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Abstract: Abnormal behaviour of the heart called arrhythmia can be recorded as an electrocardiogram (ECG) signal. 

ECG plays a vital role in the diagnosis of heart disease. Advances in machine learning allow the development of 

computer-aided diagnostic models to identify heart disease type. We have proposed a hybrid model with 

Convolution Neural Network (CNN) to auto extract features from ECG and use XGBoost to assess the type of 

arrhythmia. We tested our model to diagnosis eleven kinds of arrhythmia beats from the MIT-BIH arrhythmia 

database and obtained overall sensitivity of 92.61%, specificity of 99.85%, positive predictive value of 95.99% and 

accuracy of 99.84%. The robustness of the proposed model is further confirmed by classifying the arrhythmia beats 

into 5 classes according to the AAMI standard and comparing the results with the state-of-the-art methods. Attained 

overall Sensitivity of 94.36%, specificity of 99.44%, positive predicative value of 96.40% and Accuracy of 99.69% 

for 5 AAMI Classes. The results demonstrated that the proposed model could be used in the diagnosis of arrhythmia. 

Keywords: Arrhythmia, ECG, Convolution neural network, CNN, XGBoost, Heart disease. 

 

 

1. Introduction 

Cardiovascular disease (CVD) accounts for 32% 

of all global deaths in 2019 [1]. The premature 

deaths due to CVD can be prevented if it is detected 

in the early stage. Early detection of CVD is 

possible through regular study of heart condition 

and functionality of an individual. The main 

function of the heart is to pump purified blood 

throughout the body with the help of electrical 

impulses generated in the heart. Heart disease or 

other heart problems can lead to irregular and poor 

conduction of electrical impulses in the heart. These 

irregular impulses cause an abnormal heart rate and 

rhythm. This abnormality of the heart is called 

arrhythmia and can be detected using ECG [2]. 

Based on the abnormality, the arrhythmia is 

classified into different types. Among them, few 

arrhythmia types are fatal. Although the other types 

are not dangerous, the frequent occurrence of such 

types can lead to life threatening arrhythmia types. 

Therefore, identifying the correct type of arrhythmia 

and providing the proper medications and treatments 

in early stage can reduce the death rate from CVD. 

Nowadays, wearable devices like Fit-bit, smart 

watches, chest traps, etc are used to regularly 

monitor a person's heart function. These devices can 

read a person's ECG signals in real time without the 

need for medical equipment available in hospitals. 

The ECG signals collected by these devices must be 

analyzed to accurately identify the type of 

arrhythmia. Compared to medical devices, wearable 

devices have limits in terms of processing power 

and are dependent on battery power [3]. Therefore, 

wearable devices cannot more accurately identify 

the type of arrhythmia. So, wearable devices can 

only be used to monitor heart function and 

determine the frequency of abnormalities. They act 

as warning devices and a person should consult a 

doctor to know more about the type of heart defect 

or arrhythmia. Unfortunately, as the number of 

patients with cardiac arrhythmia increases, the 

workload of the cardiologist also increases. 

Therefore, the use of machine learning techniques to 

detect arrhythmias is crucial. Arrhythmia type can 
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be detected more precisely when Machine Learning 

(ML) algorithms are incorporated into medical 

devices. ML techniques are used in clinical 

applications for the benefit of physicians, healthcare 

organizations and individuals. 

The objective of this study is to use a hybrid 

model that combines XGBoost and CNN to improve 

classification performance of arrhythmia beats when 

compared to state-of-the-art approaches. XGBoost 

has excellent generalization performance and 

supports parallel processing. It can perform 

classification more accurately as compared to other 

ML algorithms even datasets have missing values 

and imbalanced classes. Furthermore, it employs 

regularization to manage complexity and prevent 

model overfitting. However, XGBoost is one of the 

most powerful ML classifier; its performance is 

influenced by the quality of extracted features 

supplied to it [4]. In the existing literature, [5, 6] and 

[7] used XGBoost classifier with hand-crafted  

features to detect and classify arrhythmias. But, auto 

extracted feature are extremely effective than hand-

crafted features in optimizing classification 

performance. CNN has the ability to auto extract 

features from raw ECG signals without human 

supervision. So, the strategy is to use CNN to 

extract features and XGBoost to classify and 

determine the type of arrhythmia. 

The organization of the paper is given as 

follows: Section 2 includes contributions from 

recent works on the identification and classification 

of arrhythmia types. Section 3 describes the 

proposed model, which includes CNN and XGBoost. 

Section 4 presents experimental results and a 

comparison of the proposed model to existing 

methods. Finally, the future work and conclusion is 

given in Section 5. 

2. Related work 

The general process of classifying arrhythmia 

from ECG signal involves removing noise and 

extracting features followed by a classification 

algorithm. When using the CNN model, it can 

automatically capture the features from raw ECG 

without the use of external methods. Recent studies 

on the classification of arrhythmia are discussed 

below. 

Chiang et al. [8] proposed an Associative Petri 

net (APN) model for detecting segment-based 

features and classifying 11 arrhythmia beat 

categories obtained from MIT-BIH arrhythmia 

database. APN is a rule-based framework that 

models and analyzes ECG signals and their 

dynamics using graphical and mathematical tools. 

This model achieved 85.0% sensitivity and 93.5% 

accuracy. However, APN lack of hierarchy concepts 

to further enhance classification performance. 

Akdeniz et al. [9] extracted features from ECG 

signals acquired from the MIT-BIH Arrhythmia 

database using the Zhao Atlas Mark (ZAM) time-

frequency distribution. Latter, Cubic SVM is applied 

to categorize nine types of arrhythmias and achieved 

accuracy of 96.39%, sensitivity of 94.22%, and 

positive predictive values of 93.90%. Although 

ZAM enhances time-frequency resolution and 

reduces cross-term interventions between two 

components with the same centre frequency, it fails 

when the two components have the same time centre. 

This affects feature quality and reduces 

classification performance. 

Latif et al. [10] classified eleven types of beats 

collected from MIT-BIH arrhythmia database using 

five different classifiers such as Multilayer 

Perceptron, RBF network, decision trees based on 

linear regression, Naïve Bayes and Random Forest. 

They achieved best classification performance with 

Random Forest classifier. The sensitivity of this 

model is good but the accuracy can be further 

optimized. 

Nurmaini et al. [4] proposed a Deep Learning 

based model for cardiac arrhythmia identification. 

They utilized Deep Auto-Encoders (DAEs) to 

automatically extract features from raw ECG signal, 

and Deep Neural Networks are employed to classify 

10 types of beats collected from the MIT-BIH 

arrhythmia database. Their model achieved 99.73% 

accuracy, 91.20% sensitivity, and 93.60% precision. 

DAEs can filter noise and learn features, but they 

require more training data and takes time. 

Park et al. [11] proposed a unique heartbeat 

classification model that incorporates an adaptive 

feature extraction strategy as well as cascade 

classifiers to detect arrhythmias accurately. Two 

distinct random forest classifiers are used to build 

the cascade classifiers. The initial classifier attempts 

to classify arrhythmia beats using one of the feature 

sets. If the first classifier's output has a false positive 

rate greater than a predefined threshold, then it is 

used as the input to the next classifier based on other 

feature set.  This model achieved 97.34 percent 

accuracy when evaluated on ten types of beats 

collected from the MIT-BIH arrhythmia database. 

Despite the fact that the k-NN classifier performed 

better on first feature set, the random forest 

classifier was chosen to decrease computing cost 

and memory. 

Amorim et al. [12] applied Contourlet and 

Shearlet transforms to divide ECG signals into 

different frequency bands and then extracted 
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features from time-frequency coefficients. They 

compared the performance of KNN, SVM and 

Random Forest classifiers on these extracted 

features to classify seven types of beats collected 

from MIT-BIH arrhythmia database.  They achieved 

the best performance for random forest using 

features based on Contourlet Transforms with an 

accuracy of 91.32% and sensitivity of 90.23%.  

Even though Contourlet Transform provides multi-

resolution and multidirectional features, it has shift 

variant and poor temporal stability. 

The fifteen arrhythmia classes obtained from 

MIT-BIH arrhythmia database are combined and 

formed five AAMI classes. Acharya et al. [13] 

developed a 9-layer 1D-CNN to detect five AAMI 

beat categories from ECG signals. They achieved 

94.03% accuracy with the CNN model trained on 

augmented data. The artificially augmented data 

may be slightly different from original ECG. It may 

influence real-time test data. Romdhane et al. [14] 

proposed to use Focal Loss function in CNN model 

to enhance classification accuracy of minority 

classes and also the overall metrics. This model 

performance is tested to classify and detect five 

arrhythmia categories as per AAMI standard. 

Although the accuracy of minority classes improved, 

it is less compared to our approach. Qayyum et al. 

[15] proposed to use 2D CNN model to detect 

arrhythmia beats according to AAMI standard. They 

demonstrated that the 2D-CNN model outperformed 

the 1D-CNN model in arrhythmia classification. But, 

it require short time Fourier transform to convert the 

1D heartbeat data to a 2D image. Moreover, it needs 

more memory and execution time as compared to 

1D-CNN model. 

Sharma et al. [16] proposed weighted KNN 

classifier with an optimal entropy based features. 

Their model achieved sensitivity of 85.63% and 

accuracy of 98.1% for 5 categories of AAMI beats. 

The accuracy of this model is good but the 

sensitivity can be further improved by giving 

importance to minority classes. Li et al. [17] 

developed a novel combination of AdaBoost with 

Random Forest model for arrhythmia classification 

as per AAMI classes. This model achieved average 

positive predictive value of 99.3% but sensitivity of 

S and F heartbeat categories needs to be improved. 

It has been observed that hand-crafted features 

limit the power of the classifier in case of 

arrhythmia classification of AAMI 5 classes or more 

than five classes. But when auto-extracted features 

are used, never seen before features and also most 

relevant features to the machine are extracted. As a 

result, the classification performance can be 

enhanced. The second finding is that classification 

results vary when the same classifier is employed 

with different feature sets. This indicates extracted 

features are more important for classification 

performance. The power of classification algorithm 

can be utilized to maximum extent, if best quality 

features are provided to it. 

3. Methods and materials 

The proposed hybrid model integrates a deep 

learning model such as CNN to auto extract features 

and a traditional machine learning classifier such as 

XGBoost to detect arrhythmia type. In this section, 

we discussed about CNN, XGBoost and proposed 

model architecture.  

3.1 Convolution neural network 

The performance of a classifier is influenced by 

the set of features selected and also the methods 

used to extract those features. The traditional feature 

extraction methods often require complex 

calculations and ignore weak local information 

while extracting features from images or signals. To 

overcome these problems, an automated feature 

extraction method is required and that is convolution 

neural network (CNN). CNN conserve the input’s 

spatial locality and neighbourhood relations in their 

latent higher-level feature representations. 

CNN has an input layer that takes ECG segment 

as input; It is followed by a series of alternative 

convolution layer and pooling layer; Finally, a fully 

connected layer is placed. The role of each 

convolution layer is to successfully extract multi-

level features from given input. Each convolution 

layer can be treated as a fuzzy filter to enhance the 

original ECG signal segment characteristics and 

reduced the noise. The weight sharing of 

convolution kernel can successfully reduce model 

complexity and the number of parameters required 

in training. The role of pooling layers is to further 

reduce the training parameters while maintaining 

local correlation and useful information effectively. 

The pooling layer divides the previous layer neurons 

into a disjoint set of rectangles and performs down 

sampling operation on every sub-area to acquire one 

neuron value in the present layer [18]. The 

commonly used pooling functions are the max-

pooling and average-pooling. The max-pooling 

outputs the maximum value and average-pooling 

outputs average value from selected sub-region. The 

dropout layer can also be used in CNN but it is only 

activated during training. The role of dropout layer 

is to randomly drop certain number of neurons 

during forward pass and remember those neurons 

[19]. In backward pass, it updates only the weights 
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of non-dropped neurons. The dropout is a feature 

that brings the regularization. It makes the CNN 

model to learn vigorous features that are 

independent to the neurons. After a series of 

alternative convolution and pooling layer, a fully 

connected layer is placed to get normalized feature 

set for given input of ECG segments. 

3.2 XGBoost classifier 

The features extracted from ECG segments by 

CNN are given as input to the XGBoost classifier to 

detect the type of beat. XGBoost [20] is a supervised 

machine learning algorithm that develops an 

ensemble sequential m number of trees denoted by 

F = {f1, f2, f3, … fm}  on dataset D prepared from 

extracted features ( Xi
⃗⃗  ⃗) and its corresponding ECG 

beat class labels (yi) i.e., D = {Xi
⃗⃗  ⃗, yi}i=1

n
containing n 

instance. Let the initial prediction of X⃗⃗ i  before 

developing first tree be zero, i.e. pi
(0)

= 0, then the 

prediction of a tree ft on X⃗⃗ i is given by 

 

pi
(t)

= pi
(t−1)

+ ft(X⃗⃗ i)                        (1) 

 

Each new tree ft is developed by minimizing the 

prediction error of its previous tree ft−1  and 

controlling the over fitting. So, the objective 

function for ft tree is given as  

 

objt = ∑ L (yi, pi
(t)

)n
i=i + Ω(ft)                (2) 

 

where L (yi,  pi
(t)

) be any convex differentiable loss 

function used to measure the difference between the 

prediction pi
(t)

and actual outcome yi for a given 

training instance X⃗⃗ i.  The regularization term Ω(ft) 

controls the tree structure to avoid over fitting and it 

is given by 

 

Ω(ft) =  γT + 
1

2
λ∑ wj

2T
j=1                    (3) 

 

where T is the number of leaves of ft tree and γ is 

user parameter to add a constant penalty for each 

additional leaf to the tree. W= {w1, w1, … ,wT } is 

the predicted scores to be assigned at leaf nodes 

such that, at kth node wk is assigned and λ is other 

user parameter that penalizes extreme weights. After 

substituting Eq. (1) in Eq. (2) we get 

 

obj(t) = ∑ L(yi, pi
(t−1)

+ ft(X⃗⃗ i))
n
i=i + Ω(ft)    (4) 

 

In order to simplify the calculations of loss 

function, it is expanded with Taylor series and 

approximated up to second degree term. This is 

given by the equation: 

 

obj(t) ≅ ∑ [L (yi, pi
(t−1)

) + gift(X⃗⃗ i) +
1

2
hift

2(X⃗⃗ i)]
n
i=1   

+ Ω(ft)           (5) 

 

where gi = ∂
pi
(t−1)L(yi, pi

(t−1)
) & hi = ∂

pi
(t−1)

2 L(yi, pi
(t−1)

) 

are first and second order partial derivates 

respectively. Each input  X⃗⃗ i in a tree leads to one of 

the leaf nodes, and the weight assigned to that leaf 

node is an estimate. If q is function that maps inputs 

to weights, then we can write 

 

ft(X⃗⃗ i) =  Wq(X⃗⃗ i) =  wj                  (6) 

 

Since the derivative of constant is zero, we can 

omit constant terms from objective function. From 

Eqs. (5) and (6) after omitting constant term, we can 

write 

 

obj(t) ≅ ∑ [giwj +
1

2
hiwj

2]n
i=i +  Ω(ft)       (7) 

 

If Ij  is a set of input instances leads to a 

particular leaf node j  in ft , then the objective 

function for all the T leaves in ft  can be written as 

 

obj(t) ≅ ∑ {(∑ gi
n
i∈Ij

)wj + 
1

2
(∑ hi

n
i∈Ij

)wj
2}T

j=1   

+ γT + 
1

2
λ∑ wj

2T
j=1       (8) 

 

Let the sum of first order and second order 

derivatives at  jth  leaf node represented as 

(∑ gi
n
i∈Ij

) = Gj  , (∑ hi
n
i∈Ij

) = Hj  respectively. Then 

Eq. (8) can be written as 

 

obj(t) ≅ ∑ {Gjwj +
1

2
(Hj + λ)wj

2}T
j=1 +  γT   (9) 

 

The best weight wj that optimizes the objective 

function can be found by differentiating Eq. (9) w.r.t 

wj. It is given as 

 
∂obj(t)

∂wj
= Gj + (Hj + λ)wj = 0 ⇒  wj =

− Gj

Hj+λ
  (10) 

 

Substituting Eq. (10) in Eq. (9) gives the 

objective function for best tree. 

 

obj(t) ≅ −
1

2
 ∑

Gj
2

Hj+λ
T
j=1 +  γT             (11) 
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When a tree structure is given, Eq. (11) can be 

used to determine how well it predicts. But 

generating all possible tree structure on D to identify 

the best predicting tree structure is practically risky 

process. This job is simplified by XGBoost in a 

greedy method. The process of designing best tree at 

each iteration starts with root node by placing all the 

input instances at it and its objective function is 

given by Eq. (11). Split the root node into left and 

right child nodes based on some condition and also 

split the instances at parent node accordingly. Then 

the gain due to current split is given by subtracting 

parent node objective function from the sum of the 

objective functions of left and right Childs. It is 

given by  

 

Gain =  
1

2
 [

GL
2

HL+λ
+ 

GR
2

HR+λ
−

(GL+GR)2

GL+GR+λ
] −  γ    (12) 

 

If the gain is positive for a child node, then 

considering it as parent node, split it into left and 

right child nodes. Repeat this process to get the best 

tree structure. After generating m sequential trees 

(when there is no further improvement in prediction) 

in a way that the newest tree correct the prediction 

errors of previously existing trees. The final 

prediction of Xi
⃗⃗  ⃗ is given by 

 

pi = ∑ ft(X⃗⃗ i)
m
i=1                         (13)  

 

where pi is the predicted class label of ECG beat. 

3.3 Proposed architectural model 

The proposed model contains two stages; feature 

extraction with CNN and classification using 

XGBoost. This is shown in Fig. 1. 

The input layer in CNN model takes 720x1 

samples from each ECG segment as an input. The 

first convolution layer with 6 filters and kernel size 

of 5 is applied to the input ECG segment to produce 

an output matrix of 716x6. The max-pooling layer 

then takes 716x6 matrix as input and produces 

238x6 as an output. The second convoluted layer 

applies 12 filters and kernel size of 5 to input matrix 

of 238x6 to get matrix of 234x12. The second max 

pooling layer takes the output of the second 

convoluted layer as input to generate 77x12 as 

output. The final convolution layer produces output 

of 73x24 by applying 36 filters and a kernel size of 

5. The third max pooling layer produces matrix of 

24x24 as output from 73x24 inputs. Each of the 

convolution layer and the fully connected layer use 

"relu" as the activation function to produce output. 

Each of the max pooling layer uses a pool size of 4  
 

 
Figure. 1 Proposed model 

 
and a stride of 3. The flatten layer flattens the output 

of the final max pooling layer and produces 576 

outputs. These 576 values are given as input to the 

fully connected layer to get 128 features. Finally, 

XGBoost uses 128 features generated by CNN as 

input to detect the class label of the ECG segment. 

4. Results and discussion 

The performance of proposed model is evaluated 

using MIT-BIH Arrhythmia Database [21]. ECG 

recordings in this database are annotated with 

corresponding beat type at each R peak. The 

position of R-peaks can also be accurately 

determined by using algorithms like Pan-Tompkins 

[22]. Initially, a dataset is created by splitting the  
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Figure. 2 Sample extracted ECG segments of: (a) Atrial 

premature beat, (b) Normal beat, (c) Fusion of ventricular 

and normal beat, (d) Premature ventricular contraction, 

(e) Fusion of paced and normal beat, and (f) Left bundle 

branch block beat 

 

raw ECG signals into ECG segments. In the process 

of preparing dataset, a 2 seconds duration ECG 

segment was formed from each R peak position such 

that, a window size of one second to the left and one 

second to the right from R peak. Each ECG segment 

assumed to contain one heart beat at the center and 

the beat type annotated at R peak acts as beat class. 

Sample ECG segments of window size of 2 seconds 

are shown in Fig 2. 

The initial and final R peaks in each ECG recording 

may not have either window size of one second to 

the left or right from R peak. Those R peak 

segments are not included in the dataset, i.e., only 

ECG segments of window size of two seconds 

having left one second and right one second from R 

peak is chosen to form dataset. In other words an 

ECG segment contains 720 sampling points with R 

peak at centre. Finally, dataset is formed with 

extracted ECG segments as input and their 

corresponding beat label as output class. The details 

of these ECG segments are given in Table 1. It 

contains names of 15 arrhythmia beat types from 

MIT-BIH arrhythmia database and number of 

extracted ECG segments for each type. These 15 

types of arrhythmia beats are grouped into five 

super-classes as shown in table 1, according to the 

Association for the Advancement of Medical 

Instrumentation (ANSI / AAMI EC57: 1998).  

Table 1. Extracted ECG segments  

AAMI Beat 

Class 
MIT BIH Beat class 

Total 

No of 

Beats 

 

Non ectopic 

beat (N) 

Normal beat (NOR) 74926 

Left bundle branch Block  

Beat (LBB) 
8066 

Right bundle branch Block 

beat (RBB) 
7251 

Atrial escape beat (AE) 16 

Nodal Escape (NjE ) 229 

Supraventricular 

ectopic beat (S) 

Atrial premature beat (AP) 2545 

Aberrated atrial premature 

beat (aAP) 
150 

Nodal (junctional) premature 

beat (NJP) 
83 

Supraventricular premature 

beat (SVC) 
2 

Ventricular 

ectopic beat (V) 

Premature ventricular 

contraction (PVC) 
7126 

Ventricular escape beat (VE) 106 

Fusion beat (F) 
Fusion of ventricular and 

normal beat (FVN) 
802 

Unknown beat 

(Q) 

Paced beat ( PB ) 7018 

Fusion of paced and normal 

beat ( fPN ) 
982 

Unclassified beat (UB) 33 

 

The proposed hybrid model was applied on ECG 

segment data of eleven beat classes that contain one 

normal and 10 abnormal classes. The beat classes 

chosen are Premature Ventricular Contraction 

(PVC), Fusion of Ventricular and Normal beat 

(FVN), Atrial Premature beat (AP), Aberrated atrial 

premature beat (aAP), Nodal (junctional) premature 

beat (NJP), Right bundle branch block beat (RBB), 

Left bundle branch block beat (LBB), Paced beat 

(PB), Ventricular escape beat (VE), Fusion of paced 

and normal beat ( fPN ) and Normal beat (NOR). As 

the instances of selected beats are highly imbalanced 

and number classes to be classified are more, the 

train-test split strategy with stratified is used. In 

stratified train-test split, the dataset is split into train 

and test sets such that each set contains roughly 

equal proportional instances of target classes. That is, 

the distribution of each class instances in each set is 

approximately in same proportions as present in 

original dataset. This ensures that no set contain 

either over or under represented instances of a 

particular class. The selected 11 beat classes are 

splitted into train data of 70% and test data of 30%. 

To avoid over-fitting and to guide the training 

process, the train data set further divided into two 
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Figure. 3 Division of ECG dataset for training, validating 

and testing sets 

 

parts. The first part contains 70% of data used to 

train the model and the remaining 30% data is used 

to validate the training model. The division of train, 

validate and test sets is given in Fig. 3.  

The 1D-CNN model as described in section 3.3 

with a dense layer at the end having “softmax” 

activation function is fully trained over training and 

validation data set. The categorical cross entropy 

loss function and Adam optimizer is used in the 

process of training the model. Early stopping is 

employed to avoid over-fitting of CNN model by 

monitoring validation loss upto 50 epochs. When 

validation loss does not improve during the last 50 

epochs, then the training process is stopped. Latter, 

the best model is selected based on validation 

accuracy with the help of a Callbacks API from 

Keras called as “ModelCheckpoint”. Even though 

the validation data is not known to the selected 

training model, it provides best accuracy for the 

validation data. Therefore, the same training model 

can also give better accuracy on test data. Based on 

this assumption, training model is selected. This 

fully trained model is used to extract features.  

 

 
(a) 

 

 
(b) 

Figure. 4 Plots for train and validation of CNN: (a) loss 

curves and (b) accuracy curves 

Fig 4(a) and 4(b) shows the loss and accuracy 

changes of CNN model on training and validation 

data to better understand the training process. It can 

be observed from Fig. 4 (a) that the loss of 

validation data does not decrease after 

approximately 200 epochs, so the training process 

continues for another 50 more epochs and then 

stopped. Figure 4 (b) shows that the accuracy of the 

validation data and the accuracy of the training data 

are almost equal approximately from 100 epochs to 

until the training process stopped. This indicates that 

the 1D CNN model is well trained. So, the trained 

model can provide best set of features for 

classification purpose.  

The output from the fully connected layer after 

flatten layer of the trained CNN model is given as 

input to the XGBoost model. The flattened layer 

transforms multidimensional input feature vectors 

received by it from previous layer into one-

dimensional output data. The first fully connected 

layer reduces the 576 input features received by it 

into 128 output features. These 128 features are 

extracted and fed to XGBoost model as input 

features. While training XGBoost model, to avoid 

bias towards majority classes, sample weights are 

assigned to train data using the below formula. 

 

classi_weight =
Total_no_of_samples

(no_of_classes) x (No_of_classi_samples)
  

(14) 

 

The number of ECG segments belongs to different 

arrhythmia types in the data set is highly unbalanced. 

Therefore the class with the majority samples can 

influence the overall results of the whole data set. 

To avoid this, we analyzed class-wise performance 

besides overall performance. Apart from that we 

also evaluated using four different metrics such as 

accuracy, sensitivity, specificity and positive 

predictive value as per given below equations. 

 

Accuracy (Acc) =  
TP+TN

TP+FP+TN+FN
        (15) 

 

Sensitivity (Sen) =  
TP

TP+FN
             (16) 

 

Specificity (Spe) =  
TN

FP+TN
             (17) 

 

Positive Predictive Value (Ppv) =  
TP

TP+FP
   (18) 

 

The analysis of class-wise results from four 

different evaluation metrics allows us to better 

understand the performance of the proposed model. 

In particular, class-wise sensitivity and positive  
 

Training (70%) Testing (30%) 

Training (70%) Validation (30%) 

ECG Segments 
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Figure. 5 Confusion matrix for 11-class arrhythmia beats 

 
Table 2. Class-wise evaluation metrics for 11-class 

arrhythmia beats 

Beat 

Type 

No of 

Test 

beats 

Acc % Sen % Spe % Ppv % 

AP 763 99.72 92.79 99.89 95.16 

PVC 2138 99.69 97.24 99.87 98.07 

RBB 2175 99.93 99.82 99.94 99.18 

LBB 2420 99.92 99.71 99.94 99.22 

NOR 22490 99.36 99.52 98.99 99.54 

PB 2105 99.96 99.71 99.98 99.67 

NJP 25 99.97 68.00 99.99 89.47 

fPN 295 99.92 95.59 99.96 95.92 

VE 32 99.99 93.75 100.00 100.00 

aAP 45 99.95 80.00 99.98 83.72 

FVN 241 99.75 88.38 99.84 80.08 

Average 99.84 92.61 99.85 95.99 

Acc=Accuracy, Spe=Specificity, Sen=Sensitivity, 

Ppv=Positive Predictive Value 

 

predictive value can be used to evaluate the 

performance of a model when classification data are 

highly unbalanced. 

The confusion matrix of 11 beat classes on test 

data using the proposed model is given in figure 5 

and class-wise accuracy, sensitivity, specificity and 

positive predictive value for 11 classes are presented 

in Table 2.  

When sensitivities of all the eleven classes from 

Table 2 are compared, Nodal (junctional) premature 

beat (NJP) class having low sensitivity of 68%. 

Even in the existing literature, this class sensitivity 

is less as compared to other classes [4, 9]. In our 

case, 8 test beats out of 25 from NJP class are  
 

Table 3. Comparison of 11-class arrhythmia results with 

other methods 

Method used 
No of 

classes 

Acc 

% 

Sen 

% 

Spe 

% 

Ppv 

  % 

Associative Petri Net 

Model [8] (2014) 
11 93.5 85.0 95.9 85.0 

Cascade Random 

Forrest, Adaptive 

Feature Extraction [11] 

(2017) 

10 97.34 87.42 99.69 97.98 

DNN, Deep Auto-

Encoders [4] (2019) 
10 99.73 91.2 91.8 93.6 

contourlet transforms, 

Random Forest [12] 

(2019) 

7 91.32 90.23 90.29 - 

Random Forest [10] 

(2020) 
11 97.45 97.5 95.9 - 

Cubic SVM, Zhao-Atlas 

mark distribution [9] 

(2021) 

9 96.39 94.22 92.02 93.9 

Proposed model 11 99.84 92.61 99.85 95.99 

 

misclassified and treated as PVC class. This can be 

corrected by increasing numbers samples of NJP 

class beats both in train and test sets. But, due to 

non-availability in MITBIH arrhythmia database, it 

is not possible. Except this class, the sensitivity of 

other classes is reasonably good and achieved 

average sensitivity of 92.61%. The class-wise 

specificity and accuracy is exceptionally good and 

achieved average specificity and accuracy of 

99.85% and 99.84% respectively. In case of positive 

predictive value, Fusion of paced and normal beat 

(fPN) class having 80.08% which is lowest when 

compared with other classes. The average positive 

predictive value achieved for our model is 95.99%. 

The comparison of eleven class arrhythmia results 

of proposed model with other recent existing 

methods is given in Table 3. 

In recent arrhythmia beat classification work, 

[10-12] used random forest classifier, but the 

method used to extract features form ECG is 

different. In case of 11-beat classes, the proposed 

model outperformed a rule based model such as 

Associative Petri Net (APN) [8] in all evaluation 

parameters. Latif et al. [10] achieved high sensitivity 

using random forest classifier to identify 11 

arrhythmia beats, but failed to get better specificity 

and accuracy compared to our model. Although both 

Random Forest and XGBoost are ensemble 

classifiers, the results prove that the latter performs 

better at detecting arrhythmia category. The positive 

predictive value of Park et al. [11] is 1.9% higher 

than proposed model, but its accuracy, specificity 

and sensitivity are 1.33%, 0.04% and 1.38% lower, 
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Figure. 6 Confusion matrix for AAMI 5-class beats 

 

respectively. Furthermore, when compared to our 

approach, the process of applying the features in 

Park et al. model [11] is more complicated and 

requires human monitoring. Even though number of 

beat classes to be classified in our model is greater 

than [4, 9, 11, 12], our results are better than their 

results. This indicates the proposed XGBoost 

classifier with CNN is improving the classification 

results. But, number of beat classes and their 

combination in classification task is different from 

one researcher to other; it may not be a fair 

comparison. For fair comparison purpose, we also 

conducted experiment as per standard AAMI classes 

using proposed model. The details of ECG segments 

used for classification according to AAMI standard 

are given in table 1. Here also, we used same 

strategy of stratified train-test split with 70:30 as 

described above. The confusion matrix for 5 AAMI 

classes is given in Fig. 6. 

The Confusion Matrix of AAMI categories 

shows that 252 beats out of 32813 total test beats 

were misclassified and had correctness of 99.23%. 

The highest misclassified beats are from Fusion 

beats (F) of 16.54%. Among them, 6.62% F beats 

are wrongly predicted as Ventricular ectopic beat 

(V) and 9.56% F beats are wrongly predicted as 

Normal beats (N). Table 4 provides a comparison of 

the proposed model's beat-wise performance with 

state-of-the-art approaches in classifying ECG beats 

into five categories. We have highlighted metric-

wise highest value for each beat in table 4. All the 

comparisons performed here used the AAMI 

standard of 5 types of ECG beats collected from the 

MIT-BIH arrhythmia database. 

Although the sensitivity and positive predictive 
 

Table 4. Comparison of AAMI 5-classes arrhythmia 

results with other methods 

 

value of class F of CNN model [13] are higher than 

the proposed method, the same metric values of the 

remaining four classes are lower than the proposed 

model. Therefore, when the average sensitivity and 

positive predictive value are taken into account, the 

proposed model performance is significantly better. 

Moreover, the specificity and accuracy of all the 

five beats of the proposed model is also superior to 

that of the CNN model [13]. This implies that the 

CNN model results can be further improved when 

CNN is integrated with XGBoost. The Q beats 

sensitivity and N beats specificity of the 2D-CNN 

model [15] are 0.06% and 0.62% respectively, 

higher than our technique. However, when the 

overall results considered, our strategy is much 

better. Moreover 2D-CNN model requires more 

memory and processing time. Even though the 

AdaBoost with the Random Forest model [17] has a 

higher average positive predictive value, its average 

sensitivity, specificity and accuracy are lower than 

the proposed model. 

Method Metric N S V F Q AVG 

CNN [13] 

(2017) 

Sen % 91.64 89.04 94.07 95.21 97.39 93.47 

Spe % 96.01 98.77 98.74 98.67 99.61 98.36 

Ppv % 85.17 94.76 95.08 94.69 98.4 93.62 

Acc % 95.14 96.82 97.84 97.97 99.16 97.39 

2D CNN 

[15] 

(2019) 

Sen % 99.63 84.88 94.88 89.75 99.38 93.70 

Spe % 98.22 98.91 98.28 98.59 98.13 98.43 

Ppv % 93.33 95.10 93.24 94.10 92.98 93.75 

Acc % 98.50 96.10 97.60 96.83 98.38 97.48 

Entropy 

features + 

KNN[16] 

(2019) 

Sen % 99.59 73.64 92.11 64.46 98.32 85.62 

Spe % 91.92 99.84 99.75 99.94 99.93 98.28 

Ppv % 98.34 92.09 96.37 88.38 99.06 94.85 

Acc % 98.27 99.17 99.25 99.68 99.81 99.24 

1D CNN 

with 

Focal 

loss[14] 

(2020) 

Sen % 99.49 77.88 94.54 82.10 98.51 90.50 

Spe % 94.99 99.71 99.70 99.88 99.95 98.85 

Ppv % 98.96 87.65 95.73 83.65 99.31 93.06 

Acc % 98.71 99.16 99.36 99.75 99.84 99.36 

AdaBoost 

+ Random 

Forest 

[17] 

(2021) 

Sen % 99.95 82.61 97.45 70.88 99.24 90.03 

Spe % 95.86 99.99 99.84 100 99.99 99.14 

Ppv % 99.13 99.52 97.95 100 99.87 99.3 

Acc % 99.24 99.58 99.67 99.79 99.94 99.64 

1D CNN 

+ 

XGBoost 

Sen % 99.74 91.85 97.42 83.46 99.32 94.36 

Spe % 97.60 99.88 99.85 99.92 99.97 99.44 

Ppv % 99.51 94.95 97.88 90.08 99.57 96.40 

Acc % 99.38 99.68 99.70 99.79 99.92 99.69 
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Romdhane et al. [14] handled unbalanced 

dataset classification of AAMI beats using CNN and 

focal loss function. But our approach outperformed 

all evaluation metric values across all five beat 

categories. This shows that our technique to dealing 

with unbalanced datasets is considerably superior to 

Romdhane et al. [14] approach. Acharya et al. [13] 

and Qayyum et al. [15] used balanced dataset for 

AAMI based beat classification. Despite using an 

unbalanced data set, we achieved greater or nearly 

close sensitivity, specificity, accuracy, and positive 

predictive value for all the beats except category F 

beats when compared to results from the balanced 

dataset. However, when the mean metric values are 

considered to determine overall performance, our 

model is the winner. This proves that the proposed 

model performs effectively even when the data set is 

unbalanced. 

 

 
Figure. 7 Comparison of sensitivity of different methods 

on AAMI 5-classes 

 

 
Figure. 8 Comparison of specificity of different methods 

on AAMI 5-classes 

 

 
Figure. 9 Comparison of positive predictive value of 

different methods on AAMI 5-classes 

 
Figure. 10 Comparison of positive predictive value of 

different methods on AAMI 5-classes 

 
For quick understanding purpose, class-wise 

sensitivity, specificity, positive predictive value and 

accuracy of the proposed method along with other 

recent models on the AAMI 5-classes are 

graphically presented in Fig. 7, Fig. 8, Fig. 9 and Fig. 

10 respectively. 

5. Conclusion 

The novelty of this work is the integration of a 

deep learning model with traditional machine 

learning model. The CNN model is used to auto 

extract features and XGBoost is used to classify the 

arrhythmia beats. The proposed model obtained 

overall sensitivity of 92.61%, specificity of 99.85%, 

precision of 95.99% and accuracy of 99.84% to 

detect eleven arrhythmia beats of MIT-BIH 

arrhythmia database. We also tested to classify the 

five arrhythmia beats according to the AAMI 

standard and attained overall Sensitivity of 94.36%, 

specificity of 99.44%, precision of 96.40% and 

Accuracy of 99.69%. This study demonstrated that 

combining XGBoost with CNN can improve the 

classification performance compared to state-of-the-

art methods, particularly when the dataset is highly 

imbalanced. 

The main issue with the proposed model is that 

it takes long time to train. However, the testing time 

is suitable for use in real-time applications.  In 

future work, we would like to investigate the 

integration of CNN with other deep learning 

techniques such as LSTM and BiLSTM in the 

arrhythmia detection process. 
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