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Abstract: Viral respiratory infections are the most common diseases suffered by all age groups worldwide. The gold 

standard for diagnosing viral respiratory infection is through the molecular method, but this diagnosis is expensive, 

requires sophisticated equipment, can only be performed by well-trained medical staff, and is painful. Volatile Organic 

Compounds (VOCs) are compounds released from the human body that can be a marker of disease and based on 

numerous studies it also contains VOCs. An electronic nose (E-nose) is a device that can be used to identify disease. 

This study proposes a new approach for the detection of viral respiratory infections through sweat from the armpit 

using an E-nose consisting of 5 semiconductor gases and a single-board computer. Several statistical parameters are 

used to obtain features and the detection algorithm used is Fully Connected Deep Network (FCDN). Several sizes of 

hidden layers were tested to obtain the best FCDN model. This study also proposes the selection of the best FCDN 

model which is a trade-off between complexity and accuracy, so that the model stored in E-nose is a model that not 

only has good accuracy but is also not too complex. The experimental results show that using 29 statistical parameters 

and 2 hidden layers generate the highest accuracy of 0.940 for the detection of 2 classes, namely positive and negative, 

with sensitivity and specificity of 0.967 and 0.915, respectively, where the best FCDN model has a total of 90,561 

parameters. 
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1. Introduction 

Viral respiratory infections are the most common 

diseases suffered by all age groups worldwide. 

Elderly people and children have the highest risk of 

being infected with the disease, especially in low-

income countries. A particular report states that more 

than 16 % of deaths occur in children under 5 years 

old [1]. The spread of this disease is rapid, through 

direct physical contact, droplets, or aerosols. Quick 

and accurate diagnosis is needed so that the subject 

receives the right treatment and minimizes the spread 

of the disease. The gold standard for diagnosing this 

disease is through the molecular method, but this 

diagnosis is expensive, requires sophisticated 

equipment, can only be performed by well-trained 

medical staff, and is painful [2]. 

Volatile organic compounds or better known by 
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the abbreviation VOCs are compounds that easily 

evaporate at a certain pressure and temperature. 

Hundreds of VOCs have been reported to be excreted 

by humans through breath, saliva, skin, sweat, blood, 

milk, urine, and feces [3]. VOCs released through 

sweat have been studied to determine whether or not 

sweat can be a signal of certain diseases and the 

results show that sweat can be a potential sample to 

detect the presence of disease in the body [4]. In the 

human body, sweat is found all over the skin but is 

mostly produced on the soles of the feet, hands, 

armpits, and genital areas [5]. By using a sample from 

the armpit, the detection will be safer because the 

virus that causes viral respiratory infections is not 

found in sweat [6]. 

An electronic nose (E-nose) is an electronic 

sensing device that works similarly to a human nose 

to detect odors [7]. E-nose has been used in various 

fields, such as cosmetic, pharmaceutical, food and 

beverage, automobile, agriculture, and medical [8]. 

In the medical field, the use of e-nose nowadays 

increases to identify pathogens, select the right 

treatment for patients, identify nutritional status, 

psychological conditions, and detect diseases [9]. An 

electronic nose is composed of several sensors and a 

data processing unit. In the data processing unit, there 

is a classification algorithm that can be used to detect 

diseases. The type of sensor that is most widely used 

in E-nose is Metal-oxide Sensor (MOS) because it is 

highly sensitive, inexpensive, and fast response. 

Studies using E-nose to detect diseases have been 

conducted. Previous research has been successfully 

detected diseases caused by aspergillus fumigatus 

through exhaled breath using canonical discriminant 

analysis (CDA) with an accuracy of 89 % [10]. 

Another research in 2016 has been designed e-nose 

to detect joint inflammatory through exhaled breath 

disease using principal component analysis (PCA) 

and linear discriminant analysis (LDA) with an 

accuracy of 70 % [11]. Meanwhile, Saidi et. al has 

created an e-nose device to distinguish chronic 

kidney disease, diabetes mellitus, and healthy 

subjects through exhaled breath using PCA and 

support vector machine (SVM) with perfect accuracy 

[12]. Another research in 2018 by Yang et. al tried to 

detect pneumoconiosis through exhaled breath using 

LDA with an accuracy of 70 % [13]. However, no 

previous research has used sweat from the armpit as 

an E-nose sample to detect disease. The latest 

research using e-nose to detect diabetes through urine 

using deep learning with convolutional neural 

network (CNN) produces an accuracy of 100 % [14]. 

The advantages of deep learning compared to other 

detection algorithms are that it provides quality final 

results, can manipulate data more effectively and can 

handle data signals [15]. However, CNN is famous 

for its high complexity, so it is not suitable to be 

applied to an e-nose that is built using a single-board 

computer. In other areas, another type of deep 

learning namely fully connected deep network 

(FCDN) has been used to identify the type of meat 

and the results prove that FCDN is also able to help 

e-nose to detect with lower complexity but 

comparable accuracy [16]. 

Statistical parameters have been used in E-nose to 

extract features, including using mean, standard 

deviation, minimum, and maximum for the detection 

of civet and non-civet coffee [17, 18], furthermore 

mean, standard deviation, skewness, and kurtosis also 

used for the detection of mixed beef and pork [19, 20]. 

Other statistical parameters, such as variance and root 

mean square has been also used in audio data [21], 

but their use is still limited to E-nose signal data.  
As mentioned before, the self-developed e-nose 

is designed with a single-board computer, so that if 

needed to store the detection algorithm in E-nose, 

FCDN model must not be too complex, but must also 

have reliable accuracy, at the same time [22]. 

Complexity in FCDN can be represented by the 

network depth and width of each layer or the number 

of parameters [23]. Accuracy alongside and numbers 

of parameters in FCDN must be taken into the 

account in determining the selection of models to be 

stored in E-nose from several FCDN models that 

have been built.  

The use of an E-nose that takes samples of sweat 

from the armpit, simple statistical parameter feature 

extraction, and a less complex but accurate FCDN 

model which is automatically selected from several 

FCDN models as a detection algorithm are the main 

advantages of this research compared to others. 

Moreover, this research aims that the self-developed 

e-nose can help health workers carry out initial 

screening for the detection of viral respiratory 

infections quickly, accurately, painlessly, non-

invasively, inexpensively, and not increase the risk of 

transmitting viral respiratory infections. 

Therefore, the contributions to this study are: (i) 

a new approach to detect viral respiratory infections 

from sweat in the armpit using E-nose; (ii) addition 

of statistical parameter feature extractions from 

previous studies; and (iii) automatic selection of the 

best model using an indicator which is a trade-off 

between complexity and accuracy.  

This paper is structured as follows: Section 1 

provides the background of our research. Section 2 

covers the proposed method. Section 3 explains the 

experimental setup, result of experiments and  
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Figure. 1 The proposed method 

 

discussion. Section 4 summarizes the main point of 

our research. 

2. Proposed method 

This study aims to build an E-nose that uses sweat 

from the armpit as the sample to detect viral 

respiratory infections. The proposed material and 

method are illustrated in Fig. 1.  

2.1 Pre-processing 

The data obtained from the data acquisition stage 

is divided into training data and test data of 80 % and 

20 %, respectively, where the data would be further 

processed using statistical parameter feature 

extraction and standardization. The output of this 

stage would be input for FCDN training and testing 

phase. 

2.1.1. Statistical parameter feature extraction 

The data signal generated by the E-nose is 

stationary, so statistical parameters can be calculated. 

This study used 29 statistical parameters, in which 

there are 3 combinations of statistical parameter 

feature extraction as can be seen in Table 1. 

Percentile is the lowest value equal to or greater 

than p % of the value in the data. Eq. (1) is used to 

calculate percentile, p is the desired percentile, and xt 

is the value of each observed data. 

 

Percentile(p) = p% ×  xt                  (1) 

 

Variance is the sum of the squares of all the 

deviations of the individual values with the data mean. 

Variance is calculated using Eq. (2), where xt is the 

value of each observed data, 𝜇 is the data average, 

and n is the number of observations. 

Table 1. Combination of statistical parameter feature 

extraction 

Feature 

extraction 

Statistical parameters 

Feature 

extraction 1  

4 statistical parameters: Mean, 

standard deviation, minimum, 

maksimum 

Feature 

extraction 2 

4 statistical parameters: Mean, 

standard deviation, skewness, 

kurtosis 

Feature 

extraction 3 

29 statistical parameters: Mean, 

standard deviation, minimum, 

maksimum, skewness, kurtosis, 

5th percentile, 10th percentile, 15th 

percentile, 20th percentile, 25th 

percentile, 30th percentile, 35th 

percentile, 40th percentile, 45th 

percentile, 50th percentile, 55th 

percentile, 60th percentile, 65th 

percentile, 70th percentile, 75th 

percentile, 80th percentile, 85th 

percentile, 90th percentile, 95th 

percentile, varians, root mean 

square, zero crossing, and mean 

crossing. 

 

S2 =  
∑(xt− μ)2

n
                                (2) 

 

Root mean square (RMS) is the root of the 

average value of a function squared. RMS is 

calculated using Eq. (3), where xn is the value of each 

observed data, and n is the number of observations. 

 

RMS =  √
1

n
∑ xn

2
n =  √x1

2+⋯+xn
2

n
                 (3) 

 

Zero-crossing (ZC) indicates the number of times 

adjacent signals pass through the horizontal axis 

which is 0. ZC is calculated using Eq. (4), where T is 



Received:  January 4, 2022.     Revised: January 27, 2022.                                                                                               397 

International Journal of Intelligent Engineering and Systems, Vol.15, No.2, 2022           DOI: 10.22266/ijies2022.0430.36 

 

the number of observations, and x(t) is the value of 

each observed data. 

 

ZC =  
1

2
∑ |x(t) − x(t − 1)|T

t=1                    (4) 

 

Mean crossing (MC) indicates the number of 

times the signals of two adjacent values pass through 

the mean. MC is calculated using Eq. (5), where T is 

the number of observations, 𝜇 is the data average, and 

x(t) is the value of each observed data. 

 

𝐌𝐂 =  
∑ |(𝐱(𝐭)−𝛍)−(𝐱(𝐭−𝟏)−𝛍)|𝐓

𝐭=𝟐

𝟐
               (5) 

2.1.2. Standardization 

Data standardization is needed in a quantitative 

variable study that has different units. It is used in this 

study so that the data scale is not too different; this is 

intended so that the average of the observed data 

becomes 0 and the standard deviation becomes 1. The 

standard used in this study is the standard scaler in 

python [24]. Eq. (6) is used to standardize the data, 

where z is the new data, x is the observed data, 𝜇 is 

the average of all data, and 𝜎 is the standard deviation 

of the data. 

 

z =
x− μ

σ
                                            (6) 

2.2 Fully connected deep network training phase 

Fully connected deep network (FCDN) is one of 

the most commonly used types of deep learning. The 

difference between FCDN and artificial neural 

network (ANN) is in the number of hidden layers, 

where FCDN has more than 1 hidden layer [16]. 

FCDN consists of a fully connected layer where all 

active neurons from the previous layer are connected 

to neurons in the next layer. In the detection of viral 

respiratory infections, the number of input layers 

from the FCDN corresponds to the number of 

features obtained from the statistical parameter 

feature extraction. The input layer then connects it to 

the first hidden layer, and the first hidden layer  

 

connects to the next hidden layer. The last hidden 

layer will pass it to the output layer. Each neuron 

receives input and performs a dot operation with 

weight, a parameter value that connects one neuron 

to another. 

In FCDN training phase, this study performs 

hyperparameter tuning to determine the best number 

of neurons that make up FCDN. Several hidden 

layers were tested, namely 2, 3, and 4 hidden layers. 

The number of neurons searched for each hidden 

layer is shown in Table 2. Hyperparameter tuning is 

conducted using random search, where not all values 

are tested; the values tested are random and can be 

limited as desired [25]. Due to limited resources, this 

study used random search with 50 iterations.  

As explained earlier, each neuron connected to 

other neurons is connected by a parameter called 

weight, where the value of this weight will be 

different for each layer. To determine the i-th output 

of the fully connected layer, Eq. (7) is used, where 𝜎 

is the activation function, 𝑤𝑚 is the m-th weight, 

while x is the input of the fully connected layer. 

 

yi =  σ (w1 x1 + ⋯ + wmxm)               (7) 

 

Each layer consists of neurons and an activation 

function that determines whether a neuron is active or 

not. This study uses ReLU as an activation function 

that connects the hidden layer because ReLU is an 

activation function that generates better results in a 

number of experiments [26]. ReLU is calculated 

using Eq. (8), in which it will make a delimiter on the 

number zero, meaning that if 𝑥 ≤ 0 then 𝑥 = 0 and if 

𝑥 > 0 then 𝑥 = 𝑥. 

 
f(y)

f(x)
=  [

x x > 0
0 x ≤ 0

]                       (8) 

 

Meanwhile, the activation function at the output 

layer uses a sigmoid calculated using Eq. (9) because 

this study solves binary problems.  

 

f(x) =  
1

1+e−x                                 (9) 

 

Table 2. Hyperparameter ranges of FCDN used for the experiment in different number of hidden layer 

Hidden Layer Hyperparameter Choice 

2 Hidden Layer Number of neurons in the 1st hidden layer  range(64, 256) 

Number of neurons in the 2nd the hidden layer range(256, 1024) 

3 Hidden Layer Number of neurons in the 1st hidden layer  range(64, 256) 

Number of neurons in the 2nd the hidden layer range(256, 1024) 

Number of neurons in the 3rd the hidden layer range(256, 1024) 

4 Hidden Layer Number of neurons in the 1st hidden layer  range(64, 256) 

Number of neurons in the 2nd the hidden layer range(256, 1024) 

Number of neurons in the 3rd the hidden layer range(64, 256) 

Number of neurons in the 4th hidden layer  range(256, 1024) 
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When the learning model generates a high loss 

value, FCDN executes a function called a loss 

function, where errors can be minimized using this 

function. The loss function will compare the 

prediction of the output and the target using Eq. (10), 

where T is the target and P is the prediction. If the 

prediction is far from the target, the resulting model 

performance is not optimal. 

 

LossFunction = (T − P)2                    (10) 

 

Each error in the loss function indicates that the 

weight and bias values must be adjusted, which is 

called back-propagation. There is also a parameter 

called optimizer, an algorithm to reduce the loss 

function and change the weights in backpropagation. 

Eq. (11) is used by the optimizer to change the weight 

with the learning rate value, where ∗ 𝑊  is a new 

weight, 𝑊𝑥 is the old weight, 𝑎 is the learning rate, 

and (
𝜕𝑒𝑟𝑟𝑜𝑟

𝜕𝑊𝑥
) is derivative of error related to weight. 

This study uses Adam as an optimizer to train and test 

the model because it has advantages, such as 

requiring small memory, working well with large 

data, and parameters with efficient computation [27]. 

The learning rate used in this study is 0.0001. 

 

∗ Wx = Wx − a (
∂error

∂Wx
)                         (11) 

 

Before creating a model, FCDN has several 

parameters that must be adjusted, namely epoch and 

batch size. This study uses 100 epochs and batch_size 

32. This study tried several epochs but increasing and 

decreasing epochs do not show better results. 

2.3 Model selection using indicator 

This study selects the best FCDN model from 

several FCDN models using an indicator that is a 

trade-off of accuracy and complexity automatically. 

The model to be selected is a model of which 

parameters are not too many but produces 

competitive accuracy; therefore, this study proposes 

the best model selection indicator using Eq. (12), 

where the model with the highest indicator value will 

be selected as the model to be stored in the E-nose 

device, where AccTest is the accuracy in the test data, 

and Param is the number of parameters in deep 

learning. The number of parameters is normalized 

using a logarithm with an Euler number basis or 

called the natural logarithm (ln) [28], because the 

number of deep learning parameters can be hundreds, 

thousands, even tens of millions. The goal of 

normalization is to convert a numerical value using a 

common scale, without distorting differences in the 

range of values or losing information [29]. Algorithm 

1 is pseudocode for selecting the best model 

automatically using indicators, where in the first step 

the program obtains accuracies, number of 

parameters and calculates the indicator (I) values for 

all FCDN models, and in the second step, the 

program chooses an FCDN model which has the 

highest indicator value. 

 

I = (Acc Test) × 100 − ln (Param)        (12) 

2.4 Evaluation  

Cross-validation stratified k-fold is used in the 

FCDN training phase by using training data to select 

the best FCDN model from hyperparameter tuning. 

This study uses a stratified k-fold with 5 folds. 

Stratified k-fold with 5 folds means that the data were 

divided into 5 equal folds, where the class 

distribution is balanced according to the class 

distribution of the entire population in each fold. 

FCDN models created in the training phase were 

then evaluated using data that were never used in the 

training phase, namely test data. The evaluation was 

done using a confusion matrix that consists of true 

positive (TP), true negative (TN), false positive (FP), 

and false negative (FN). TP means that the model 

correctly identifies the subject as having the disease, 

FP means that the model incorrectly identifies the 

subject as having the disease, even though the subject 

Algorithm 1 Automatic model selection with 

indicator 

Input   : 9 Models from Hyperparameter 

Tuning 𝑀𝑇 

              Test Data 𝐷𝑇 

Output : 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑀𝑜𝑑𝑒𝑙 
 

Step 1: obtain Accuracy, Number of 

parameters, indicator value of 𝑀𝑇 

𝐴𝑐𝑐, 𝑛𝑢𝑚𝑃𝑎𝑟𝑎𝑚, 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 = [], [] 

for t = 1 to T do 

𝐴𝑐𝑐𝑡  predict 𝐷𝑇 with 𝑀𝑡 

𝑛𝑢𝑚𝑃𝑎𝑟𝑎𝑚𝑡  calculate the number of 

parameters of 𝑀𝑇 

𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑡  calculate indicator value 

 using Eq. (12) 

end for 

 

Step 2: Select model which has the highest 

indicator value 

𝑖𝑛𝑑𝑒𝑥  get the index of max(𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟) 

𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑀𝑜𝑑𝑒𝑙 = 𝑀𝑖𝑛𝑑𝑒𝑥 

return 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑀𝑜𝑑𝑒𝑙 
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does not have the disease, TN means that the model 

correctly identifies the subject as not having the 

disease, while FN means that the model incorrectly 

identifies the subject as not having the disease, when 

in fact the subject has the disease. 

In the diagnostic and detection performance 

metrics, this study focuses on accuracy, sensitivity, 

and specificity. Accuracy is a measure of how well 

the model correlates the predicted results with the 

actual results. Sensitivity is the probability that a 

positive subject is identified as positive by the test; 

this indicates the ability of the model to detect a sick 

subject. Specificity is the probability that a negative 

subject is correctly identified as negative by the 

model; this indicates the ability of the model to detect 

a negative or healthy subject. To calculate accuracy, 

sensitivity, and specificity, Eqs. (13), (14), and (15) 

are used. 

 

Accuracy =  
(TP+TN)

TP+TN+FP+FN
                   (13) 

 

Sensitivity =  
TP

TP+FN
                             (14) 

 

Specificity =  
TN

TN+FP
                             (15) 

 

3. Results and discussion 

3.1 Experimental setup 

This study develops an electronic nose consisting 

of 5 pre-selected metal-oxide sensors with code S1, 

S2, S3, S4, and S5, a single-board computer, and also 

an SHT sensor to monitor humidity and temperature 

in the sensor chamber. Metal-oxide sensors are 

assembled to arduino microcontroller. In addition, 

the E-nose also has a monitor used to view the data 

retrieval process. 

There are three processes carried out by E-nose 

every time a sample is taken [16]. The first process is 

flushing, inhaling the air around the E-nose; the 

second process is the sampling process, where the E-

nose takes sweat data from the armpit; meanwhile, 

the last process is cleaning, cleansing the E-nose so 

that it is ready to use for further sampling. The time 

required to obtain data is 190 seconds, where the first 

process takes 10 seconds, the second process takes 

120 seconds, and the third process takes 60 seconds. 

In the sampling process, metal-oxide sensors on the 

E-nose inhale the volatile gases from sweat in the 

armpit through a hose for 120 seconds and process it 

into a digital signal using an analog to digital 

converter (ADC) and store it to a single-board  

 

 
Figure. 2 Experimental setup 

 

computer in the comma separated value (CSV) 

format. Each data obtained is also accompanied by a 

class label derived from medical diagnoses by health 

workers. The 2 class labels used are positive and 

negative, where the positive class means the subject 

has viral respiratory infections, while the negative 

class means the subject is healthy. A detailed 

description of the experimental setup for data 

acquisition is illustrated in Fig. 2.  

According to the declaration of the helsinki by 

world medical association (WHO), all studies 

involving humans as research subjects are required to 

obtain the consent of the subject. This study has 

informed all subjects about the purposes, methods,  

 
Table 3. Data distributions 

Class Total Training 

data 

Test 

data 

Negative 353 282 71 

Positive 306 245 61 

All 659 527 132 

 

 
Figure. 3 examples of signal obtained by e-nose: 

(a) negative class and (b) positive class 
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and medical procedures; and all subjects have signed 

the medical consent form.  

3.2 Results of data acquisition 

Data acquisition was carried out for 3 months and 

the total data obtained was 659, where the negative 

class amounted to 353 data, while the positive class 

amounted to 306 data. The data obtained were 

divided into 2 types of training data and test data with 

a proportion of 80 % and 20 %, respectively, as can 

be seen in Table 3. Fig. 3 is an example of the signal 

data obtained, where the x-axis is the length of time  

 

taken in seconds, while the y-axis is the E-nose output 

value is in the form of ADC. From the figure, it 

remains not possible to conclude the difference 

between positive and negative data. Therefore, 

statistical parameter features extraction and detection 

algorithms were developed to help distinguish 

between positive and negative data.  

3.3 Results of statistical parameter feature 

extraction 

This section compares the 3 statistical parameter 

combinations of feature extraction as presented in 

 

 
Figure. 4 The comparison of data visualization using different combination of statistical parameters: 

(a) Feature extraction 1, (b) Feature extraction 2, and (c) Feature extraction 3 

 
Table 4. Comparison of FCDN model performance with different number of hidden layers and several statistical 

parameter feature extraction 

Number of hidden 

layer in FCDN 

Feature Extraction 1 Feature Extraction 2 Feature Extraction 3 

Acc Sens Spec Acc Sens Spec Acc Sens Spec 

2 hidden layer 0.750 0.721 0.775 0.818 0.787 0.845 0.940 0.967 0.915 

3 hidden layer 0.735 0.689 0.775 0.788 0.787 0.789 0.932 0.934 0.930 

4 hidden layer 0.780 0.738 0.817 0.796 0.803 0.789 0.932 0.967 0.901 

 
(a) 

 
(b) 

 
(c) 
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Table 5. Comparison of confusion matrix with different number of hidden layers and several statistical parameter feature 

extraction 

Number of hidden 

layer in FCDN 
Feature extraction TP FN TN FP 

2 hidden layer Feature extraction 1 44 17 55 16 

Feature extraction 2 48 13 60 11 

Feature extraction 3 59 2 65 6 

3 hidden layer Feature extraction 1 42 19 55 16 

Feature extraction 2 48 13 56 15 

Feature extraction 3 57 4 66 5 

4 hidden layer Feature extraction 1 45 16 58 13 

Feature extraction 2 49 12 56 15 

Feature extraction 3 59 2 64 7 

 

Table 6. Comparison of FCDN models using indicators value 

Number of 

hidden layer in 

FCDN 

Feature extraction Accuracy 
Number of 

parameters 

Normalized of 

number of 

parameters 

Indicator 

2 hidden layer Feature extraction 1 0.750 120,417 11.699 63.301 

Feature extraction 2 0.818 137,473 11.831 69.987 

Feature extraction 3 0.940 90,561 11.414 82.526 

3 hidden layer Feature extraction 1 0.735 64,353 11.072 62.412 

Feature extraction 2 0.788 61,633 11.029 67.759 

Feature extraction 3 0.931 131,425 11.786 81.396 

4 hidden layer Feature extraction 1 0.780 109,345 11.602 66.428 

Feature extraction 2 0.796 190,177 12.156 67.340 

Feature extraction 3 0.932 115,969 11.661 81.520 

 

Table 1 using PCA. PCA is a technique that includes 

unsupervised learning. PCA performs data reduction, 

so it can be used to help visualize data. Visualized 

data make it easy to analyze and determine the next 

steps. Data visualization for 3 statistical parameter 

combinations using PCA is illustrated in Fig. 4. 

Qualitative preliminary analysis shows that Fig. 4 (c), 

namely feature extraction 3 using 29 statistical 

parameters, is able to separate positive and negative 

classes and show a significant separation of data 

clustering. The quantitative comparison of the 

performance of these feature extractions is described 

in more detail in section 3.4. 

3.4 Result of FCDN training phase dan evaluation 

After pre-processing, the next stage is the FCDN 

training phase. The model generated was then tested 

using the test data and the results can be seen in Table 

4, where Acc is accuracy, Sens is sensitivity, and spec 

is specificity. In the table, it can be seen that FCDN 

with a different number of hidden layers and feature 

extraction 3 produce higher and more consistent 

accuracy, sensitivity, and specificity value than using 

feature extraction 1 and 2; it proves that using 29 

statistical parameters of feature extraction are able to 

differentiate data among classes better, on the other 

hand, by using feature extraction 1 and 2 which are 

less able to distinguish positive and negative class 

data will lead to increased numbers of false positives 

or false negatives. The highest accuracy and 

sensitivity were obtained by FCDN with 2 hidden 

layers and feature extraction 3; it shows that this 

model has the least number of incorrect predictions 

and has the best ability to identify positive patients. 

Meanwhile, the highest specificity is generated by the 

combination of FCDN with 3 hidden layers and 

feature extraction 3 with a value of 0.930; it shows 

that this model has the best ability to detect negative  

 
Table 7. Selected FCDN model architecture stored in e-

nose 

Layer Number of neurons 

Input layer 145 

1st hidden layer 224 

2nd hidden layer 256 

Output layer 2 

 

Table 8. Comparative study of the proposed method 

Author Methodology Accuracy 

[13] LDA 0.727 

[12] SVM 0.871 

[14] CNN 0.879 

Proposed 

method 

FCDN 2 hidden layer 

+ 29 statistical 

parameter feature 

extraction 

0.940 



Received:  January 4, 2022.     Revised: January 27, 2022.                                                                                               402 

International Journal of Intelligent Engineering and Systems, Vol.15, No.2, 2022           DOI: 10.22266/ijies2022.0430.36 

 

patients. 

A more in-depth evaluation was carried out using 

a confusion matrix as shown in Table 5. FCDN with 

various numbers of hidden layers using feature 

extraction 3 has a smaller FN than the others. A low 

number of FN is highly significant because 

incorrectly predicting a positive subject will make the 

subject not receive the right treatment and also 

increase the risk of spreading viral respiratory 

infections. FCDN with various numbers of hidden 

layers using feature extraction 3 also generates a 

smaller number of FP than the others; it is also 

important so that negative subjects do not receive 

over-treatment. 

3.5 Results of model selection using indicator 

In the previous section, 9 FCDN models were 

obtained, then one FCDN model was selected and 

stored in the E-nose to help detect viral respiratory 

infections. The model was selected automatically 

using the indicators as presented in Table 6, where 

the model chosen is FCDN with 2 hidden layers using 

feature extraction 3. This FCDN model has the best 

accuracy compared to the others, namely 0.940 and 

the number of parameters is not too high compared to 

the others, namely 90,561, so the complexity is not 

too high. The lowest complexity is obtained by 

FCDN with 3 hidden layers using feature extraction 

2, but the indicator value is low because the accuracy 

is only 0.788. The complete architecture of the FCDN 

model stored in the E-nose can be seen in Table 7.  

This study also compares the best model of the 

proposed method with previous studies using the 

same data in terms of accuracy. The comparison of 

the results can be seen in Table 8, where the proposed 

method produces the best performance with an 

accuracy of 0.940 compared to LDA, SVM, and CNN 

which produces an accuracy of 0.727, 0.871, and 

0.879, respectively. 

4. Conclusion 

This study proposes a new approach for detecting 

viral respiratory infections using a sample of sweat 

from the armpit using an E-nose consisting of five 

metal-oxide sensors. By using this approach, the 

detection process becomes faster, less expensive, 

painless, and non-infectious. Analysis using PCA 

shows that the 29 statistical parameters proposed in 

the feature extraction stage can better separate the 

positive and negative class data. The combination of 

FCDN which consists of 2 hidden layers and 29 

statistical parameters generates the best results with 

accuracy, sensitivity, and specificity of 0.940, 0.967, 

and 0.915, respectively. This FCDN model is also the 

model chosen to be stored in the E-nose because this 

model contains the largest indicator value based on 

the calculation of the number of indicators, a trade-

off between the complexity and accuracy of the 

model. For future works, we will evaluate the effect 

of correlated gases for detecting viral respiratory 

infections. 
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