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Abstract: Water quality control and monitoring is an important concern of countries over the world. We present in 

this work, the use the self-organizing feature maps of Kohonen (SOFM) as features selection technique and 

advanced classification techniques, such as: Long Short-Term Memory (LSTM) and Support Vector Machines 

(SVM). This study involved the advanced assessment of surface water quality from Tilesdit dam in Algeria. 

Typically, water quality status is determined by comparing collected data with water quality standards. LSTM and 

SVM have been applied with SOFM-based features selection for water quality classification. In this work, the 

training step is realized using the mentioned approaches to supervise the water quality from several physicochemical 

parameters. Eleven of them were collected in 4 seasons during the period (2016-2018) from study area. Experiments 

step using a mentioned dataset in terms of accuracy (training and test), running time and robustness, is carried out. 

The performance of our approach is optimized by regulating the parameter values using a SFOM based features 

selection method. The proposed approach outperforms current conventional methods, as this approach is a 

combination of strong feature selection and classification techniques. Optimal input features are selected directly 

from the original datasets, aiming to reduce the computational time and complexity. The impact of this result is 

significant both technically (lower learning time) and economically (reduced the number of sensors) and can 

improve obviously the performance of our monitoring system. The accuracy is more than 98% in training and testing 

steps with features selection process for the LSTM and SVM models. The best results of sensitivity, specificity, 

precision, and F-score of the two proposed models were ranged all between 96,99 % and 100%. In a nutshell, the 

two comparative machine learning methods provide very high classification accuracy and make a considerable 

solution for water quality control and monitoring. 

Keywords: Water quality monitoring, Self-organizing feature maps, Features selection, Deep learning, Long short-

term memory, Support vector machines, Classification. 

 

 

1. Introduction 

Surface water quality assessment presents a 

crucial and fundamental role in health protection, 

ecological systems, social development, agriculture, 

and industry, and improving environmental 

performance, so we should keep and protect the use 

of water [1]. However, conventional techniques are 

used to assess the water quality including: Matter 

Element Model, Fuzzy Synthetic Evaluation, Gray 

Analysis Method, Logistic Curve Model, Attribute 

Recognition Model and Fuzzy Logic and k-Nearest 

Neighbors method (k-NN) [2]. These techniques 

require expertise in data analysis and knowledge of 

water quality parameters. The above limitations can 

be overcome using machine learning methods so 

that water quality monitoring based on available 

sensor-generated data becomes feasible and cost-

effective and his techniques are becoming very 

useful and popular for water quality problems [3]. 

The conventional techniques are unsuitable and 
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therefore they cannot give better performance for 

real-time applications as the computational time and 

complexity are high status with proper inaptitude 

due to nonlinear relationships between all modeling 

variables. The number of studies applying Artificial 

Neural Networks (ANN) and Support Vector 

Machines (SVM) based models that have been 

extensively employed in water quality monitoring 

has considerably increased since these recent years 

[3, 4]. SVMs, which are relatively new data-based 

learning algorithms and were introduced by Vapnik 

(1995), have emerged as an alternative method in 

ANN-dominated hydrologic research fields. Most 

SVM applications have been focused on surface 

water problems. Yoon et al. [5] applied ANN and 

SVM in their case studies. They concluded that the 

SVM model performance was better than ANN. The 

traditional neural networks are greatly reliant on 

datasets and problems of the local optimum in the 

training phase, resulting in bad learning results of 

the model. The statistical learning theory and 

structural risk minimization are the theoretical 

foundations for the learning algorithms of SVMs. 

The SVM method is considered as one of the strong 

and universal classifiers and approximators with a 

highly desired degree of accuracy in machine 

learning [6]. 

In recent years, the imperfection encourages the 

evolution of artificial neural networks and overcome 

these deficiencies. One of the limitations of classic 

artificial neural networks also is that, there is no 

memory associated with the model. Which is a 

problem for sequential data, like text or time series? 

The Recurrent Neural Network (RNN), are a 

commonly employed and familiar algorithm in the 

discipline of deep learning (DL), which was first 

suggested in 2006, can strongly control the 

deficiencies of classic artificial neural networks and 

exploit the deep information of data [7]. RNN 

addresses that issue by including a feedback look 

which serves as a kind of memory. So the past 

inputs to the model leave a footprint. It provides 

better results compared to traditional algorithms 

when dealing with real-time problems. Generally, 

DL offers great abilities, effectively and flexibly of 

learning step and contains multiple and varying 

nonlinear hidden layers for mapping [8]. Long 

Short-Term Memory (LSTM) is one of the famous 

architecture of DL has gained large popularity 

according to their high generalized performance in 

various fields and applications, such as: water 

treatment systems and hydraulic modeling [9]. 

LSTM networks are an extension of RNN mainly 

introduced to handle situations where this 

architecture fails. It that can memorize the previous 

information and applies it to the calculation of the 

current output. It solves the problem of gradient 

disappearance in traditional recurrent neural 

networks by selectively memorizing or forgetting 

some data [8], which has long-term memory 

capability and is suitable for processing water 

quality data [9]. Hence, LSTM is great tool for 

anything that has a sequence. It has been so 

designed that the gradient problem of is almost 

completely removed in traditional recurrent neural 

networks, while the training model is left unaltered. 

Long time lags in certain problems are bridged 

using LSTMs where they also handle noise, 

distributed representations, and continuous values. 

With LSTMs, there is no need to keep a finite 

number of states from beforehand as required in the 

hidden Markov model (HMM). LSTMs provide us 

with a large range of parameters such as learning 

rates, and input and output biases. Hence, no need 

for fine adjustments. The complexity to update each 

weight is reduced with LSTMs, which is an 

advantage.  

Two major operations involved in the machine 

learning techniques are feature extraction and 

classification. The classification process is a 

necessary step for the decision of water quality 

status. For the purpose to ensure a good decision 

and good performance of the classifier, the 

preparation of data inputs is necessary and requires 

special treatment. The use of features selection for 

data inputs without any transformation to avoid 

redundancy has obtained significant attention [10]. 

The advantages of features selection include a 

reduction in the amount of data and execution time 

to achieve the learning phase, avoiding redundancy, 

reducing of sensors in the monitoring system, low 

cost, improving classification accuracy.  

The water quality data analysis seems a difficult 

task because the data have complex interactions 

with each other, multidimensional, changeable, and 

non-linear [9]. Statistics-based diagnosis techniques 

are preferable for implementing knowledge 

extraction in water quality data. Multivariate 

analysis methods, such as self-organizing features 

maps of Kohonen (SOFM) is an unsupervised 

learning method is used as features selection 

technique [11]. It can also be used to analyze and 

deal with non-linear, noisy, redundant, irregular, or 

missing and outlier data sets, excellent visualization 

capabilities purposes and interpretation in the 

category, internal relationships of samples and their 

index, clustering and noise reduction and 

classification. SOFM belongs to a kind of statistics-

based diagnosis technique and has been broadly 



Received:  December 8, 2021.     Revised: February 18, 2022.                                                                                         92 

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022           DOI: 10.22266/ijies2022.0630.09 

 

used in the initial steps of water quality assessment 

applications and studies [11, 12].  

LSTM has a good potential to achieve effective 

data representation for building improved 

classification tasks with SVM. SOFM helps rebuild 

input representation and converts it to reduced 

feature representation of data related to the input 

data, thereby improving the performance of the 

classification task considerably. The main 

contributions of this work are as follows: 

(1) We used a novel deep learning approach based 

on the LSTM framework with SVM. We study 

the potential of our proposed approach to 

achieve effective representation and 

dimensionality reduction using SOFM method 

for the improvement of the binary classification 

results of shallow and traditional supervised 

machine learning algorithms. 

(2) Better or at least similar and competitive results 

are achieved compared with the results of 

similar approaches. Moreover, our approach 

considerably reduces training and testing times. 

In this paper, a comprehensive approach using 

LSTM and SVM classification methods for the 

decision of water quality status in combination with 

SOFM based features selection is proposed. The 

problem is regarded as a classification based on two 

classes of water quality (drinkable state and not 

drinkable state) performed on physicochemical 

parameters. The classification techniques are 

employed in a comparative study to show the 

performance evaluation of monitoring models, and 

to get the best decision and adequate solution in 

terms of accuracy (training and test) and running 

time. 

The rest of paper is organized as follows. The 

next section describes study area and brief 

description of the dataset collection. Section 3 

briefly describes the proposed framework for water 

quality monitoring and methods used and Section 4 

presents and discusses the results. Finally, the last 

section is dedicated to conclusions and future 

research. 

2. Study area and datasets 

The surface water of Tilesdit dam is 

geographically located about 20 km southeast of the 

city of Bouira and 122 km east of Algiers (Fig. 1). It 

is situated between the geographic coordinates: 36° 

13’ 22’’N 4° 14’ 23’’E [13]. 

In this research, physical sensors installed in the 

Tilesdit production station provided us with several 

important physical and chemical parameters. Our 

mission was limited during three years (2016- 
 

Table 1. Descriptive measures of the used water quality 

parameters 

Parameters Min Max Average 
Standard 

deviation 

pH 7,32 8,36 7,87 0,18 

C 515,00 605,00 568,59 33,47 

T° 9,80 16,00 12,16 1,28 

TUR 2,81 10,40 4,93 1,81 

Mg2+ 7,29 47,63 22,69 5,16 

TH 122,00 326,00 215,14 24,09 

NH4+ 0,00 0,49 0,13 0,11 

NO2- 0,00 0,46 0,07 0,08 

TDS 287,00 303,00 294,19 4,48 

DO 3,28 5,75 4,31 0,53 

PEH 0,00 168,00 31,49 22,37 

 

 
Figure. 1 The Tilesdit dam – Bouira – Algeria [Google 

Maps] 

 
2018) to know the different treatment process and to 

collect data from this station. Descriptive measures 

of the used water quality parameters are shown in 

Table 1. 

3. Proposed framework for water quality 

monitoring  

The goal of this study is to establish decision 

support models for an advanced water quality 

monitoring through the installed sensors for data 

acquisition. Generally, this advanced system 

includes the particular hardware and computer 

software, such as: sensors, conditioning circuits, 

data acquisition, wireless communication, signal 

processing blocks for large datasets, and be 

complemented by input data preprocessing using 

pre-trained SOFM model based features selection, 

and final decision using LSTM and SVM 

classification methods. All these steps are performed 

to obtain the most successful solution for water 

quality assessment. In the next sections, a brief 

demonstration of the principal techniques used in 

this work, is provided. 



Received:  December 8, 2021.     Revised: February 18, 2022.                                                                                         93 

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022           DOI: 10.22266/ijies2022.0630.09 

 

3.1 Features selection based on self-organizing 

features maps 

Self-Organizing Features Maps of Kohonen 

(SOFM) is a kind of nonlinear neural-network 

model for multivariate data analysis. The SOFM is 

topology-preserving mapping from input data space 
n onto a regular or hexagonal two-dimensional 

array of nodes like a dimensionality reduction 

technique (Fig. 2(a) and 2(b)) [11].  

A weight vector correspond to the input vector 
min (prototype or reference vector) is associated 

to every node i. It is selectively optimized for better 

learning performances. Initially, weights are 

randomly distributed, and over much iteration, the 

SOFM eventually settles into a map of stable sectors. 

Each input data vector xn is compared to the 

prototype vector mi, and the best match mc defines 

the winning reference vector [11].  
Each sector is effectively a feature classifier. 

The input x is then mapped onto the corresponding 

location on the hexagonal two-dimensional grid mi 

in our case (gray symbols in Fig. 2(b) and 2(c)). 

The SOFM is an unsupervised learning method. 

At each learning time t, a data pattern x(t)n is 

mapped to the corresponding location in the grid, 

where the node c is that best represents the input 

data sample for using (matching unit BMU), and the 

reference vectors mi in the neighborhood of BMU 

unit are moved to the selected vector x(t). c(t) as 

shown by the following Euclidean distance [14]:  

 

𝑐(𝑡) = 𝑎𝑟𝑔  min𝑖 {‖𝑥𝑡(𝑡) − 𝑚𝑖(𝑡)‖}        (1) 

 

The node c, as well as the best neighboring units, is 

trained to more precisely represent the incoming 

data sample. The following training rule (Eq. 2) is 

used to update the weight vector of unit i [15]: 

 

𝑚𝑖(𝑡 + 1) = 𝑚𝑖(𝑡) + 𝛼(𝑡)ℎ𝑐𝑖(𝑡)(𝑥(𝑡) − 𝑚𝑖(𝑡)) 

(2) 

 

where hci is a gaussian neighbourhood function 

towards BMU unit, signifying how much unit i is 

 

 
(a)                       (b)                    (c) 

Figure. 2 Principale of the SOFM: (a) Data and 

prototypes, (b) SOFM network, and (c) SOFM layout and 

hits 

updated when unit c is the winner. α(t) is the 

training rate decreasing with time. The 

neighbourhood function (Eq. (1)) typically is a 

symmetric around the location of the winner, 

monotonically decreasing function of the distance 

between nodes i and c on the map network [11]:  

 

ℎ𝑐𝑖(𝑡) = 𝑒𝑥𝑝(
‖𝑟𝑐−𝑟𝑖‖2

2𝛿(𝑡)2 )                   (3) 

 

where ∥∥2 denotes the distance between units c 

and i in the output space, rc signifies the two-

dimensional location vector of unit i in the grid, and 

δ represents the time-varying parameter that controls 

the reduction of the neighborhood kernel function 

during the learning phase [12]. 

From i iterations of Eq. (2), the weight vectors 

of neighbouring units corresponding to different 

inputs become gradually similar due to the 

neighbourhood function hci, eventually leading to 

global ordering of the model vectors [11]. The 

amount of model vector movement is guided by a 

training rate α. With time, the mi then tends to 

become ordered along the array in a significant way. 

The SOFM can be used to visualize and interpret 

datasets on different group, present internal 

relationships of samples and their index [12]. The 

prototype distance between neighborhood units is 

showing by U-Matrix (Fig. 3(a)). It can be used as 

well for clustering, noise reduction and 

classification. 

The component planes (CPs, base map of Fig. 

3(b)) in SOFMs can be used to reduce redundancy 

in the data space (correlation hunting). A CP is built 

on the trained SOFM (i units) where each unit i is 

represented by a particular component of the 

corresponding reference vector mi.  

The components of the absolute correlation 

matrix A between all components is given as [14]: 

 

𝑎𝑖𝑗 =
1

𝑁
∑ ‖𝑚𝑛𝑖. 𝑚𝑛𝑗‖𝑁

𝑛=1                 (4) 

 

As input data, the correlation matrix of the 

component planes prototypes can be used for the 

learning step of a second SOFM on a rectangular 

grid map. The input data samples vector x(t) is 

defined by [11]: 

 

𝑥𝑡(𝑡) ≝ 𝑎. 𝑗                           (5) 

 

where a·j represent the component planes (CPs). 
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(a)                         (b) 

Figure. 3 The trained SOFM (black stands for high 

distances): (a) U-matrix and (b) Component planes 

3.2 Long short term memory deep learning 

Long short term memory (LSTM) model is a 

new kind of the standard recurrent neural networks 

(RNN) by adding memory blocks called cells with a 

unique method of communication and is ordered in 

the form of a chain structure. It was introduced by 

Sepp Hochreiter and Jürgen Schmidhuber in 1997 

[16]. LSTM network has the most essantial three 

gates (or layers) of model used to control the 

memorizing process avoiding the long-term 

dependency problem, including: forget, update and 

output gates layers that used to update of 

information of input gate layer (weights) contained 

in cell memory status. This last one (cell - memory 

blocks) is the fourth layer and is considered as an 

important element of LSTM model (Fig. 4). 

The output of LSTM dependent on previous and 

current neuron inputs and weight with feedback at 

each neuron. LSTM contains internal loops that 

maintain useful and correct information and 

abandon detritus, to overcome the vanishing 

gradients problems caused by a long and correlated 

data samples. The data sample can be added or 

removed to the cell memory state through sigmoid 

function. LSTM can be described by the following 

formulations [9, 16, 17] : 

- Forget gate layer : 

 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)               (6) 

 

where  is the logistic sigmoid function. W and b 

are the weight matrices and bias, respectively of the 

forget gate ft. x is the input. h is hidden cell memory 

vectors. 

- Update or input gate layer: 

 

𝑢𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)               (7) 

 

were Wi is the weight matrices and bi is the bias in 

the update gate 𝑢𝑡. 

- New memory cell: 

 

�̃�𝑡 = 𝑡𝑎𝑛ℎ( 𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)            (8) 

were Wc is the weight matrices and bc is the bias in 

the new memory cell 𝐶�̃�. 

 

- Final memory cell: 

 

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × �̃�𝑡                 (9) 

 

where Ct is current cell status value, Ct-1 is the last 

time frame cell status value and 𝐶�̃�  represent the 

update for the current cell status value. 

- Output gate layer: 

 

𝑜𝑡 = 𝜎(𝑊0. [ℎ𝑡−1, 𝑥𝑡] + 𝑏0)             (10) 

 

ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ( 𝐶𝑡)                  (11) 

 

were W0 is the weight matrices and b0 is the bias in 

the output gate ot. 

 

 
Figure. 4 The structure of the LSTM network 
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The forget gate ft computed in Eq. (6), is similar 

to those of the update gate. It allows the model to 

choose when to forget the information in cell unit 

(cell memory) Ct. The update gate ut, as shown in 

Eq. (7), help the model to decide when ut updates Ct 

by using a sigmoid function ; ( = 1: Ct̃ is updated, 

and  = 0: 𝐶�̃�  is ignored). Eq. (8) computes a 

candidate𝐶�̃�. The tanh function gives weight to the 

values which passed by, deciding their level of 

importance (-1 to 1). 𝐶�̃� and ut update the parameters 

to new cell state Ct using Eq. (9), new cell state Ct is 

computed and transferred to the next layer by 

multiplying the update gate with the candidate 𝐶�̃� 
and adding it to the forget gate that is multiplied 

with the previous cell state Ct-1. The output gate ot is 

computed in Eq. (10) by multiplying current input 

with weight W0 and add bias b0. Finally, the output 

of the sigmoid gate (ot) is multiplied by the new 

values created by the tanh layer from the cell state 

(Ct), with a value ranging between -1 and 1 and the 

result ht to send it to the next layer to keep tracking 

the parameters using Eq. (11). 

With suitable parameters adjustment, the result 

value ht is calculated according to Eqs. (9) and (10) 

based on Ct and ot values. All weights of the four 

gates are updated based on the difference between 

the output and the actual values following back-

propagation through time (BPTT) algorithm [17]. 

3.3 Support vector machines  

The SVM method was introduced by Vapnik for 

classification, regression and density estimation [18, 

19]. In SVM, all the input patterns can be separated 

by a linear optimal hyperplane (Fig. 5).  

It is implemented through maximization of the 

margin around a hyperplane by mapping through 

some linear or non-linear functions (kernels 

functions) into the high dimensional features space. 

The mapping and maximization of the margin is 

determined to provide more performances and 

ability of generalization. The maximization of 

margin around a hyperplane is defined as a quadratic 

optimization problem. 

In this case, the binary quadratic classification 

problem is established from the following dataset: 

 

(𝑥𝑖 , 𝑦𝑖), 𝑦𝑖 ∈ {−1, +1}, 𝑖 = 1, . . . , 𝑛         (12) 

 

x ℜ
𝑑

, n is the number of samples and yi is the 

corresponding output label (class). 

The maximization of the margin around a 

separating hyperplane is a  non- linear quadratic 

optimization problem using the Lagrange multipliers  

 

 
Figure. 5 The structure of SVM hyprpalne and margin 

 

αi and non-linear mapping via a kernel function, the 

Lagrangian dual problem is becoming [13,20]: 

 

{
𝑚𝑎𝑥

𝛼𝑖

    𝐿𝐷(𝛼) = ∑ 𝛼𝑖 −𝑛
𝑖=1

1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗)𝑛

𝑖,𝑗=1

with     ∑ 𝛼𝑖𝑦𝑖 = 0𝑛
𝑖=1 , 0 ≤ 𝛼𝑖 ≤ 𝐶 , 𝑖 = 1, . . . , 𝑛          

  

(13) 

 

According to necessary and sufficient condition 

of Karush-Kuhn-Tucker (KKT), an optimal , is 

given by [20, 21]: 

 

𝛼𝑖
0{𝑦𝑖[(𝑤0𝑥𝑖) + 𝑏0] − 1} = 0, 𝑖 = 1, . . . , 𝑛    (14) 

 

𝑆𝑉𝑠 = {𝑥𝑖   that   𝛼𝑖 ≻ 0}                 (15) 

 

SVs are the Support Vectors which participate in 

the construction of the optimal hyperplane. 

The non linear decision classification function is 

defined by [10,20]: 

 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏)𝑆𝑉𝑠        (16) 

 

If f(x) < 0, then x is belongs of class -1; if not, it 

is belongs of class 1, and b is the solution. 

It can be used any positive definite kernel 

function that satisfies Mercer’s theorem. The best 

settings of the appropriate function and its 

parameters are very important to efficient 

classification. The most types of SVM kernel 

functions are: [3, 20, 21]: 

The polynomial function: 

 

𝐾(𝑥, 𝑥 ′) = (𝛾𝑥𝑇𝑥 ′ + 𝑐)𝑑 

𝑤𝑖𝑡ℎ    𝛾, 𝑐 ≥ 0  and   𝑑 ∈ ℕ             (17) 

 

The Gaussian RBF function: 

 

𝐾(𝑥, 𝑥 ′) = 𝑒𝑥𝑝(
‖𝑥−𝑥 ′‖

2

2𝜎2 )                 (18) 
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4. Results and discussion 

In this study, the aforementioned proposed 

framework was applied to water quality data from 

Tilesdit station in Bouira (Algeria). For testing the 

applicability of the suggested methodology, our 

monitoring model consists of two steps: features 

selection and recognition of the water quality status. 

The feature selection technique is based on SOFM, 

and classification technique is based on LSTM and 

SVM. The hardware used to perform our simulation 

experiments are as follows: we have used an Intel 

Core TM i7-6820HQ and 2.71GHz CPU processor 

with 8 GB of memory. All proposed methods were 

implemented and assessed using MATLAB2019b 

environment software with Windows 10 (64 bit) 

operating system.  

4.1 Features selection 

Feature selection for dimensionality reduction is 

a popularly used step in machine learning to ensure 

a good decision, good performance and high level of 

classification ability of the fitted model. The first 

analysis is the process of selecting a subset of the 

relevant and uncorrelated variables using SOFM to 

determine the input data for the proposed classifier 

models. Also, we can understand that there is a 

change from data features to components which are 

uncorrelated. In machine learning, the reduced 

features space is usually performed by constructing 

subset of the new dimensions using SOFM method.  

In this step, the data base used for this work 

consists of 1800 samples from eleven physico-

chemical parameters of water quality (Table 1), 

these parameters are: Temperature (T°-°C), 

Conductivity (C-µs/cm), pH, Turbidity (TUR-NTU), 

Dissolved Oxygen (DO- mg/l), Magnesium (Mg2+-

mg/l), Total Hardness (TH-°F), Permanent 

Hardness (PEH-°F), Total Dissolved Solids (TDS), 

Ammonium (NH4+-mg/l) and Nitrite (NO2
- mg/l).  

The proposed approach of features selection is 

used to identify the correlation and similarity of 

input data parameters by employing the 

visualization power and clustering of SOFM. In 

experiments step, a [6 × 10] SOFM composed of 60 

units (neurons) is used for features selection. Due to 

the topological preserving property of SOFM, the 

input data parameters that have close proximity with 

each other are mapped to the same neurons or its 

neighbors arranged on the map network. The 

distance between the reference or prototype vector 

of neuron and its neighbors is calculated by U-

matrix (the unified distance matrix). Fig. 6 visualize 

by using colour scale, the distribution of all 

variables or component planes on the SOFM for the 

input data vectors and the reference vector distances 

between nodes in U-matrix plane. The larger 

distance is plotted in yellow color. For example, the 

objects with high values for Dissolved Oxygen are 

located in the downright part of the SOFM plane. 

The component plane gives some information 

visually about the relation between a parameter and 

the clusters. The parameters like: Conductivity, TDS 

and Dissolved Oxygen change from small values 

(left-bottom area) to big values (right-bottom area) 

on the map. pH had a graduation of the color almost 

too light carrying the values higher on the right. In 

order to group the trained SOFM units, it is 

advantageous to use the U-Matrix algorithm which 

has led to the identification of 3 clusters located on 

the left, central and right side. However, it is 

difficult to recognize the influence of indicators 

definitely from the component planes. 

The selecting of the subset of the component 

planes (Fig. 6) using SOFM shows four different 

groups of variables. The first subset group is formed 

by the following parameters: Ammonium, Nitrite 

and Turbidity. The second subset group includes the 

parameters such as: Total Hardness, Permanent 

Hardness, Magnesium and Temperature. The third 

subset group is formed by the parameters like: 

Conductivity, Total Dissolved Solids and Dissolved 

Oxygen. The last group is constituted by pH. Using 

the ordering planes, a proper selection of surface 

water quality parameters could be done. Each well-

defined group could be selectively presented by one 

of its members. Thus, Turbidity and Conductivity 

were selected to represent the first and the second 

group, respectively. Conductivity was selected to 

represent the third group. The last selected variable 

pH represents fourth group. The selected water 

quality parameters could be more reliably and 

accurately analytically determined and are directly 

related to specific anthropogenic influences along 

the dam catchment. 

In the presence of the chemical parameters that 

cannot be measured continuously. So the variables 

retained are: Conductivity (EC), Temperature (T°), 

Turbidity (TU) and pH. The four parameters are 

selected as input of the proposed monitoring models 

that are more easily measured continuously. This 

solution is in any case not final, it will probably be 

necessary to perform a periodic re-learning system 

to take account of situations likely to be encountered 

and to allow continuous adaptation of it to any 

changes in the water quality. The new data set of 

1800 samples described by the four selected water 

quality parameters was further subjected to 

chemometric treatment by statistical learning 

approaches.  
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Figure. 6 Visualization of variable planes (CP) and U-matrix for the input data displayed on SOFM 

 

The goal is to predict the water quality status 

from uncorrelated selected variables with lower 

global cost system and better quality.  

4.2 Training and classification 

In this section, we evaluated the proposed 

framework on several physicochemical parameters 

used for water quality decision. According to the 

drinking water Quality guidelines, two classes of 

water quality have been considered: (Class I: upper, 

Class II: lower). In order to proceed with the tests, 

training and test sets constituted of real data relating 

to the various qualitative water statuses are used.  

In this application, two diverse base 

classification models, including LSTM and SVM 

are employed for water quality assessment.  

The training data of 1800 samples were 

collected from Jan. 1, 2016 to Dec. 31, 2018, all 

constituted of the four physicochemical variables: 

Temperature (T°), pH, Electrical Conductivity (EC) 

and Turbidity (TU) reduced by SFOM-based 

features selection step as input of the proposed 

classification models. 

4.2.1. Evaluation metrics 

Through trial and error experiments, the 

performance metrics in training and testing phases 

such as accuracy (Acc : the percentage of 

predictions those are correct) with features 

selection, Sensitivity (Recall, Se : True Positive 

Rate), Specificity (Sp), Precision (Pr: Positive 

Predictive Value), F-score (F-Scr) and training time 

(T_train) were used to measure the success of the 

proposed model. The values of these metrics are 

calculated by the following Equations [22, 23]:  

𝐴𝑐𝑐 (%) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑒𝑠𝑡 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 
  

𝑃𝑟 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100%

                (19)

 

𝑆𝑒 =
𝑇𝑃

𝑃𝑟
𝑇𝑃

𝑇𝑃+𝐹𝑁

 

 
𝑆𝑝 =

𝑇𝑁

𝑇𝑁+𝐹𝑃
× 100% 

  
The true positive (TP) and the true negative (TN) 

correspond to correctly classified samples of each 

class, whereas the false positive (FP) and false 

negative (FN) correspond to incorrectly classified 

samples, respectively. 

4.2.2. Testing the proposed hybrid feature selection 

and classification methodology 

To evaluate the proposed methods, standard 10-

fold cross-validation and simple Holdout has been 

implemented in training and testing phases. To 

validate the generalization ability of the proposed 

models with simple Holdout, the raw data are 

divided into two subsets: 60% is used for training, 

and the remaining 40% is used for testing. The 

experiment results with all performances metrics of 

each individual proposed method are presented. 

The final LSTM architecture used in this paper 

consist of an input layer followed by an LSTM layer. 

The network ends with three connected layers, a 

fully connected layer, a softmax layer and output 

layer to classify the water status. Each hidden layer 

are followed by a dropout layer implemented 

between hidden layers and applied after each LSTM 

layer for regularization (dropout value = 0.2). In this 

application, various architectures of LSTM have 

been tested to determine the adequate number of  
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Table 2. The results of the LSTM classification model in the training and testing phases 

Models 
Performances metrics 

Pr Se Sp F-Scr T_tr (s) Acc 

LSTM_Holdout (Training) 99.64% 99.02% 96.99% 99.33% 1.2863e+03 98.81% 

LSTM_Kfold (Training) 100% 97.44% 100% 98.70% 936.03 97.67% 

LSTM_Holdout (Testing) 99.17% 99.37% 93.44% 99.27% 0.09 98.70% 

LSTM_kfold (Testing) 100% 97.95% 100% 98.96% 0.08 98% 

 
hidden layers and the neurons in hidden layers. The 

hidden layer consists of 100 neurons, and select 

0.005 as the learning rate with batch stochastic 

gradient descent (batch_size) of 72 time-steps as an 

optimizer in order to equilibrate the convergence 

speed and accuracy using a standard grid search for 

50 epochs was selected by trial and error. The last 

layer (classification output) of the LSTM is a dense 

layer and the loss function is the mean square error 

function. Furthermore, the LSTM is compared with 

SVM with SOFM-based features selection. Table 2 

show results associated with LSTM models in 

training and testing phases using water quality data 

input. We apply standard k-fold cross-validation and 

simple Holdout procedures to evaluate the 

performance metrics of LSTM models for water 

quality classification. 

The Table 2 presents the result of LSTM 

technique. The LSTM-SFOM hybrid model with 

Holdout cross validation method gets an accuracy of 

98.81% (training) and 98.70% (testing), and the 

LSTM-SFOM hybrid model with k-fold cross 

validation method gets an accuracy of 97.22% 

(training) and 98% (testing). 

The SVM is applied to perform the classification 

process using the Gaussian RBF and polynomial 

kernel functions. There are two parameters 

associated with these kernels: C and . In addition, 

polynomial kernel has also a parameter d related to 

the polynomial degree. Furthermore, the variation of 

kernel function is performed to show the excellent 

of characteristic of kernel function and its 

performance in classification process. Therefore, 

improper selection of parameters C,  and d can 

cause over fitting or under fitting problem [13].  The 

goal of this guideline is to identify optimal choice of 

these parameters so that the classifier can accurately 

classify the data input using k-fold cross-validation. 

Basically, all the pairs of (C, ) for RBF kernel and 

(d, C, ) for polynomial kernel are tried and the one 

with the best cross-validation accuracy is selected.  

Table 3 and 4 shows results of training and 

testing steps corresponding to SVM multi-class 

models. The parameters, such as: kernel function, 

the recognition rates for training and testing phases 

and different performance metrics are indicated for 

various values of the factor C with the linear, 

polynomial and radial basis kernel functions.  

In Table 3 and 4, the recognition rate with 

SFOM features selection ranged from 98.10% to 

 

 
Table 3. Water quality classification using SVM-SFOM model and selected kernel parameters in the training phase 

Models 
Kernel 

Parameters 

 Performances metrics 

NSV Pr Se Sp F-Scr T_tr (s) Acc 

SVM_Holdout 

Linear 

(d = 1,  = 3.53,  

C = 879.23) 

31 97.95% 99.91% 85.80% 98.92% 771.67 98.10% 

Polynomial 

(d = 2,  = 37.17,  

C = 30.03) 

34 99.73% 99.73% 97.86% 99.73% 926.89 99.52% 

Gaussian RBF 

( = 91.54,  

C = 913.48) 

70 100% 99.12% 100% 99.56% 71.98 99.21% 

SVM_KFold 

Linear 

(d = 1,  = 1,  

C =  0.007) 

29 99.90% 99.81% 99.42% 99.85% 311.76 99.75% 

Polynomial 

(d = 2,  = 12.07,  

C = 0.72) 

28 99.90% 99.71% 99.42% 99.81% 575.37 99.67% 

Gaussian RBF 

( = 50.60,  

C = 957.51) 

41 99.90% 99.71% 99.42% 99.81% 575.37 99.67% 
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Table 4. Water quality classification using SVM-SFOM model and selected kernel parameters in the testing phase 

Models 
Kernel 

Parameters 

Performances metrics 

Pr Se Sp F-Scr T_ts (s) Acc 

SVM_Holdout 

Linear 

(d = 1,  = 3.53,  

C = 879.23) 

97.95% 99.91% 85.80% 98.92% 771.67 98.10% 

Polynomial 

(d = 2,  = 37.17,  

C = 30.03) 

100% 99.79% 100% 99.90% 0.002 99.81% 

Gaussian RBF 

( = 91.54, C = 913.48) 
99.79% 100% 98.36% 99.90% 0.003 99.81% 

SVM_KFold 

Linear 

(d = 1,  = 1, C =  0.007) 
99.65% 99.83% 92.86% 99.74% 0.002 99.50% 

Polynomial 

(d = 2,  = 12.07,  

C = 0.72) 

99.30% 99.82% 86.67% 99.56% 0.002 99.17% 

Gaussian RBF 

( = 50.60, C = 957.51) 
96.86% 99.64% 58.14% 98.23% 0.002 96.67% 

 

99.75% in training step and among 96.67 % until 

99.81% in testing step for the SVM models. The 

recognition rate in training phase for linear kernel is 

usually lower than Polynomial and Gaussian RBF 

kernel. For SVM model, the performance of 

classification process is increased due to the 

feature’s selection, because of SFOM searches the 

uncorrelated components from the input data space 

and treat it so that more useful in classification. 

Therefore, the effect of selection of kernels 

functions and its parameters C and  or d and  is 

very important to achieve a good performance in 

training and testing sets and there are no definite 

rules governing its choice that might yield a 

satisfactory performance. Indeed, the performance 

depends on the choice of these parameters by the 

use of optimization process via cross validation 

methods.  

4.2.3. Comparison of classification performance of 

classifiers 

In this study, the main contribution is to train 

and classify the water quality data using a LSTM 

compared to SVM with SFOM based features 

selection. Compared with ordinary neural networks, 

LSTM has repetitive neural network modules, which 

can automatically process the key semantic 

information of the input data. In this study, the 

optimization of activation function and post-

processing optimization is carried out based on the 

original LSTM network, which greatly improves the 

accuracy of classification results. The success of the 

proposed framework performance can be seen in 

Table 2, 3 and 4. To the best of our knowledge, it is 

among our contribution to propose the use of SFOM 

with LSTM techniques in field of water quality 

monitoring. For more classification performances, 

we used two methods of cross-validation namely: 

standard k-fold and Holdout, to estimate the 

performance of the used classification models. It 

appears that on the decisional level, the two models 

perform good results with recognition rates more 

than 98% in training and testing steps with features 

selection process. As a best result of the training on 

LSTM-SFOM model, 98.81% accuracy, 99.02% 

Sensitivity, 96.99% Specitivity, 99.64% Precision, 

and 99.33% F1-Score performances metric values 

are obtained. The SVM-SFOM model with the 

proper pair (d = 2,  = 37.17, C = 30.03), has 99.81% 

accuracy, 99.79% Sensitivity, 100% Specitivity, 

100% Precision and 99.90% F1-Score metric 

performances. The SVM-SFOM model requires less 

time than the training and testing time of LSTM-

SFOM model. The longest training period has 

belonged to this last model. The classification 

results clearly showed higher accuracy and 

sensitivity for the two machine learning methods. 

According to the accuracy in the Table 5, the 

proposed method showed least similar and 

competitive results with an accuracy rate of 99.81% 

compared to Mesut Togaçar et al. [24], Ahmed et al. 

[28] and Djerioui et al. [29] using the Auto-Encoder 

deep learning method, ELM and SVM with Water 

quality database. 

This finding is in agreement with the results 

published by several works. They have reported that 

the LSTM or SVM models have high classification 

accuracy for water quality data, as it makes use of 

the advantages of these methods that address the 

shortcomings of conventional techniques with 

different methods, databases, and fields when 

considering the obtained overall performance. In  
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Table 5. Comparison between the proposed methods with earlier reported classification methods in different dataset 

Study Data Methods Accuracy 

Sourav Kundu et al. [25] EEG signal SAE-ESVM 95.5% 

Indu Saini et al. [26] MIT-BIH Arrhythmia database. KNN algorithm 99.81 

Shao Haidong et al. [27] Fault diagnosis Enhancement Auto-Encoder 87.8% 

Ahmed et al. [28] Water quality database MLP 85% 

Djerioui et al. [29] Water quality database SVM and ELM 99,3% 

Mesut Togaçar et al. [24] Waste water quality database Auto-Encoder  99.95 

This study Water quality database 
SVM 99,81% 

LSTM 98,70 

 

this work, we find better or at least similar and 

competitive results are achieved compared with the 

results of similar approaches. Moreover, our 

approach considerably reduces training and testing 

times by using SOFM based features selection. The 

impact of this result is significant both technically 

(lower learning time) and economically (reduced the 

number of sensors) and can improve obviously the 

performance of our monitoring system. 

The results obtained emphasize the explanation 

of the theoretical and practical reasons in the 

introduction section for the use of LSTM technique 

for this type of application compared to other 

existing techniques. Unlike some other existing 

techniques, and especially CNN, Auto-Encoder deep 

learning, ELM, KNN, MLP, SVM and other 

combined models that is designed to use spatial 

information in data, LSTM is developed to work 

differently. Usually, LSTM is used to process and 

make predictions given sequences of data. The main 

advantage of LSTM is its ability to deal with the 

vanishing gradient problem that can be encountered 

when training traditional RNNs. Furthermore, 

LSTM models can predict future values based on 

previous, sequential and big data for providing 

greater accuracy with better decision-making. In our 

case, the data we used for water quality assessment 

is presented with different seasonality which makes 

LSTM deal well with it compared to other 

conventional machine learning models. 

5. Conclusions 

In this work, we introduces a robust 

classification framework of water quality status 

using LSTM and SVM machine learning combined 

with SFOM-based features selection. The study area 

is the Tilesdit dam from Algeria. In this study, the 

proposed framework is examined in two sections as 

feature selection and classification. The proposed 

methods have obtained maximum accuracy and 

achieve higher and acceptable performance than 

existing classifier approaches. The addition of the 

SOFM algorithm in the proposed framework has 

further improved the classification accuracy. This 

result is important because it reflected an economic 

impact on the overall cost of the monitoring system 

(off line and reduced number of sensors). The water 

quality parameters obtained from the features 

selection process have been successfully classified 

by the two machines learning methods with 

accuracy more than 98% and metric performances 

more than 96.99% and reached at 100% in training 

and testing steps. The proposed framework has 

outperformed conventional techniques in terms of 

accuracy, computational speed and other 

performance metrics. The proposed approach 

especially based LSTM with SFOM model can be 

applied for any real-time monitoring and big data 

application with the help of appropriate sensors that 

it reflected an economic impact on the overall cost of 

the monitoring system of water quality. In future 

work, a novel hybrid proposed CNN-SVM or 

LSTM-SVM models architectures and all high-

performance deep learning models will be realized 

in real-time recognition in practice. The single CNN 

architecture, feature extraction and feature 

classification techniques are combined into a single 

model. The accuracy of the system decision can be 

improved by exploiting new input parameters, or by 

using soft sensors in the presence of the chemical 

parameters that cannot be measured continuously. 
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