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Abstract: Mobile sink-based sensor networks deployed in unattended environment are characterized by infrequent sink 

visits. In these applications, ensuring the survivability and confidentiality of data is important till it is collected by the 

sink. The data must also be prevented from collection by agents other than sink and leakage by neighbours. Data 

collection in unattended environment must also be energy efficient to prolong the life time of the network. This work 

proposes a novel Energy Aware Adaptive Compressive Sensing (EA-ACS) assisted secure data survivability scheme 

which is able to optimize energy consumption at cost of data accuracy level desired by applications. The solution 

introduces three novelties: adaptive compressive sensing for reducing the foot print of data and energy consumption 

during transmission, a novel bi party authentication scheme for secure data collection by sink and low energy overhead 

piggy bagging for data replication. Through performance in NS2, the proposed solution is found to provide at least 6% 

higher data survivability and 20% lower energy consumption compared to existing works. 
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1 Introduction 

Wireless sensor network deployed in unattended 

environment has battery powered sensors distributed 

over large geographical area. The sensors cache the 

sensed parameters locally till a mobile sink arrives to 

collect it [1]. Multi hop routing is generally restricted 

in these networks as it can deplete the energy of the 

sensing nodes [2]. Un-attended wireless sensor 

networks find application in military, forest and 

ocean monitoring [3]. These applications demand the 

network to be energy efficient with prolonged life 

time, the data to be secure, data to survive node 

failures to an extent and data from being collected by 

attackers.  

The concept of un-attended wireless sensor 

networks (UWSN) was first introduced in [4] to 

collect data in hostile environments. In these 

networks, sink visits the nodes at regular intervals to 

collect data. Since the data is cached in the node till 

sink collects it, attackers attempt to steal the data, 

corrupt it or even destroy nodes. Thus, UWSN’s has 

following core issues of data confidentiality, 

survivability and integrity.   

Cryptography can be used to secure the data and 

provide integrity. Survivability was ensured through 

distribution of encrypted data to multiple nodes. 

Many solutions have been proposed along the lines of 

cryptography and distribution [5]. Though the 

existing works have addressed the constraints of 

energy consumption in providing three requirements 

of confidentiality, survivability and integrity, very 

few have addressed the coverage of survivability. It 

denotes the volume of information that can be 

survived in the presence of failures. This paper 

addresses the problem of providing confidentiality, 

survivability and integrity satisfying the constraints 

of minimal energy consumption and maximum 

coverage of survivability. Since the data storage 

capability of node is limited, it becomes necessary to 

provide maximum survivability under constraints of 

data storage. Sensing nodes in UWSN are energy 

constrained and it is necessary to meet requirements 

of confidentiality, survivability and integrity with 
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constraint of minimal energy consumption. This 

work proposes an energy aware compressive sensing 

assisted secure data survivability scheme satisfying 

the constraints of minimal energy consumption and 

maximum coverage of survivability. 

Compressive sensing [6] with adaptive transform 

coding is applied to maximize the coverage of 

survivability. Transform coding in frequency 

transformation domain along with adaptive Gaussian 

transformation matrix is applied to provide data 

confidentiality. A novel low complexity bi party 

mutual authentication is enforced to secure data 

collection. Even if data is leaked due to compromise, 

it becomes difficult to reconstruct without the 

knowledge of the transform coding and 

transformation matrix parameters. Following are the 

novel contributions of this work. 

 

1. Adaptable Compressive sensing along with 

transform coding scheme to provide data 

confidentiality and increased coverage of 

survivability for varied level of data accuracy 

desired by the applications.  

2. Low complexity bi party mutual authentication 

for secure data collection. 

3. Frequent re-keying without necessity of key 

exchange between sensor nodes and sink to 

prevent from inference attacks. 

4. Data replication to far away nodes in energy 

efficient manner using piggy bagging. 

 

The solution presented in this work has strong 

resilience against data confidentiality attacks due to 

representation in compressed form and only sink can 

learn original data with its keys. Due to 

representation in compressed form, the volume of 

data that can be survived is also high in proposed 

solution. Due to bi-party authentication before data 

collection, the proposed solution is secure against 

data theft attacks. Since data is replicated, the 

proposed solution is also secure against node failure 

attacks. There are no existing data survivability 

schemes considering all the requirements of data 

confidentiality, data theft, node failures and higher 

survivability volume and the proposed solution is 

first of this kind. 

The rest of paper is organized as follows. Section 

2 details the existing works on data survivability in 

WSN. The proposed energy aware adaptive 

compressive sensing scheme for data survivability in 

WSN is detailed in section 3. Analysis of the various 

features of the proposed solution is presented in 

section 4.  The simulation results and comparison to 

existing works are detailed in section 5. Conclusion 

of the paper is presented in section 6.  

2 Related work 

Aliberti et al [7] proposed a data survivability 

solution for WSN based on susceptible (S), Infected 

(I) and susceptibles (S) model. The data is replicated 

to a minimum number of nodes probabilistically in 

the network. The replication is done in such a way to 

minimize the resource consumption for replication 

and fast collection time. The work considered only 

survivability and did not consider confidentiality and 

integrity of the data. Bahi et al [8] proposed an 

efficient distribution algorithm for ensuring the data 

survivability in the presence of attackers. The attack 

considered in this work is denial of service based 

node failures. By using two epidemic models for data 

distribution, the data is replicated in multiple places. 

But the work did not consider the energy and storage 

limits of the sensor nodes. Elsafrawey et al [9] 

proposed a cooperative hybrid self-healing scheme to 

ensure security and confidentiality of data in UWSN. 

Sensors generated hash based forward keys and 

distributed to each node. Each node encrypts the data 

using the hash key and split the encrypted data to 

parts using Reed Solomon (RS) code. The parts are 

then distributed to sensor whose attack vulnerability 

is less than a threshold. Each sensing node is 

evaluated in terms of their compromise tendency 

which creates a higher energy overhead and 

decreases the life time of the network. Sen et al [10] 

proposed a data confidentiality and survivability 

scheme using data replication and key distribution. 

The sensor node generates the key and encrypts the 

data. This encrypted data is distributed to neighbour 

nodes. The key used for encryption is split into shares 

using Shamir secret sharing algorithm and shares are 

distributed to sensor nodes. Sink collects the shares 

of keys and encrypted data from the nodes. Sink 

reconstructs the key and decrypt the data. Since no 

attacker can collect the keys distributed across many 

nodes, it becomes difficult to decrypt the data by the 

attacker. The energy consumption is very high in this 

approach due to communication of both data and key 

parts. Cheng et al [11] proposed a secure distribution 

scheme based on erasure coding. The data is 

encrypted using a forward secrecy key agreed with 

the sink. The encrypted data is split into shares and 

distributed to random two hop neighbours. Sink 

collect the shares and reconstructs the data. The 

method addressed reliability and confidentially but 

did not consider survivability. Lim et al [12] used 

fragmentation to ensure confidentially of the data. 

The sensor data is fragmented and distributed to other 

nodes. The approach distributed each fragment to 

several multi hops away. Though the approach was 

able to provide confidentially and attack resistance, 
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the energy consumption is very high in this work due 

to unconstrained multi hop routing. Choi et al [13] 

proposed a scheme for energy efficient fragment 

distribution by placing constraints on node selection 

for distribution. The nodes are located in the path and 

distribution is done among several nodes in same 

path. But the approach is vulnerable to guessing 

attacks. Santos et al [14] analysed different 

cryptographic algorithms in real sensor platforms and 

found that re-encryption based algorithms provided 

stronger defence against attacks but their 

computation cost is very high due to use of 

exponential operations. Liang et al [15] provided data 

confidentiality using regeneration codes. The data is 

encoded using regeneration codes and distributed as 

fragments to other nodes. With the use of 

regeneration codes, the data is secure against 

tampering and collusion attack. Tang et al [16] 

proposed secure data collection scheme called 

aggregation signature based trust routing. A light 

weight aggregation signature is calculated for 

aggregated data and used for integrity verification. 

The approach addressed integrity and did not 

consider confidentiality and survivability. Maia et al 

[17] proposed a distributed data storage protocol 

called ProFlex for heterogeneous wireless sensor 

nodes. The data distribution is handled by powerful 

nodes in the network. These powerful nodes use their 

long range communication to distribute data at far off 

locations, so that the data is secure against guessing 

attacks. But the method does not consider data 

confidentiality and compromise of the powerful 

nodes. Talari et al [18] proposed a distributed 

compressive data storage technique. Each node does 

a probabilistic broadcast of compressed samples of 

data. Data collector collects these compressed 

samples and reconstructs the original. There is no 

protection against any unauthorized data collection 

and data corruption in this work. Albano et al [19] 

used erasure coding with probabilistic data 

distribution to ensure data confidentiality. But the 

method has low coverage of survivability. Cuevas et 

al [20] proposed a data centric storage system with 

long term storage facility. The home node for storing 

data is found through a node specific localization 

algorithm and its frequency shifted every epoch. The 

solution supports anonymous storage but it does not 

address confidentiality and home node compromise. 

Zhang et al [21] proposed a distributed data storage 

and data collection scheme based on compressive 

sensing. Nodes broadcast their packets to 

neighbourhood locations. Sink samples only certain 

nodes using compressive sensing. The method does 

not support data confidentiality. Nguyen et al [22] 

proposed a data storage scheme based on 

compressive sensing on clustered wireless sensor 

network. Node sends their sensing measurements to 

their cluster heads. Cluster head does compressive 

sensing and stores the compressive sensing data. Sink 

collects the compressive sensing data and reconstruct 

the original data. Compressive sensed data can be 

collected by any attacker and reconstructed. The 

method does not provide any security against any 

unauthorized data collection. Gong et al [23] 

proposed a distributed data storage scheme, 

exploiting the spatiotemporal correlation between the 

sensor nodes. The sensor readings are collected from 

nodes in an energy efficient manner using 

compressive sensing. Though this method reduces 

the communication energy, there is no protection for 

data being collected by attacker. Alrashed et al [24] 

proposed a solution for data confidentiality in UWSN 

with use of forward secrecy and co-operative data 

distribution. Key evolution using forward hashing 

function is done to encrypt the data. The encrypted 

data is distributed with cooperative data distribution 

to randomize the distribution every time, so that it is 

secure against any guessing attacks. The method is 

insecure against node compromise attacks. Wang et 

al [25] addressed data confidentiality and integrity for 

multi-dimensional data from sensing nodes. The data 

is encoded using bucket partitioning scheme. The 

encoded data is then encrypted using sequential 

encryption. The advantage in this scheme is that any 

query can be executed on data without need for 

decryption. The scheme also ensures integrity of data. 

Though this work addressed data confidentiality, 

survivability is not considered. Monika et al [28] 

proposed a mobile sink based data gathering solution 

for under water sensor networks. Mobile sink stops at 

rendezvous points and collect data. The solution 

focussed only on energy efficiency in data collection 

without consideration for security and survivability. 

Goyal et al [29] proposed a clustering based data 

collection strategy where aggregated data at cluster 

heads are sent securely to sink. The data aggregation 

is protected and data collection is authenticated. But 

the solution did not consider survivability in case of 

cluster head failure. From the survey, it can be seen 

that there is no existing solution which meets 

requirements of confidentiality, survivability, 

integrity and increased coverage of survivability with 

constraint of minimal energy consumption in 

unattended wireless sensor networks. This paper 

work is designed to address this problem. 
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Algorithm 1: Transformation matrix generator 

Input: Length of signal N and number of measurements M, binary session key of 16 bits 

Output: Array of Sensing Matrix (M*N) 

𝑚 ≅ 𝑄/𝑃 

𝑚1 = integer value below m  

𝑚2 = integer value above m  

𝑁𝑚2 = 𝑄 − 𝑃 × 𝑚1 

𝑁𝑚1 = 𝑃 −  𝑁𝑚2 

𝑅𝑝𝑚2 =  𝑟1𝑎𝑛𝑑𝑟𝑀 

𝑅𝑝𝑚1 = [𝑟1 , 𝑟2 , 𝑟3, … 𝑟𝑀] −  𝑅𝑝𝑚2 

𝑟𝑜𝑤𝑡1 = {11 , 12 , 13, … 1𝑚1, 01 , 12 , 13, … 1𝑁−𝑚1} //𝑚1 ones and 𝑁 − 𝑚1 zeros 

𝑟𝑜𝑤𝑡2 = {11 , 12 , 13, … 1𝑚2, 01 , 12 , 13, … 1𝑁−𝑚2} //𝑚2 ones and 𝑁 − 𝑚2 zeros 

For k=1 to M do  

 If 𝑟𝑘  ∈  𝑅𝑝𝑚1 then 

  𝑟𝑜𝑤𝑘 =  𝑟𝑜𝑤𝑡1  

  𝑟𝑜𝑤𝑡1 = 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑠ℎ𝑖𝑓𝑡𝑟𝑜𝑤𝑡1𝑟𝑖𝑔ℎ𝑡𝑏𝑦𝑚1𝑡𝑖𝑚𝑒𝑠  

  𝑟𝑜𝑤𝑡2 = 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑠ℎ𝑖𝑓𝑡𝑟𝑜𝑤𝑡2𝑟𝑖𝑔ℎ𝑡𝑏𝑦𝑚1𝑡𝑖𝑚𝑒𝑠 

            Else 

𝑟𝑜𝑤𝑘 =  𝑟𝑜𝑤𝑡2 

  𝑟𝑜𝑤𝑡1 = 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑠ℎ𝑖𝑓𝑡𝑟𝑜𝑤𝑡1𝑟𝑖𝑔ℎ𝑡𝑏𝑦𝑚2𝑡𝑖𝑚𝑒𝑠  

  𝑟𝑜𝑤𝑡2 = 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑠ℎ𝑖𝑓𝑡𝑟𝑜𝑤𝑡2𝑟𝑖𝑔ℎ𝑡𝑏𝑦𝑚2𝑡𝑖𝑚𝑒𝑠 

 End if  

End for  

Diagonalblock,  𝐷𝑏 = {𝑟𝑜𝑤1
𝑇, 𝑟𝑜𝑤2

𝑇 , … . 𝑟𝑜𝑤𝑀
𝑇 }𝑇 

For i=1:16 

        If sessionkey(i)==1 

            Circular left shift 𝐷𝑏 

        Else 

           Circular right shift 𝐷𝑏 

        End  

end 

𝑀𝑠 = 𝑚𝑎𝑡𝑟𝑖𝑥𝑤𝑖𝑡ℎ𝑈𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐷𝑏𝑠 

End if  

allM = []  

L=𝑚1 

For i=1: 𝑚1 

𝑀𝑡𝑒𝑚𝑝 =  𝑀𝑠 

       For j=1:rows in 𝑀𝑡𝑒𝑚𝑝 

 𝑀𝑡𝑒𝑚𝑝[𝑗][𝐿] = 0  

       End  

       L=L-1; 

allM[i] = 𝑀𝑡𝑒𝑚𝑝  

End for  

Return allM 

 

3 Energy aware adaptive compressive 

sensing (EA-ACS) 

The proposed energy aware adaptive compressive   

sensing modifies the conventional compressive 

sensing algorithm with joint consideration of 

survivability and confidentiality to achieve two 

important goals of maximizing the coverage of 

survivability and minimizing the energy 

consumption. The proposed solution is based on 

adaptation of following two important functionalities 
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Figure. 1 Architecture of sensing node 

 

 
Figure. 2 Architecture of sink 

 

1. Compressive sensing  

2. Transform coding 

Compressive sensing (CS) is a technique to 

reconstruct the original signal from a fewer number of 

observations. By exploiting the sparsity in the Nyquist 

limit and CS allows to represent the compressed signal 

below Nyquist rate. The encoding is fast and it 

effectively preserves the structure of the signal due to 

use of non-adaptive linear projections. Compressive 

sampling acquires only the important information of 

the signal. Reconstruction of original signal is done 

from the projections using different optimization 

techniques. The compressive sensing is able to achieve 

higher data rate by sampling below the Nyquist rate. 

This is possible because of working on sparse 

representation of the signal. The compression 
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effectiveness is proportioned to sparsity in the signal.  

Let 𝑥  be the original signal and its sparse 

representation in some orthogonal basis is given as  

𝜑 = {𝜑1, 𝜑2, . . 𝜑𝑁} where the length of the signal 

is N. The signal 𝑥  can be represented in term of 𝐾  
linear combination of basis functions (𝐾 ≪ 𝑁) as 

 

𝑥 = ∑ ∅𝑛𝑖

𝐾

𝑖=1

𝜑𝑛𝑖                          (1) 

 

Where  𝜑𝑛𝑖  ∈ 𝜑 . Let ∅ = [∅1, ∅2, … . ∅𝑁]𝑇  be the 

vector of coefficients of the signal x in 𝜑. The random 

measurement of the signal 𝑥 is given as  

 
𝑦 = 𝜙∅

𝜙: 𝑀 × 𝑁
𝐾 < 𝑀 ≪ 𝑁

                              (2) 

 

𝜙  is the uniform random measurement matrix, 𝑦  is 

measurement vector of signal 𝑥. ∅ is the coefficients 

for the signal 𝑥 and 𝑀 = 𝑐𝐾(𝑐 < 1) is the number of 

measurements to be done for a successful 

reconstruction of the signal. The reconstruction can be 

done with higher accuracy when all entries of 𝜙  is 

taken from a Gaussian distribution. 

The transformation matrix used for compressive 

sensing is a randomly generated matrix which is 

agreed between the encoding and decoding side. When 

there is a mismatch in the transformation matrix 

between the encoding and decoding side, 

reconstruction fails or become erroneous. In this work, 

this feature of transformation matrix is used to provide 

data confidentiality. Instead of complete random 

generation of transformation matrix, a session key is 

used for generating the transformation matrix. This 

session key is generated by mutual authentication 

between sensor node and sink.  

Most compressive sensing methods use Gaussian 

random matrix as the sensing matrix. The Gaussian 

random matrix is denser due to non-zero non-integer 

values. It results in higher computational and storage 

complexity. Hardware implementation costs are also 

increased due to Gaussian random matrix. Work in 

[27] proposed a spare binary matrix as a replacement 

for Gaussian random matrix. Compared to Gaussian 

random matrix, the sparse binary matrix has a smaller 

number of non-zero values and due to it; the 

computation complexity, delay and storage 

requirements are reduced. In this work we adapt the 

work in [27] to generate the sparse binary matrix based 

on input key given as Transformation matrix generator 

(Algorithm 1). For M measurements in a signal of 

length N, a sensing matrix of dimension M*N is 

generated. The sensing matrix is generated as in Fig. 

3. The dimension of diagonal block is taken as
𝑄

𝑃
≅ 𝑚 . 

An integer value below and above m, 𝑚1 and 𝑚2 is 

assigned. The total rows in D are divided into two 

categories of rows with 𝑚1  ones and rows with 𝑚2 

ones. The number of rows with 𝑚2 ones is given as  

 

𝑁𝑚2 = 𝑄 − 𝑃 × 𝑚1                       (3) 

 

Where 𝐷 = 𝑄 × 𝑃. The number of rows with 𝑚1 ones 

is given as 

 

𝑁𝑚1 = 𝑃 −  𝑁𝑚2                          (4) 

 

Diagonal block D is formed by circular shifting of 

rows with 𝑚1  and 𝑚2  ones and stacking them. The 

diagonal block is placed in a zero matrix of dimension 

M*N to create the sensing matrix. This sensing matrix 

is taken as base matrix and for a iteration equals to 

continuous ones, each one is replaced with zero in all 

rows and a subsequent sensing matrix is generated. 

The session key needed as input for the transformation 

matrix generation is created through mutual 

authentication between sensor node and sink. The 

authentication process between sensing node and sink 

happens through a bi party mutual authentication 

process and key is generated at each end without 

communicating the key.  

Sensing node initiates authentication with the sink 

It calculates two numbers 𝑆1and 𝑆2 as  

 

𝑆1 = 𝑎. (𝑃𝑝𝑢𝑏 + ℎ1(𝐺). 𝑃)                       (5) 

 

𝑆2 = ℎ1([𝑒(𝑃, 𝑃)]𝑎 , 𝐺)⨁(𝐼𝐷, 𝑏)            (6) 

 

ID is the identifier of the sensing node. 

Where a, b are two random number. 𝑆1and 𝑆2 are sent 

to sink. Sink finds the ID of the sensing node as 

below 

 

𝑘 = 𝑒 (
1

𝑆1 + ℎ1(𝐺)
. 𝑃, 𝑆1)              (7) 

 

𝑣 = ℎ1(𝑘, 𝐺)                             (8) 

 
(𝐼𝐷, 𝑏) = 𝑆2⨁𝑣                        (9) 

 

At the sink, it computes two number 𝑅1 and 𝑅2 as 

follows  

𝑆𝐾 = 𝑏. 𝑆1                    (10) 

 

𝑅1 = 𝑏. (ℎ1(𝐺). 𝑃 + 𝑃𝑝𝑢𝑏)                (11) 

 

𝑅2 = 𝑏. (ℎ1(ℎ1(𝐼𝐷), ℎ1(𝐺), 𝑏, 𝐼𝐷, 𝐺, 𝑆𝐾))      (12) 
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𝑅1 and 𝑅2 are sent back to sensing node. On 

receiving it, sensing node computes �̅�2 as 

 

𝑆𝐾 = 𝐻1(𝑏. 𝑅1)                   (13) 

 

�̅�2 = 𝐻1(ℎ1(ℎ1(𝐼𝐷), ℎ1(𝐺), 𝑏, 𝐼𝐷, 𝐺, 𝑆𝐾))        (14) 

 

If the computed �̅�2  is equal to 𝑅2 , the sink is 

authenticated. Next, sensing node computes,  

 

𝑆3 = (𝑏 + 𝐻1(𝐼𝐷, 𝑆𝐾, 𝑅2, 𝑆1)) × (
𝑃

𝑆1 + ℎ1(𝐼𝐷)
)     

(15) 

 

 and send it to sink 

On receiving𝑆3  , sink verifies the validity of 𝑆3  by 

checking following relation 

𝑒 (𝑆3. (𝑃𝑝𝑢𝑏 + ℎ1(𝐼𝐷). 𝑃)) = 𝑘. 𝑔ℎ1(𝐼𝐷,𝑆𝐾,𝑅2,𝑆1) 

(16) 

 

If the relation is true, then sensing node is 

authenticated at the sink 

The random number b generated by sensing node is 

available at both sink and sensing node, the session 

key is created for communication as 

 

𝑠𝑘 =  ℎ1(𝐼𝐷) ⨁ ℎ1(𝐺) ⨁ ℎ1(𝑏)                            (17) 

 

The effectiveness of compressive sensing depends on 

sparsity distribution in the input. When data is not 

sparse in time domain, it is converted to frequency 

domain and thresholded to introduce sparseness. This 

process is called as transform coding. But a higher 

value for threshold can create the error between 

original data and reconstructed data but it provides the 

scope for increasing the coverage of survivability. 

Lower value for threshold reduces the error in 

reconstruction but reduces the scope for increasing the 

coverage of survivability. Threshold is adapted in this 

work based on application desired accuracy.   

The transform coding adapted in this work first 

converts the data in time domain into frequency 

domain using discrete fourier transform (DFT). The 

output of DFT is coefficients. A threshold is fixed and 

coefficients with values less than the threshold are 

made as 0. By this way signal is converted to sparse in 

frequency domain. The sparse representation is then 

multiplied by the measurement matrix to get the 

observation vector of length M. Sparse representation 

has helped compression of signal of interest. The 

accuracy of reconstruction depends on two factors of 

measurement matrix 𝜙  and measurement vector 𝑦. 
When the matrix 𝜙, 𝜑 has near ortho normal restricted 

isometric property it is possible to recover all K 

coefficients from the M measurement of y. There are 

many optimization techniques to reconstruct the 

sparse signal and out of it 𝑙1 norm minimization and 

convex optimization are most used. 𝑙1  norm 

minimization attempts to find the vectors with smallest 

𝑙1 norm 

 

𝑚𝑖𝑛||𝑥||𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝜙𝑥 = 𝑦        (18) 

 

The sparsity is decided by the threshold used for 

transform coding. The threshold is made adaptive to 

application desired accuracy in this work. The 

threshold (𝑇) is calculated as  

 

𝑇 =  𝑇𝑏 ∗ max(𝑋𝑖)                   (19) 

 

Where 𝑋𝑖is DFT transformation 𝑥𝑖(𝑘) given as  

 

𝑋𝑖(𝑘) = 𝐷𝐹𝑇(𝑥𝑖(𝑛)) = ∑ 𝑥𝑖(𝑛)𝑒−𝑗
2𝜋

𝑁
𝑘𝑛

𝑁−1

𝑛=0

   (20) 

 

A threshold base (𝑇𝑏) is calculated by conducting a 

test run with different values of 𝑇𝑏and measuring the 

reconstruction accuracy. A linear correlation is 

established between the reconstruction accuracy and 

𝑇𝑏as 

 

𝑇𝑏 =  𝛼 +  𝛽0𝐷𝐴                            (21) 

 

where 𝛼 is the bias in linear regression fit and 𝛽0 is the 

coefficient and 𝐷𝐴 is the application desired accuracy. 

The architecture of sensing node and sink in EA-ACS 

is given in Fig. 1 and Fig. 2. The behaviour of sensor 

node and sink in proposed solution is detailed below. 

3.1 Sensor node behavior  

The sensor node caches the sensed data. The 

threshold for transform coding is calculated based on 

the application desired accuracy level. Transform 

coding is done on the cached sensed data. Bi-party 

mutual authentication between sensed node and sink 

results is a session key. This session key is used to 

calculate the transformation matrix as in Algorithm 1. 

Compressive sensing is done to transform data with 

the generated transformation matrix. The compressed 

sensed data is then replicated as follows.  

From the survey, there are two general approaches for 

data replication. (a) Distribution in neighbourhood (b) 

Distribution in far off places  

Distribution in neighbourhood exposes the data to 

guessing attacks and risk to data survival by node 

destruction. Distribution in far off places, involves  
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Table 2. Simulation parameters 

Parameters Values 

Number of Nodes 250 

Communication range 100m 

Area of simulation 1000m*1000m 

Node distribution Random distribution 

Simulation time 15 minutes 

Interface Queue Length 50 

MAC 802.11 

Compromised node 

percentage 

5% to 25% 

Initial energy 100 Joules 

 

multi hop routing increasing the energy consumption. 

In this work, a piggy bagging scheme is proposed for 

data distribution. 

A sensor node distributes the data to its 1 hop 

neighbourhood with a hop count values as T. The 1 

hop neighbouring nodes piggy bags this data to their 

own data, reduce the T value by one and forward to 

next neighbourhood. The data spreads through piggy 

bagging till T reduces to zero. By this way distribution 

to far off places is achieved without much energy 

consumption but by compromising on the time for 

spread.    

3.2 Sink behavior 

Sink node initiates bi-party mutual authentication 

with sensor node before collecting any data from it. 

Through this way, the data collection is authenticated 

and risk of data being collected by un-authorized 

entity is restricted.  

Sink collects the data from node after 

authentication. The transformation matrix is generated 

for the corresponding data of the sensor node based on 

the past session keys stored for that node in the sink. 

Compressive sensing reconstruction process is done 

with this transformation matrix. After reconstruction, 

inverse DCT is done to get back the original data.  

Sink propagates the desired accuracy level needed 

for applications to node on its visit to the nodes.  

4 Analysis 

Data confidentiality attacks: Data can be 

collected from the sensor nodes only after a mutual bi 

party authentication with sink. Even if a sensor node 

is compromised and data is stolen, without the 

transformation matrix, it becomes difficult to 

reconstruct the data back. By this way the proposed 

work is secure against data theft attacks.  

Data survivability attacks: Node 

neighbourhoods can be destroyed and data 

survivability can be affected. But the proposed 

solution distributes the data in piggy bagging manner 

to far off places and the pattern for distribution is 

influenced by neighbourhoods generated data. Thus, it 

is difficult to learn the replication behaviour and 

destroy neighbourhood to risk data survivability in 

proposed solution.   

Energy consumption: In general, energy 

consumption in compressive sensing solution is better 

than Erasure coding or Shamir secret sharing methods, 

due to ability to compress large volume of data. In the 

proposed solution, compressive sensing is further 

improved with adaptive transform coding. Due to this, 

in the same energy cost for replicating data, more data 

can be replicated. The reconstruction part and 

transform decoding part are computationally intensive 

and consume more energy, but this is moved to sink in 

the proposed solution. 

Coverage of survivability: Due to use of 

combined transform coding and compressive sensing, 

the volume of data that can be hidden in a packet is 

increased. Thus, more amount of information can be 

survived in packet in the proposed solution compared 

to erasure coding and Shamir secret sharing schemes. 

Due to this the proposed solution has higher coverage 

of survivability.  

5 Results 

The proposed solution was simulated in NS2 and 

performance is compared against rendezvous point-

based data gathering proposed by Monica et al (2022) 

[28], secure authentication with data aggregation 

proposed by Goyal et al (2020) [29] and secure data 

collection scheme proposed by Miao et al (2021) [7]. 

The performance is compared in terms of data survival 

probability, difficult level of confidentiality, storage 

and energy cost. The simulation is conducted in 

following setup.  

Survival probability is measured for different 

percentage of compromised nodes and the result is 

given in Fig. 3. From the results, it can be seen that 

even for an increase in attacker percentage from 5% to 

25%, the data survival probability has reduced only by 

4% in proposed solution compared to 12% in Monica 

et al , 8% in Maio et al and 12% in Goyal et al (2018). 

Distributing the data to far locations using piggy 

bagging has provided higher survival probability in  
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Figure. 3 Compromised nodes vs survival probability 

 

 
Figure 4 Simulation time vs survival probability 

 

 
Figure. 5 Data confidentiality pm metric 
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Figure. 6 Storage utilization % 

 

 
Figure. 7 Average residual energy 

 

 

proposed solution compared to others. The survival 

probability is measured for different time periods and 

the result is given in Fig. 4. The results shows that 

survival probability increases in the proposed solution 

by 9% over the period of 6 minutes compared to 6% 

in all existing works. Piggy bagging-based distribution 

takes certain time but increases the survival 

probability to maximum value of 100%, but existing 

works were constrained in reaching the maximum 

value. Monica et al and Goyal et al did not consider 

data survival, so in case of failure of node which 

cached the data fails, the data is lost.  Miao et al used 

replication for data survivability only in 

neighbourhood nodes. Due to this when a spot near to 

data node is damaged, the replicated data in that spot 

too is lost. But proposed solution replicated data at far 

off places, so there is a higher chance of data 

survivability as revealed in results.  

The difficult level of confidentiality is measured in 

terms of variance of difference (VOD) between the 

original data and predicted data by compromising 

certain nodes.  Let 𝑋𝑖  be a random variable 

representing the data from sensor at time i, 𝑋𝑖
′ be the 

estimated result of 𝑋𝑖 and difference 𝐷𝑖 = 𝑋′ − 𝑋. Let 

mean of D be  𝐸(𝐷𝑖) and variance be 𝑉𝑎𝑟(𝐷𝑖). VOD 

for column i is 𝑉𝑎𝑟(𝐷𝑖).  VOD is measured for data 

over a period of 10 minutes and average VOD is given 

as privacy measure(pm) 

 

𝑝𝑚 =
∑ 𝑉𝑂𝐷𝑖

𝑁
𝑖=1

𝑁
                     (22) 

 

A guess is launched for 10 minutes to predict sensor 

data and privacy measure (pm) is measured for every 

1-minute interval and plotted in Fig. 5. The average 

privacy measure in proposed solution is 54% higher 

compared to Monica et al, 70% higher compared to 

Miao et al and 65% higher compared to Goyal et al. 

The higher value of pm metric in proposed solution 
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indicates that even if guessing attack is launched by 

compromising certain nodes, the difference between 

the actual and predicted data is very high in the 

proposed solution. This demonstrates higher data 

confidentiality in proposed solution. The pm is higher 

in proposed solution due to two reasons of transform 

coding and making the measurement matrix known 

only between sensor node and sink. Due to this, two 

level of security which becomes difficult to infer data 

in proposed solution. But existing works of Monica et 

al, Goyal et al relied only on authentication and when 

authentication is compromised, data is no longer 

secure. Miao et al used Shamir secret sharing 

mechanism. When the attacker is able to get minimal 

shares, the attacker can reconstruct the shares and 

know the original data.  

The overall storage consumption is measured in 

terms of percentage of total storage utilized in sensor 

network for same volume of data generated by sensor 

nodes across the solutions at the end of simulation time 

and the result is given in Fig. 6.  

The storage utilization is at least 20% lower in 

proposed solution compared to existing works. Use of 

combined transform coding with compressive sensing 

has reduced the storage utilization in the proposed 

solution. Reduced storage utilization signifies more 

coverage for survivability in the proposed solution. 

Monica et al, stored data as in generated form. Goyal 

et al used aggregation but it is less effective compared 

to compressive sensing for storage. Miao et al used 

Shamir based replication but its memory requirement 

is very high compared to compressive sensing format. 

Due to this, existing work’s storage consumption is 

higher compared to proposed solution. The energy 

consumption is measured in terms of average residual 

energy of the nodes at the end of simulation for same 

volume of data generated.  The result is given in Fig. 

7. The average residual energy has dropped from 

initial energy only by 33% in proposed solution 

compared to about 60% in existing solutions. Thus, 

proposed solution has lower energy consumption for 

replication compared to existing works. This is due to 

combined transform coding and compression sensing 

along with piggy backing based data distribution. The 

existing work, Monica et al and Goyal et al used multi 

hop transmission to RP point or cluster head, due to 

which its energy consumption increased. Miao et al 

used Shamir secret share based data replication. Due 

to this number of shares for data has increased and it 

has also increased the energy consumption for 

replicating the shares to neighbouring nodes.  

6 Conclusion 

An energy aware adaptive compressive sensing 

scheme is proposed in this work. The solution is able 

to provide higher coverage of survivability with 

minimal energy consumption. Also, the data 

confidentiality is strong in proposed solution due to 

use of adaptive transformation matrix for compressive 

sensing. Piggy bagging based data distribution has 

provided higher data survivability in the proposed 

solution with minimal energy consumption costs. 

Overall, the proposed solution has provided at least 

6% higher data survivability and 20% lower energy 

consumption compared to existing works. The storage 

consumption is 20% lower compared to existing works, 

thereby providing more survivability volume. The data 

survival probability is also 3% higher than existing 

works due to replication in far off nodes. With two 

level of security using transform coding and 

measurement matrix anonymity, data confidentiality 

in term of pm metric is at least 54% higher compared 

to existing works.  
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