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Abstract: This paper proposes a modified honey badger algorithm (MHBA) for solving the optimal power flow (OPF) 

problem. This problem is a highly non-linear, non-convex and complex optimization problem with several decision 

variables and constraints. The original honey badger algorithm (HBA) has the problem of trapping in local optima due 

to the loss of population diversity, especially in solving complex optimization problems. Therefore, the MHBA aims 

at sufficient improvement in finding the optimal solution and feasibility. Opposition-based learning strategy (OBL) is 

integrated with the MHBA to preserve the diversity of the population and enhance the convergence toward the optimal 

solution. The effectiveness of the MHBA algorithm is evaluated on five objective functions of the OPF problem 

namely, total generation fuel cost minimization, active power and reactive power transmission losses minimization, 

voltage deviation and voltage stability enhancement. The performance of the proposed algorithm is tested and validated 

on the IEEE 30-bus test system. The proposed MHBA is compared with the HBA and other nature-inspired 

optimization algorithms reported in the literature. The results indicate that the proposed MHBA algorithm has the 

superiority to jump out of the local optimal and better convergence in solving the OPF problem. This is due to the 

strategy used in the algorithm which helps in maintaining the population diversity and provides a proper balance 

between exploration and exploitation. 

Keywords: Global optimization, Swarm intelligence, Nature-inspired algorithms, Optimization problem, 

Metaheuristic. 

 

 

1. Introduction 

The optimal power flow (OPF) problem of a 

power system studies the optimal power flow 

distribution that satisfies a given load and follows 

various operating constraints under the premise of a 

specific power grid structure. The constant increase 

in the demand for electrical energy has been a great 

challenge to the prevailing networks, to provide 

power to the consumer through an economically and 

efficient system. Therefore, solving the OPF problem 

is most important to assess the quality of the power 

system. The best operating condition of a power 

system can be achieved by adjusting the parameters 

of various control devices with respect to the 

constraints of a network [1].  

Several deterministic methods have been 

employed to solve the OPF problem with different 

objective functions, such as sequential quadratic 

programming, the simplex method, the interior point 

method and the Newton method [2]. However, the 

OPF is a highly non-linear, non-convex and complex 

optimization problem with several decision variables 

and constraints thus the deterministic methods fail to 

solve the OPF problem in a reasonable time.  

Metaheuristics are approximate methods 

applicable to various optimization problems [3, 4]. 

Many metaheuristics are inspired by natural 

phenomena, such as evolution theory, the collective 

behaviour of groups of animals, the laws of physics 

or the behaviour and lifestyle of human beings. 

Examples of these algorithms include particle swarm 

optimization (PSO) [5], ant colony optimization 

(ACO) [6], firefly algorithm (FA) [7], artificial bee 

colony (ABC) [8], grey wolf optimizer (GWO) [9],  
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Table 1. Nature-inspired algorithms employed for solving 

the OPF problem 

Algorithm FC APL RPL VD Lmax 

ABC [18] √ - - - - 

PSO [19]  √ - - - - 

PSO [20] √ - - - - 

PSO [21] √ - - - - 

GWO [22] √ √ √ - - 

DE [22] √ √ √ - - 

HHO [23] √ √ - - - 

SSA [24] √ √ - - - 

MFO [25] √ √ - - - 

PSO [26]  √ - - √ √ 

BBO [27] √ - - √ √ 

GSA [28] √ - - √ √ 

SSA [29] √ √ - √ - 

MBO [30] √ √ - √ - 

HHO [31] √ √ - √ - 

MVO [31] √ √ - √ - 

GOA [31] √ √ - √ - 

ABC [33] √ √ - √ √ 

FA [32] √ √ - √ √ 

DA [32] √ √ - √ √ 

ESCA [35] √ √ - √ √ 

MSA [32] √ √ - √ √ 

DSA [34] √ √ - √ √ 

WOA [36] √ √ - - - 

SCA [38] √ √ - √ - 

MSCA [38] √ √ - √ - 

EGA [37] √ √ - - √ 

BHBO [39] √ √ √ √ √ 

GWO [41] √ √ √ √ √ 

 

Harris hawk algorithm (HHO) [10]. Other 

metaheuristics have been developed based on the 

physical system, such as the gravitational search 

algorithm (GSA) [11] and Henry gas solubility 

optimization (HGSO) [12]. It is worth mentioning 

that there are several other non-nature inspired 

metaheuristics proposed in the literature, such as [13-

16]. however, this paper focuses on nature-inspired 

algorithms, which have shown superior skills in 

solving various optimization problems [17].  

Many nature-inspired algorithms have been 

employed to solve the OPF problem with various 

objective functions of the power system. In [18] an 

ABC algorithm has been applied to reduce the 

generation fuel cost and the obtained results were 

compared with other nature-inspired algorithms, such 

as PSO and ACO. According to [18], the ABC 

showed better results in minimizing the generation 

fuel cost than the other algorithms. In [19] and [20] a 

PSO algorithm has been proposed to minimize the 

generation fuel cost. However, a comparison with 

other optimization algorithms is not included in these 

papers. In [21], the Newton Raphson method has 

been used to initialize the population of the PSO 

algorithm. The proposed PSO algorithm has been 

used to minimize the generation fuel cost. The GWO 

and differential evolution (DE) algorithms [22] have 

been employed to minimize the generation fuel cost 

and active and reactive power losses. In other studies, 

several OPF objectives have been considered. The 

generation fuel cost and active power loss have been 

reduced by using the HHO algorithm [23], salp 

swarm algorithm (SSA) [24] and moth-flame 

optimization (MFO) [25].  In [26-28], the PSO, 

biogeography-based optimisation (BBO) and GSA 

were employed to solve OPF problems including fuel 

cost minimization, voltage profile improvement, and 

voltage stability enhancement. In [29-31] the sparrow 

search algorithm (SSA) and monarch butterfly 

optimization (MBO), grasshopper optimization 

algorithm (GOA), multi-verse optimizer (MVO) and 

HHO have been employed to reduce the generation 

fuel cost, active power transmission loss and improve 

the voltage profile by minimizing the voltage 

deviation. In [32] and [33-35] the generation fuel cost, 

active power loss, voltage deviation have been 

minimized and the voltage stability has been 

improved by using the FA, dragonfly algorithm (DA), 

moth swarm algorithm (MSA), ABC, DSA and 

efficient sine cosine optimization algorithm (ESCA). 

In [36], the whale optimization algorithm (WOA) has 

been applied to solve the OPF problem. The objective 

functions that have been considered include fuel cost 

reduction and active and reactive power loss 

minimization. In [37] an enhanced GA has been 

proposed to solve the OPF. Three objectives have 

been considered namely, minimizing the generation 

fuel cost, active power loss and enhancing the voltage 

stability of the power system. In [38], the SCA and 

modified SCA (MSCA) have been proposed to 

minimize the generation fuel cost, and active and 

reactive power loss and improve the voltage profile. 

In [35] an efficient sine cosine optimization 

algorithm (ESCA) has been proposed. In [39, 40, 41], 

five objectives namely, reduction of generation fuel 

cost, voltage deviation, active and reactive power 

losses and improvement of voltage stability have 

been optimized by using the black-hole optimization 

(BHBO) and GWO algorithm. Some of the studies 

hybridized different algorithms to solve the OPF 

problem, such as [42-44]. However, the OPF is 

highly non-linear, non-convex and complex 

optimization problem, thus this hybridization will 

lead to an increase in the complexity of the 

optimization process. Table 1. presents a summary of 

the nature-inspired algorithms that have been applied 

to solve the OPF problem with different objective 

functions.  
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Although the effectiveness of nature-inspired 

algorithms for solving optimization problems has 

been proven in different fields, the algorithm that 

obtained the best result in solving an optimization 

problem may not be able to achieve the same result in 

solving other optimization problems. This is due to 

the search behaviour used in the algorithm 

represented by the exploration and exploitation 

processes and the characteristics of an optimization 

problem. Therefore, the performance of an algorithm 

depends on the optimization problem under 

consideration. This encourages researchers to 

propose more nature-inspired optimization 

algorithms to solve the OPF problems.  

One of the recently proposed nature-inspired 

metaheuristics is the honey badger algorithm (HBA) 

algorithm, which is based on the foraging behaviour 

of honey badger in nature [45]. Its advantage includes 

performing a dynamic search behaviour to find the 

food source, which helps in maintaining the trade-off 

balance between exploration and exploitation. 

Another advantage of HBA, it has a few parameters 

to adjust compared to other recently proposed 

algorithms, such as the African vultures optimization 

algorithm (AVOA) [46], HGSO [11], cicada swarm 

optimization [47] and Coronavirus herd immunity 

optimizer (CHIO) [48]. Furthermore, a sensitivity 

analysis for the control parameters is not available for 

these algorithms. In general, the values of control 

parameters have a significant impact on the 

performance of an optimization algorithm. In [45], 

the HBA has been tested using benchmark functions 

with diverse properties and real-world engineering 

problems. According to [45], the HBA is superior to 

other metaheuristics proposed in the literature, 

among them, PSO [49], MFO [50], WOA [51], GOA 

[52] and HHO [10]. In solving real-world problems 

[45], the HBA has shown superior performance 

compared to the recently proposed metaheuristics [11, 

46, 47]. However, the convergence analysis 

presented in [45] showed that the HBA has a 

drawback of trapping in local optima especially in 

solving a complex optimization problem. Therefore, 

to enhance the ability of HBA to escape from local 

optima, this paper proposes a modified honey badger 

algorithm (MHBA) which integrated with 

opposition-based learning strategy (OBL) [53] to 

maintain the population diversity and produce 

feasible solutions during the search process. 

The proposed MHBA is validated with the OPF 

problem under different objective functions, namely 

generation fuel cost minimization, active power and 

reactive power transmission losses minimization, 

voltage deviation and voltage stability enhancement. 

Furthermore, both equality and inequality constraints 

in the electric power system have been considered, 

and the results obtained demonstrate that the 

proposed method provides effective and remarkable 

results for solving the OPF problem. 

The main contributions of this paper are as 

follows: 

 

• Solving the OPF problem using MHBA with 

different objective functions. 

• Mitigating the drawbacks of the original HBA 

by improving the search process. 

• Testing the effectiveness of the proposed 

MHBA algorithm on the IEEE 30-bus system 

for different single objective functions with 

respect to the equality and inequality constraints 

of the network. 

• Comparing the results with other nature-inspired 

optimization metaheuristics. 

 

The organization of the paper is as follows: section 2 

and section 3 describe the mathematical model of the 

OPF problem and the HBA algorithm, respectively. 

The proposed MHBA is described in section 4. 

section 5 presents the application of MHBA to the 

OPF problem. This is followed by a discussion on the 

simulation results in section 6. Finally, the conclusion 

is in section 7. 

2. Formulation of the optimal power flow 

problem 

The OPF problem is formulated through a 

mathematical model composed of objective functions 

related to a set of various equality and inequality 

constraints of the electrical network. The goal is to 

optimize a set of decision variables to satisfy different 

technical, economic, operational, and environmental 

objectives, such as the generation fuel cost, and 

power losses associated with energy transport. In 

general, an optimization problem can be represented 

as shown in Eq. (1). 

 

Minimize𝑓(𝑥, 𝑠) 

subject to {
𝑒𝑞(𝑥, 𝑠) = 0
𝑖𝑒𝑞(𝑥, 𝑠) ≤ 0

                              (1) 

 
where f (x, s) is the objective function, eq(x, s) is the 
set of equality constraints, ieq(x, s) is the set of 
inequality constraints, x and s are the set of control 
(independent) and state (dependent) variables, 
respectively. 
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2.1 Decision variables 

In the OPF problem, the decision variables are 

classified into control and state variables. The control 

variables are 24 variables, including active 

power of generators excluding the generator at 

the slack bus, the generator bus voltages, reactive 

power generation of shunt capacitors, and tap 

position of transformers [54]. The control variables 

are 24, that is, the active power output of five 

generators (except the balance node), six generation 

bus voltages, four transformer tap positions, and nine 

injected reactive power of shunt compensator [54]. 

The set of control variables formulations can be 

represented as x = [PG,2 … PG,NG, VG,1 … VG,NG, Q1 … 

QC,NC, T1 … TNT], where PG is the active power 

generation at the generator buses (PV) except at the 

slack bus and NG is the number of generators. VG 

represents the generator voltage and T is the tap-

settings of transformers, where NT is the number of 

tap transformers. QC is the shunt VAR compensation, 

where NC is the number of compensator units [39]. 

The state variables are calculated from the control 

variables. These variables can be represented as a 

vector u = [PG,1, VL,1…VL,NL, QG,1…QG,NG, Sl,1… Sl,nl], 

where NL, and nl are the number of load buses (PQ), 

and the number of transmission lines, respectively. Sl 

is the transmission line flow. The state of the 

electrical power system is completely determined by 

the values of these variables  [39]. 

2.2 Objective function 

The OPF problem includes several objective 

functions described as follows. 

2.2.1. Minimizing the generation fuel cost (FC) 

This objective function includes minimizing the 

total fuel cost of generation. The mathematical model 

is formulated as in Eq. (2) [39]. 

 

𝑓𝑐𝑜𝑠𝑡(𝑋) = ∑(𝑎𝑖 + 𝑏𝑖𝑃𝐺,𝑖 + 𝑃𝐺,𝑖
2

𝑁𝐺

𝑖=1

)           (2) 

 
where fcost(X) is the total fuel cost function ($/hr), ai, 
bi, ci is the cost coefficients of generator i and NG is 
the number of generators. 

2.2.2. Minimizing the active power transmission loss 

(APL) 

In a power system, the total power generated by 
all generators is supplied to loads through 
transmission lines.  The transmission of energy cause 
energy loss thus minimizing the active power loss in 

the transmission lines is considered an important 
objective which can be expressed as shown in Eq. (3) 
[39]. 
 

𝑃𝑙𝑜𝑠𝑠 = ∑𝑃𝐺,𝑖 − ∑𝑃𝐷,𝑖

𝑁𝐵

𝑖=1

𝑁𝐵

𝑖=1

                          (3) 

 
where PD is real load demand and NB denotes the 
total number of buses. 

2.2.3. Minimization of reactive power transmission loss 

(RPL) 

The voltage stability margin of a power system 
depends on the availability of reactive power to 
support the transportation of real power from sources 
to sinks. This can be achieved by minimizing the total 
VAR loss as shown in Eq. (4) [39]. 

 

𝑄𝑙𝑜𝑠𝑠 = ∑𝑄𝐺,𝑖 − ∑𝑄𝐷,𝑖

𝑁𝐵

𝑖=1

𝑁𝐵

𝑖=1

                      (4) 

2.2.4. Improving the voltage profile  

In general, the voltages are bounded between 
upper and lower limits within the inequality 
constraints. The goal is to determine the control 
variables that improve the voltage profile by 
minimizing the VD at the PQ buses. Thus, this 
objective function can formulate as shown in Eq. (5) 
[39]. 

 

𝑉𝐷 = ∑|(𝑉i − 1.0)|

𝑁𝐿

𝑖=1

                         (5) 

2.2.5. Voltage stability enhancement 

Voltage stability is provided if a system can 
constantly maintain an acceptable voltage, at all 
system buses, under normal operating conditions, 
after an increase in load, after a configuration change, 
or when the power system is subject to voltage 
collapse. The system stability index (L) is employed 
to detect voltage instability [55]. Hence, the voltage 
stability of the power system can be enhanced by 
minimizing the L values at every bus of the system 
and consequently the global power system Lmax. This 
value varies between 0 (no-load case) to 1 maximum 
loading point (voltage collapse case), Thus, the 
objective function can be formulated as shown in Eq. 
(6) [39]. 

 
𝐿𝑚𝑎𝑥 = max(𝐿𝑖)       𝑖 = 1,2, … , 𝑁𝐿                 (6) 
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2.3 Constraints 

The parameters of a power system must meet 
certain constraints to operate in a safe and stable 
environment. These constraints include inequality 
and equality constraints.  

2.3.1 Equality constraint 

The equality constraint is given by the load 

balance equations, that is, those obtained by imposing 

active and reactive power balance constraints on all 

nodes of the system. These equality constraints are 

formulated as shown in Eqs. (7, 8), respectively [39]. 
 
Real power constraints 

𝑃𝐺,𝑖 − 𝑃𝐷,𝑖 − 𝑉𝑗 ∑[𝐺𝑖𝑗 𝑐𝑜𝑠( 𝜃𝑖𝑗) + 𝐵𝑖𝑗 𝑠𝑖𝑛( 𝜃𝑖𝑗)]

𝑁𝐵

𝑗=𝑖

 

= 0        (7) 
 
Reactive power constraints 

𝑄𝐺,𝑖 − 𝑄𝐷,𝑖 − 𝑉𝑖 ∑𝑉𝑗[𝐺𝑖𝑗 sin(𝜃𝑖𝑗)             

𝑁𝐵

j=i

− 𝐵𝑖𝑗 𝑐𝑜𝑠( 𝜃𝑖𝑗)] = 0               (8) 

 
where Gij and Bij are the conductance and susceptance, 
respectively, between bus i and bus j. θij = θi - θj is the 
phase angle between θi and θj.  

2.3.2. Inequality constraint 

The inequality constraints reflect the operating 
limits imposed on the devices and the power 
electrical system. These constraints include generator 
voltage limits, active power generated at the slack bus, 
generated reactive power, transformer constraints, 
shunt VAR compensator constraints and load bus 
voltage as shown in Eqs. (9-14), respectively [39]. 
 

Generator voltage limits 

𝑉𝐺,𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐺,𝑖 ≤ 𝑉𝐺,𝑖

𝑚𝑎𝑥       𝑖 = 1,… ,𝑁𝐺       (9) 

 
Active power generated at slack bus 

𝑃𝐺,𝑖
𝑚𝑖𝑛 ≤ 𝑃𝐺,𝑖 ≤ 𝑃𝐺,𝑖

𝑚𝑎𝑥        𝑖 = 1,… ,𝑁𝐺          (10) 

 
Generated reactive power 

𝑄𝐺,𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐺,𝑖 ≤ 𝑄𝐺,𝑖

𝑚𝑎𝑥       𝑖 = 1,… ,𝑁𝐺        (11) 

 
Transformer constraints 

𝑇𝑖
𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑖

𝑚𝑎𝑥       𝑖 = 1,… ,𝑁𝑇          (12) 
 

Shunt VAR compensator constraints 

𝑄𝐺,𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐺𝐶,𝑖 ≤ 𝑄𝐺,𝑖

𝑚𝑎𝑥       𝑖 = 1,… ,𝑁𝐶    (13) 

 
Load bus voltage 

𝑉𝐿,𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐿,𝑖 ≤ 𝑉𝐿,𝑖

𝑚𝑎𝑥       𝑖 = 1,… ,𝑁𝐶          (14) 

3. The honey badger algorithm 

This section presents the mathematical model of 

the HBA. Like any other population-based 

metaheuristic, the HBA algorithm starts with the 

initialization of candidate solutions which are 

randomly distributed in the search space. The 

position of each candidate solution is represented as 

a vector, Xi = ( x1, x2, · · · , xD) in D dimension. Each 

solution is calculated as shown in Eq. 15. 

 

𝑋𝑖  =  𝐿𝐵 + 𝑟1  × (𝑈𝐵 −  𝐿𝐵);  

𝑖 =  1,2, … ,𝑁         (15) 

 

where N is the number of the solutions in the search 

space (population size). LB and UB are the lower and 

upper boundaries, respectively, of the search space. r1 

is a random number in interval [0, 1]. The main 

search process of the HBA is divided into two phases, 

namely the digging (exploration) and honey 

(exploitation) phases.  These processes are performed 

to update the position of the honey badger and 

generate new solutions. 

3.1 Digging phase  

The digging phase is simulated based on the 

Cardioid motion and formulated in Eq. (16). 

 
𝑋𝑛𝑒𝑤  =  𝑋𝑝𝑟𝑦  +  𝐹 × 𝛽 × 𝐼 × 𝑋𝑝𝑟𝑦

     +𝐹 × 𝑟2 × 𝛼 × 𝑑𝑖 × |cos(2𝜋𝑟3)

× [1 − cos(2𝜋𝑟4)]| ;  𝑖 =  1,2,… ,𝑁

        (16) 

 

where r2, r3, and r4 are three different random 

numbers in the interval [0,1]. Xprey represents the 

location of the prey in the search space which is the 

best solution found so far. β ≥ 1 represents the ability 

of the honey badger to get food. In the digging phase, 

a honey badger heavily relies on smell intensity, I, of 

prey, the distance between the prey, Xprey, and honey 

badger, 𝑑𝑖  = 𝑋𝑝𝑟𝑒𝑦 − 𝑋𝑖 , and time-varying search 

influence factor α. The smell intensity is determined 

according to the concentration strength of the prey 

(location of prey), S, and distance between the prey 

and ith honey badger. The motion is proportional 

to the smell and given by inverse square law [56] as 

shown in Fig. 1 and is defined by Eq. (17). 

 

𝐼𝑖  =  𝑟5 ×
𝑆

4𝜋𝑑𝑖
2      ; 𝑟5 ∈ [0,1]

𝑆 = (𝑋𝑖 − 𝑋𝑖+1)
2

                 (17) 
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Figure. 1 Inverse-square law [45] 

 

The search direction is changed based on the 

value of a flag F, to explore the search space 

rigorously. The flag F is calculated using Eq. (18).  

 

𝐹 = {
1       𝑖𝑓   𝑟6 ≤ 0.5 
−1                  𝑒𝑙𝑠𝑒

; 𝑟6 ∈ [0,1]        (18) 

 

The exploration and exploitation are balanced using 

the density factor (α) that is defined as shown in Eq. 

(19). 

 

𝛼 = 𝐶 × exp (
−𝑡

𝑡𝑚𝑎𝑥
)                     (19) 

 

where t is the current iteration number, tmax is the 

maximum number of iterations. C is a constant ≥ 1  

3.2. Honey phase 

The honey phase simulates the behaviour of a 

honey badger when it follows the honeyguide bird to 

reach the beehive, as shown in Eq. (20).  

 
𝑋𝑛𝑒𝑤  =  𝑋𝑝𝑟𝑦  +  𝐹 × 𝑟7 × 𝛼 × 𝑑𝑖 ;   

𝑟7 ∈ [0,1]                 (20) 

4. Modified honey badger algorithm 

(MHBA) 

Although the HBA algorithm has the advantages 

of dynamic searchability, it has a drawback of 

trapping in local optima due to the population 

diversity loss, especially, in solving a complex 

optimization problem. In this context, this paper aims 

to improve the original HBA by maintaining the 

population diversity during the search process. In the 

proposed MHBA, the search process has been 

improved by maintaining the diversity of the 

population of the badgers. This leads to better 

convergence toward the global optima. The major 

change to the original HBA is the OBL strategy is 

deployed to preserve the diversity of candidate 

solutions and improve the convergence of the original 

HBA. This also ensures efficient searching of the 

whole search space. 

The OBL strategy [53] has been widely used to 

generate solutions with better diversity. In the OBL 

strategy, a solution located in the opposite direction, 

𝑋,̌ of a candidate solution, 𝑋 is calculated to explore 

more promising regions of the search space. The 

solution 𝑋,̌  is calculated as shown in Equation (21) 

[53]. 

 

�̌� = 𝑙𝑏⃗⃗  ⃗ + 𝑢𝑏⃗⃗ ⃗⃗ − 𝑋                          (21) 
 

where ub and lb are upper and lower bounds, 

respectively. The OBL strategy has been applied in 

several studies to initialize a population of solutions 

[57-61]. In this paper, the OBL strategy has been used 

to maintain population diversity during the search 

process. This prevents the MHBA algorithm from 

trapping in local optima and achieving a feasible 

solution for the OPF problem. In the proposed 

MHBA, the new solutions are generated using Eqs. 

(16,20), as described in section 3. However, at each 

iteration, the best fitness value, fprey,t of the Xprey   

achieved at the current iteration, t, is compared with 

fprey,(t-1) value achieved at the previous iteration, t-1. If 

the value of fprey is never changed for k number of 

iterations (k is set to two in this paper), the OBL 

strategy will be partially performed on the first n 

worst solutions (n is set to 10 in this paper). In this 

way, the feasible solution achieved so far will not be 

lost and the worst solutions will be replaced with new 

solutions. This process helps in improving the 

exploration process and preserves the trade-off 

balance between exploration and exploitation. 

5. Application of MHBA to the OPF problem 

This section presents the step-by-step 

implementation of the MHBA in solving the OPF 

problem. Various steps involved in solving the 

optimal power flow problem using the MHBA are 

presented in the flowchart shown in Fig. 2. 

The proposed MHBA algorithm for solving the OPF 

problem is summarized as follows: 

1. Load the power system data. 

2. Initialize the N population of solutions Xi; i = 1, . . ., 

N. 

3. Evaluate the position Xi, of each honey badger by 

using an objective function of the OPF problem  

4. Save the best solution, Xprey and the best fitness 

value fprey. 

5. Update the position of a honey badger, Xnew using 

Eqs. (16-20) and calculate their fitness values. 

Sphere
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badger

I/4

I/9

3r
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r
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Figure. 2 Processes of HBA in solving the OPF problem 

on the IEEE 30-bus system 

 

 
Figure. 3 IEEE 30-bus system [62] 

6. Compare fprey,t with fprey,t-1. If fprey,t is equal to fprey, and 

k = 2 perform the OBL strategy on the k worst 

solutions. 

7. Replace the worst solutions with the solutions �̌�. 

8. If the termination condition is not met, go back to 

step 5, otherwise, STOP. 

6. Results and discussion 

The performance of the proposed MHBA has 

been validated by solving the OPF problem with 

different objective functions which include, 

minimization of the generation fuel cost of the power 

system and minimization of active and reactive 

transmission line losses, VD and enhancing the 

voltage stability of the system. The experiments have 

been carried out on the IEEE 30-bus system. The 

IEEE 30-bus system consists of six generator buses 

(buses 1, 2, 5, 8, 11 and 13), 24 load buses, four 

variable tap transformers (6–9, 6–10, 4–12 and 27–

28), 41 transmission lines and two shunt reactors 

(buses 10 and 24). The information on the 30 IEEE 

buses system is taken from [39]. Fig. 3 shows the one-

line diagram of the IEEE 30-bus system. 

The results obtained by the MHBA are compared 

with the results found by HBA in solving the OPF 

problem with different objectives functions, namely 

fuel cost minimization, minimization of active and 

reactive power transmission line losses, minimization 

of VD, and enhancement of the voltage stability. 

Each algorithm is executed 30 times for each 

objective function. The executions have ended after 

performing 500 iterations. The parameters of the 

HBA algorithm are set as recommended by its 

respective authors [45]. The BHA and MBHA 

optimization algorithms were compared based on the 

mean, standard deviation (STD), and best and worst 

fitness values obtained. Table 2 shows the best results 

obtained by the HBA and MHBA over 30 runs in 

optimizing each objective function. Due to the 

restricted number of pages, the values of control 

parameters obtained are not included.  

In Table 2 the values in bold represent the best 

fitness values achieved in solving each objective 

function, namely generation fuel cost (FC), active 

transmission line loss (APL) and reactive 

transmission line loss (RPL), VD and Lmax. It is 

worth mentioning that the negative and positive value 

of reactive power represents the condition operating 

of the power system. the generator can inject 

(positive) or absorb (negative) reactive power [63]. 

The MHBA shows the global optima value at 

799.074 $/hr for generation fuel cost. For minimizing 

the APL and RPL, the MHBA has a lower value of  
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Table 1. The best fitness values for each objective 

function were achieved by using the MHBA and HBA 

algorithms over 30 runs. 

O
b

je
ct

iv
e 

A
lg

o
ri

th
m

 

Mean STD Best Worst 

FC 

($/hr) 

HBA 800.187 1.420 799.181 804.727 

MHBA 799.304 0.518 799.074 802.003 

APL 

(MW) 

HBA 3.1186 0.2911 2.8685 3.8790 

MHBA 2.9252 0.0559 2.8659 3.0929 

RPL 

(MVAR) 

HBA -22.345 2.507 -20.200 -11.923 

MHBA -23.886 0.215 -24.262 -23.420 

VD 

(pu) 

HBA 0.1096 0.016 0.0863 0.1461 

MHBA 0.1000 0.0078 0.0861 0.1133 

Lmax 
HBA 0.1043 0.002 0.096 0.1086 

MHBA 0.1031 0.0016 0.096 0.1065 

 

 
Figure. 4 The convergence of the MBHA and BHA in 

minimizing the generation fuel cost 

 

 
Figure. 5 The convergence of the MBHA and BHA in 

minimizing the active power transmission loss 

 

2.8659 MW and -24.262 MVAR, respectively. The 

MHBA achieved a minimum VD value at 0.0861 and 

similar Lmax values pu at 0.096. Based on the results,  

 

 
Figure. 6 The convergence of the MBHA and BHA in 

minimizing the reactive power transmission loss 

 

 
Figure. 7 The convergence of the MBHA and BHA in 

minimizing the VD 

 
Figure. 8 The convergence of the MBHA and BHA in 

minimizing the Lmax. 

 

it is seen that the proposed MHBA provides superior 

results for solving the OPF problem with different 

objectives compared to the HBA. The convergences 

of MHBA and HBA in minimizing the FC, APL, RPL, 

VD and Lmax, are illustrated in Figs. 4-8.  

It can be observed from Figs. 4-8 that the 

proposed MHBA algorithm achieved better 

convergence compared to the HBA. This is due to the 

infeasible solutions being killed when it is not 

improved after a certain number of iterations and the 

OBL strategy prevents the homogeneous state of the 

population by producing new solutions. To measure 

the diversity of the population during the  
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Figure. 9 The diversity of the population with the 

iteration obtained by the MBHA and BHA in minimizing 
the FC 

 

 
Figure. 10 The diversity of the population with the 

iteration obtained by the MBHA and BHA in minimizing 
the APL 

 

 
Figure. 11 The diversity of the population with the 

iteration obtained by the MBHA and BHA in minimizing 
the RPL 

 

optimization process, the diversity measure [64] has 

been used. Where the higher value indicated better 

diversity. Figs. 9-13 show the diversity of the 

population at each iteration obtained by MHBA and 

HBA in optimizing each objective function of the 

OPF problem.  

In Figs. 9-13, the connected and disconnected 

lines represent the diversity of population during the 

iterations obtained by the MHBA and HBA, 

respectively in optimizing each objective function.  

 

 
Figure. 12 The diversity of population with the iteration 
obtained by the MBHA and BHA in minimizing the VD 

 

 
Figure. 13 The diversity of the population with the 

iteration obtained by the MBHA and BHA in minimizing 

the Lmax 

 

According to the values of diversity, the MHBA 

algorithm has achieved higher diversity for the 

solutions in minimizing the FC, APL, RPL and VD. 

This is due to the search behaviour of MHBA that 

maintains the population diversity during the search 

process. In minimization of the Lmax value, both 

MHBA and HBA achieved almost the same diversity 

for the solutions.  

To verify the effectiveness of the MHBA 

algorithm in solving the OPF problem, it has been 

compared with other optimization algorithms 

reported in the literature, namely, PSO [26, 42, 65], 

GWO [22, 41], ABC [33], SCA [38], HHO [31], 

EGA [37], SA [66], DE [67], BHBO [47], GSA [28], 

BHBO [39], DSA [34], BBO [34] algorithms. In this 

comparison, the five objectives, fuel cost 

minimization, minimization of active and reactive 

power transmission line losses, minimization of VD, 

and enhancement of the voltage stability have been 

considered. Tables 3-7 show the best results obtained 

by each algorithm in optimizing each objective 

function. 
In Table 3, the minimum generation fuel cost 

obtained by the MHBA is (799.073 $/hr), which is 
0.17%, 0.08%, 0.70%, 0.13%, 0.17% lower than PSO  
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Table 2. Best generation fuel cost obtained by each 

algorithm 

Algorithm Generation fuel cost ($/hr) 

FC APL RPL VD Lmax 

MHBA 799.073 8.626 3.902 1.843 0.116 

PSO [26] 800.410 - - 0.877 0.130 

GWO [41] 799.7005 8.787 -0.735 1.36 0.129 
ABC [33] 800.660 9.0328 - 0.9209 0.1381 

SCA [38] 800.102 9.063 - 2.083 - 

HHO [31] 804.141 7.97 - 0.391 - 

 
Table 3. Best active power losses obtained by each 

algorithm 

Algorithm Active power transmission loss (MW) 

FC APL RPL VD Lmax 

MHBA 967.10 2.87 -18.98 2.0486 0.1167 

PSO [65] 954.34 3.32 - - - 

ABC [33] 967.68 3.11 - 0.90 0.14 

EGA [37] 967.86 3.20 - - - 

SCA [38] 966.79 2.94 - 1.82 - 

HHO [31] 915.09 4.56 - - - 

 
Table 4. Best reactive power losses obtained by each 

algorithm 

Algorithm Reactive power loss minimization 

(MVAR) 

FC APL RPL VD Lmax 

MHBA 967.540 3.050 -24.16 1.066 0.127 

PSO [42] 966.95 2.91 -23.76 0.91 0.13 

SA [66]  799.45  5.13  -20.34  0.985 -  

DE [67] 799.2891  6.44  -21.56  1.85 -  

BHBO 

[39] 
924.14 3.75 -20.15 0.49 0.14 

GWO [41] 915.64 4.029 -21.16 1.846 0.12 

 
Table 5. Best VD value obtained by each algorithm for 

improving the voltage profile 

Algorithm Voltage deviation (pu) 

FC APL RPL VD Lmax 

MHBA 889.611 9.432 10.012 0.087 0.137 

PSO [26] 806.38 - - 0.089 0.14 

HHO [31] 849.806 5.79 - 0.1494 - 

SCA [38] 843.60 8.50 - 0.108 - 

MSCA 

[38] 
849.28 7.083 - 0.103 - 

GSA [28] 804.31 0.10 - 0.093 0.14 

 
[26], GWO [41], ABC [33], SCA [38], HHO [31], 
respectively. Compared to the initial case (901.952 
$/hr) the total fuel cost obtained by HBA is 
considerably reduced by 11.41% On the other hand, 
the worst result was achieved by HHO (804.141$/hr). 
The results demonstrate that the proposed algorithm 
is superior for minimizing the generation fuel cost 
compared to the other algorithms. This makes the 
solution obtained by the MHBA more economically 
than the solutions of other algorithms. The value of 
other objectives namely, minimization of active 

power, reactive power transmission line loss and VD, 
and enhancing the voltage stability, have been 
calculated using the best solution obtained by each 
algorithm in minimizing the generation fuel cost.  

Table 4 shows that the MHBA has achieved the 
minimum total active power transmission loss of 
(2.87 MW). This value is 13.55%, 7.72%, 10.31%, 
2.38%, 37.06% lower than PSO [65], ABC [33], 
EGA [37], SCA [38] and HHO [31] algorithms, 
respectively, and 50.71% lower than the initial case 
(5.8225 MW). The results reveal that the proposed 
algorithm showed the best results among others in 
terms of minimization of active power transmission 
loss. On the other hand, the highest total active power 
transmission losses value was obtained by HHO [31] 
(4.56 MW). The value of other objectives namely, 
minimization of generation fuel cost, reactive power 
transmission line loss and enhancing the voltage 
stability and voltage profile, has been calculated 
using the best solution obtained by each algorithm in 
minimizing the active power losses.  

In Table 5, the minimum reactive power loss 

value obtained by the MHBA at -24.16 MVAR is 

considered 80.94% lower than the initial case (-4.606 

MVAR). Furthermore, this value is 1.66%, 15.81%, 

10.76%, 16.60%, 12.42% lower than PSO [42], SA 

[66], DE [67], BHBO [47] and GWO [41] algorithms, 

respectively. On the other hand, the BHBO [39] 

showed the highest value at (-20.1522 MVAR). The 

fitness value of other objectives namely, 

minimization of generation fuel cost, active power 

transmission line loss and enhancing the voltage 

stability and voltage profile, has been calculated 

using the best solution obtained by each algorithm in 

minimizing the reactive power losses.  
Table 6 shows that the MHBA achieved the 

minimum VD value of 0.087 pu, which is 2.25%, 
41.61%, 19.44%, 15.53%, 6.45% lower than PSO 
[26], HHO [31], SCA [38], MSCA [38], GSA [28] 
optimization algorithms. This indicates that the HBA 
has a better voltage profile compared to the solutions 
obtained by other algorithms. Furthermore, the VD 
value of HBA is 92.43% lower than the initial case 
(1.1496 pu). The HHO has the worst VD value of 
(0.1494 pu). This value is slightly lower than the 
initial case which indicates that the solution of the 
HHA algorithm did not improve the voltage profile 
of the power system. The fitness value of other 
objectives has been calculated using the best solution 
obtained by each algorithm in minimizing the VD.  

In Table 7, the MHBA algorithms achieved the 

best result in minimizing the Lmax value of (0.096). 

This value is 44.28 lower than the initial case 

(0.1723) and 23.20%, 18.64%, 17.95%, 22.58%, 

2.04% lower than the PSO [26], GWO [41], BHBO  
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Table 6. Best Lmax value obtained by each algorithm for 

stability enhancement 

Algorithm Voltage stability enhancement 

FC APL RPL VD Lmax 

MHBA 878.0918 7.390 16.591 3.220 0.096 

PSO [26] 801.160 - - 0.961 0.125 

GWO [41] 800.664 9.214 2.132 1.8076 0.118 

BHBO 

[39] 
805.0087 8.426 7.239 1.59705 0.117 

DSA [34] 967.472 3.422 - - 0.124 

BBO [34] 917.360 4.950 - - 0.098 

 

[39], DSA [34], BBO [34] algorithms, respectively. 

The results indicate that the solutions of the HBA 

algorithm provide better stability compared to the 

solution of the other algorithms and the initial case. 

The worst Lmax value of (0.125) was obtained by PSO. 

The value of other objectives namely, minimization 

of generation fuel cost, active power, reactive power 

transmission line loss and enhancing the voltage 

profile, have been calculated using the best solution 

obtained by each algorithm in minimizing the Lmax.  

The results showed that the MHBA has a great 

ability in jumping out of local optima, which 

indicates the ability of the algorithm to explore the 

search space and to generate solutions with better 

diversity and convergence compared to the original 

HBA and other algorithms. 

7. Conclusion 

In this article, the MHBA algorithm has been 

proposed to improve the searchability of the original 

HBA for solving the OPF problem. The OBL strategy 

that has been used in the proposed MHBA, can 

strengthen the diversity of the population, and avoid 

getting stuck into a local optimum during the 

optimization process. The OPF problem is a highly 

non-linear, non-convex and complex optimization 

problem with several decision variables and equality 

and inequality constraints. Different objective 

functions were considered, namely minimization of 

generation fuel cost, minimization of active and 

reactive power transmission line losses, minimization 

of VD, and enhancing the voltage stability. The 

proposed MHBA algorithm has been tested on the 

IEEE 30-bus test system and evaluated based on the 

best solution obtained. Furthermore, the results for 

various objective functions of the OPF problem were 

compared with the original HBA and other 

optimization algorithms reported in the literature. 

The results demonstrated the superiority of the 

proposed algorithm in solving the OPF problem. The 

MHBA achieved promising results in optimizing 

each objective. This is due to the dynamic search 

strategy and effective search behaviour used in the 

algorithm represented by the proposed population 

update that maintains the population diversity and 

helps the algorithm to escape out of local optima. For 

future work, it is possible to test other recently 

proposed algorithms in solving the OPF problem. 

Furthermore, in real-world applications, usually, 

optimization problems tend to integrate several 

criteria, where two or more different objectives are 

taken together. Thus, proposing a multi-objective 

algorithm to solve the multi-objective OPF problem 

is recommended. 
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