In this study, a CUDA-parallel implementation 

was illustrated to improve the total execution time of 

point cloud creation for the RGB frame in the 

monocular 3D reconstruction framework. The results 

showed that the proposed framework enhances the 

execution time which would be acceptable for real-

time applications. The serial implementation was 

subjected to performance analysis to evaluate the 

most time-consuming parts. As a result, three parts 

were chosen to complete parallelization, and the point 

map M was searched using a linear search technique. 

The point cloud in the global map was added and 

updated, and the unstable point was removed from 

maps. Two multicore heterogeneous systems were 

used to evaluate performance. The proposed parallel 

design was applied to successfully execute the 

framework in real-time. The parallel design was 

separated into two phases. First, each pixel was 

assigned to one thread to compute the linear search. 

The speedup reached 58× for every frame. Second, 

the point cloud was updated or inserted into the 

global map. The total time of parallel implementation 

was 0.03 seconds instead of 30 min of serial 

implementation.  

In future studies, the proposed framework could 

be used for real-time interaction applications, such as 

increased reality and application performance 

evaluation. Moreover, parallel implementation was 

adopted for mobile phones composed of a GPU 

device. 
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