
Received:  November 16, 2021.     Revised: January 10, 2022.                                                                                         243 

International Journal of Intelligent Engineering and Systems, Vol.15, No.2, 2022           DOI: 10.22266/ijies2022.0430.22 

 

 
Optimal Load Control for Economic Energy Equilibrium in Smart Grid Using 

Adaptive Inertia Weight Teaching-Learning-Based Optimization  

 

Nirmala John1*          Varaprasad Janamala1          Joseph Rodrigues1 

 
1Department of Electrical and Electronics Engineering, School of Engineering and Technology,  

CHRIST (Deemed to be University), Bangalore – 560074, Karnataka, India 
* Corresponding author’s Email: nirmala.john@christuniversity.in 

 

 
Abstract: Due to numerous operational restrictions and economic purposes, optimal load management for energy 

balance in the smart grid (SG) is one of the compensating responsibilities. This research provides a novel multi-

objective optimization technique for attaining energy balance in SG, with the goal of avoiding fines due to excessive 

upstream network power extraction beyond contractual demand. Due to a lack of capacity to create the whole 

optimization towards the global optimum after each run, optimal load control (OLC) is a prevalent challenge. 

Adaptive-TLBO, the most recent variation of Teaching Learning Based Optimization (TLBO), comprises both 

alterations during the exploitation and exploration phases (ATLBO). Because the ATLBO is used on a modified IEEE 

33-bus system, the results obtained in this mode are extraordinary. The energy balance has improved in addition to the 

enhancement of the voltage profile and the reduction of distribution losses. As evidenced by comparisons with PSO, 

basic TLBO, backtracking search algorithm (BSA), and cuckoo search algorithms, the suggested ATLBO algorithm 

has precedence over any other proposed algorithm (CSA). 

Keywords: Smart grid, Optimal load control, Adaptive teaching-learning-based optimization, Multi-objective 

optimization. 

 

 

1. Introduction 

Electricity is in high demand in today's power 

grid. This has led to an imbalance between supply and 

demand for power. Traditional methods have been 

adjusted to match the needs, but this wastes time and 

money. However, difficulties of distribution network 

performance and transmission system support remain. 

Achieving effective control over transmission line 

power flows using flexible AC transmission system 

(FACTS) devices, renewable energy (RE) sources, 

and other efficient power management devices on the 

distribution side has been a goal of modern 

transportation systems. Load shedding (LS) is also 

used as an emergency corrective step to provide 

appropriate stability margin and prevent voltage 

collapse/blackout. This will also return the electrical 

system to normal. A load shedding solution for 

energy balancing in MGs is defined as either under 

voltage load shedding (UVLS) or frequency load 

shedding (FLS) (UFLS). However, in these two 

categories, customer engagement and satisfaction are 

not included. 

The microgrid (MG) [1] is capable of operating 

in either an islanding/stand-alone grid or a main grid-

integrated mode, depending on the scenario. The 

second sort of generation is islanding, which involves 

assessing the MG's strength and redeploying power 

to various loads once it is disconnected from the main 

grid. All of the following utilities are the operator's 

duty and typically utility driven. The global power 

industry was restructured in 1988. Since then, 

multiple degrees of customer participation in the 

operation and management of the electrical system 

have been recognised. The electricity sector has been 

restructured globally since 1998 [2]. For example, 

even in the absence of authority, economic objectives 

with varying priorities may be achieved [3]. 

Insufficient power supply may lead to poor 

dependability and dissatisfaction among consumers. 
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To address this problem, utilities worldwide have 

proposed demand response (DR) [4] and demand side 

management (DSM) [5] initiatives. Customer 

engagement is required to ensure programme 

dependability and security. This reduces peak 

demand. DR programmes may be characterised as 

incentive-based or time-based [5-7]. 

The time-based programmes are well-known and 

in use internationally. The consumer is allowed to 

move his load from one period to another based on 

the electrical market price signal. Second, incentive-

based systems are designed to lower system demand 

during peak load periods or in unpredictable 

situations like as generator, line, or transformer 

failures. There are reduced elasticity tariffs or 

specific incentives depending on the market 

regulations. The information and communication 

technologies and control system (ICT & CS) is the 

key for success of these systems. Also, customer 

engagement is still debated in many projects [8]. 

Determining MG efficiency without sacrificing 

dependability, economics, or security becomes 

critical.  

There was no such thing as a universal energy 

management system (EMS) for all MG topologies. 

Researchers are still working on developing 

alternative EMS for dispatchable and non-

dispatchable distribution (DG). These may include 

EVs, renewable energy, DR programmes, and energy 

storage systems (ESS) to achieve energy balance in 

MG operation. Various meta-heuristic algorithms 

have probably addressed the challenge of locating 

potential OLC sites, controlling load, and shedding 

load. 

[9] proposes a weighted sum genetic algorithm to 

avoid voltage collapse under line contingencies. The 

positions are chosen using a multi-objective function, 

and the NVSI is designed to optimise voltage stability 

while reducing demand on the power system. The 

best load shed for balancing generation and demand 

at Selçuk university medical faculty is provided in 

[10]. With generating shortages, a hybrid solution 

employing evolutionary algorithms and artificial 

neural networks is proposed to reduce load shed and 

increase voltage stability [11]. Backtracking search 

algorithms (BSA) are preferable for islanded systems 

with variable distribution generation (DG) 

penetration [12]. The algorithm is submitted for 

multiple voltage stability indices. Load management 

is required for reliable operation under varying DG 

penetration, loss of generation or line contingency. In 

the DR scenario, proper load shed distribution and 

customer satisfaction are vital. Also, energy 

balancing is one of the acknowledged MG 

accomplishments. Many do not concentrate on 

reactive power (VAr) to decrease load 

control/maximize load dispatch. The paper focuses 

on optimum capacitor bank allocation and renewable 

energy-based DG allocation. This is used to improve 

MG performance in technical, economic, and 

financial terms [13]. [14] discusses supply and 

demand side optimal load scheduling strategies in SG. 

However, energy balancing with numerous objective 

functions, continuous and discrete choice variables, 

and equal and unequal restrictions. An efficient 

heuristic approach is required to solve non-linear 

complex optimization problems [15].  

This work proposes an efficient social-inspired 

meta-heuristic algorithm teaching-learning-based 

optimization (TLBO) [16, 17] for establishing 

optimum load management for energy balance in MG 

to maximise social welfare. The fundamental TLBO 

has attracted many academics because to its efficient 

convergence properties [18]. In comparison to 

previous TLBO variations based on inertia weights, 

ATLBO has proven advantages [19]. ATLBO 

introduces three important changes. Initially, a 

chaotic beginning population is recommended to 

generate a varied class to avoid local optima. The 

second change is the addition of adaptive exponential 

distribution inertia weight to improve solution 

efficiency and convergence rate, thereby balancing 

the exploration and exploitation phases. The third 

change is the inertia-weight update. 

Rest of the paper is structured as follows: An 

equal and unequal constraint multi-objective 

optimization problem is described mathematically in 

section. Section 3 presents the TLBO idea and its 

adaptations for ATLBO. Section 4 presents 

simulation results on IEEE 33-bus EDN, while 

Section 5 highlights important study findings.         

2. Problem formulation 

2.1 Multi-objective function 

Any power system's main goal is to maintain 

energy balance. In grid-connected mode, MG's power 

consumption is considered to be restricted to 

contracted power. Such, the target function is to 

optimize the load control settings so that the total 

demand (load + losses) equals contractual power, 

 

∆𝑃(𝑡) = {𝑘(𝑡)𝑃𝐷
𝑚 − [(∑ 𝜌𝑐(𝑖)𝑃𝑑(𝑖)

𝑚𝑛𝑏
𝑖=1 ) + 𝑃𝑙]}   (1) 

 

where 𝑃𝐷
𝑚  and 𝑃𝑑(𝑖)

𝑚  are the maximum demand of 

MG and connected demand at bus-i, respectively; 𝑃𝑙  

is the total distribution losses, 𝑘(𝑡) is a scaling factor 

used to define the amount contracted power by MG 
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at hour-t, 𝜌𝑐(𝑖) is a scaling factor used to define the 

amount of load to be controlled at bus-i, 𝑛𝑏  is the 

number of buses in MG. 

If MG extracts more power than contracted, the 

penalty can be imposed on the MG operator is 

calculated and it is given by, 

 

𝐶𝑃(𝑡) = ∑ ∆𝑃(𝑡) × 𝛾(𝑡)
24
𝑡=1      (2) 

 

where 𝐶𝑃(𝑡) is the total penalty in 24-hour 

optimization time horizon for extracted power ∆𝑃(𝑡) 

more than contracted power 𝑘(𝑡)𝑃𝐷
𝑚, 𝛾(𝑡) is the price 

defined for penalty at hour-t. Here, the same penalty 

cost is treated as savings under less consumption than 

contracted power.  

2.2 Operational constraints 

The major equal constraints considered under this 

study are active and reactive power balances between 

hourly contracted power and load points. They are 

given by,  

 

∑ 𝑃𝑑(𝑖) + 𝑃𝑙 = 𝜌𝑐(𝑖)𝑃𝐷
𝑚𝑛𝑏

𝑖=1                    (3) 

 

∑ 𝑄𝑑(𝑖) + 𝑄𝑙 = 𝜌𝑐(𝑖)𝑄𝐷
𝑚𝑛𝑏

𝑖=1                    (4) 

 

where 𝑄𝑑(𝑖)  is the reactive power demand at bus-i, 

𝑄𝐷
𝑚 and 𝑄𝑙 are the maximum reactive power demand 

and total reactive power loss in the MG, respectively.  

Similarly, voltage magnitude limits at all 

buses |𝑉(𝑖)| , current/thermal limit for all branches 

𝐼𝑏(𝑖) , and load control limit for all buses 𝜌𝑐(𝑖)  are 

considered as unequal constraints under this study. 

Mathematically,  

 

|𝑉(𝑖)
𝑚𝑖𝑛|  ≤ |𝑉(𝑖)| ≤ |𝑉(𝑖)

𝑚𝑖𝑛|                                 (5) 

 

𝐼𝑏(𝑖) ≤ 𝐼𝑏(𝑖)
𝑚𝑎𝑥                               (6) 

 

𝜌(𝑖)
𝑚𝑖𝑛  ≤ 𝜌𝑐(𝑖) ≤ 𝜌(𝑖)

𝑚𝑎𝑥                                       (7) 

 

The major control variables that are treated as 

search variables in the optimization problem are 

active power balance by optimally tuning the 

consumers’ load control factor. Instead of a uniform 

load control factor for all buses, determining 

appropriate/optimal load control factor for every 

buses makes this optimization problem more SG-

friendly while also satisfying each consumer's desire 

to participate in the demand response (DR) 

programme.  

3. Teaching-learning-based optimization 

Teaching and learning are two interrelated, 

crucial, and constant activities in everyone's life. Rao 

et al. (2011) proposed an unique optimization 

approach called Teaching-Learning-Based 

Optimization (TLBO) for a single instructor in a 

typical classroom [16, 17]. The TLBO algorithm 

divides students' learning into two types: teacher-led 

and peer-led. The teacher phase and the learner phase 

replicate the investigation and exploitation stages of 

the optimization process, respectively. The number 

of students and topics correspond to the population 

size and design factors. As with the optimization 

problem, the best student in the class is viewed as a 

teacher. The next part describes the instructor and 

student mathematical models. The TLBO algorithm 

allows advanced novices to study more efficiently by 

recognising their grades. 

3.1 Basic TLBO   

The number of students/ population are denoted 

as n (k=1, 2...n), and number of subjects/ design 

variables as m (j=1, 2... m). The position of the ith 

student in a class can define by, 

 

𝑋𝑖,𝑗 = {𝑋𝑖,1, 𝑋𝑖,2, … , 𝑋𝑖,𝑚}   (8) 

 

Knowing lower (𝐿𝑚) and upper marks (𝑈𝑚) of 

class in each subject i.e., 𝑋𝑖,𝑗 ∈ [𝐿𝑚, 𝑈𝑚], the initial 

population can generate randomly and is given by, 

𝑋𝑖,𝑗 = 𝐿𝑚 + 𝑟1[𝑈𝑚−𝐿𝑚]    (9) 

where 𝑟1  is uniformly distributed random numbers. 

These process of improving the initial grades in 

TLBO by Teacher and Learner phases, are explained 

below. 

3.1.1. Teacher phase 

This step of the algorithm simulates all students 

studying from a teacher. This is comparable to 

conventional education, when the instructor 

discusses a subject's ideas to all pupils. He also works 

to raise the class's average test score. Also, a teacher 

or local best of that iteration models the class mean 

performance in a given topic as 𝑀𝑖,𝑗  and the best 

learner among all pupils as 𝑋𝑖𝑏,𝑗 . The quality of 

pupils and instructors, as well as 𝑇𝑓 is the teacher's 

effort, influence the learning stage. This phenomenon 

is quantified as the difference in mean 

performance 𝐷𝑀𝑖,𝑗 = (∑ 𝑋𝑖,𝑗) 𝑛⁄  between the local 

best and the whole class, as shown in Eq (10). 
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𝐷𝑀𝑖,𝑗 = 𝑟𝑖(𝑋𝑖𝑏,𝑖 − 𝑇𝑓𝑀𝑖,𝑗)               (10) 

 

Here, 𝑇𝑓  is the teaching factor describes the effort 

made by a teacher to reduce the difference in mean 

performance w.r.t. the best learner. Notably, 𝑇𝑓 is not 

an input parameter of the TLBO algorithm and is 

generated randomly with equal probability as defined 

in Eq. (11). 

 

𝑇𝑓 = 𝑟𝑜𝑢𝑛𝑑[1 + 𝑟2. (2 − 1)]              (11) 

 

where 𝑟𝑖 and 𝑟𝑗 are random numbers in the range of 

[0,1]. At the end of the teaching phase, all the learners 

are updated as expressed in Eq. (12), if the objective 

function results are better than the previous, they are 

carried forward to the next learner phase as input 

variables.   

 

𝑋𝑖,𝑗(𝑘)
′ = 𝑋𝑖,𝑗(𝑘) + 𝐷𝑀𝑖,𝑗              (12) 

 

At this stage, it can be said that the performance 

of TLBO depends on 𝑇𝑓 
and 𝑟2 stands unique. This is 

said in comparison to the other traditional heuristic 

algorithms where various input parameters are 

required for tuning and getting better performance. 

3.1.1. Learner phase 

This second phase of the algorithm simulates the 

learning mode of a learner by conducting active 

interaction or discussion with other learners. A more 

knowledgeable student can help a fellow student. The 

modeling of this phase is described as follows: Two 

students, A and B were randomly selected and their 

performances were recorded at the end of the 

teaching phase, such that 𝑋𝑖,𝑗(𝐴)
′ = 𝑋𝑖,𝑗(𝐵)

′ .The 

learners are updated and defined in Eq. (13) if 

𝑋𝑖,𝑗(𝐴)
′ > 𝑋𝑖,𝑗(𝐵)

′

 
and Eq. (14) if𝑋𝑖,𝑗(𝐴)

′ < 𝑋𝑖,𝑗(𝐵)
′ , for 

the objective function results are better than the 

previous. 

 

𝑋𝑖,𝑗(𝐴)
′ = 𝑋𝑖,𝑗(𝐴)

′ + 𝑟3(𝑋𝑖,𝑗(𝐴)
′ − 𝑋𝑖,𝑗(𝐵)

′ )          (13) 

 

𝑋𝑖,𝑗(𝐴)
′ = 𝑋𝑖,𝑗(𝐴)

′ + 𝑟4(𝑋𝑖,𝑗(𝐵)
′ − 𝑋𝑖,𝑗(𝐴)

′ )          (14) 

 

Then the above equations hold true for 

maximization problems.  It will also be sufficient to 

model them in reverse in case of minimization 

problems.  

3.2 Adaptive-TLBO (ATLBO) algorithm  

The key changes in this revised TLBO are: I 

random beginning population students may be added 

to this diverse class. This will lead to an algorithm 

that can escape local optima. ii) Inertia weight. iii) 

Position update via inertia-weight technique. These 

three changes to constructing a new ATLBO 

algorithm are described below. The computing 

efficiency of any heuristic method is dictated on the 

initial population generation. It's important in TLBO. 

The Logistic-map is a great chaotic sequence. It can 

map the current population value to the next time step, 

hence it is used to initialise a random population. 

Given by, 

 

𝑥𝑡+1 = 𝑟. 𝑥𝑡(1 − 𝑥𝑡)               (15) 

 

where 𝑥𝑡 
the representation of the population/ chaotic 

variable at any given time t. It is constructed for a 

fixed continuous set of four periodic static points (0, 

0.25, 0.5, 0.75, and 1).  

The adaptive exponential distribution inertia 

weight (AEDIW) is defined as follows, 

 

𝜔 = −𝜌1𝑒−𝛿𝛾 + 𝜌2𝑒𝛿𝛾, (𝐿𝑚 < 𝛿 < 𝑈𝑚)       (16) 

 

𝜌1 = 𝜔2𝑒−𝛾 + 𝜔1𝑒𝛾                                       (17) 

 

 𝜌2 = −𝜔1𝑒2𝛾 − 𝜔2                                       (18) 

 

where 𝜔1, 𝜔2  and 𝛾  are positive real numbers. 

Unlike in basic TLBO, when students are updated 

individually, here we update all students jointly, thus 

Eq. (19),  

𝑋𝑖,𝑗(𝑘)
′ = 𝜔𝑋𝑖,𝑗(𝑘) + 𝐷𝑀𝑖,𝑗               (19) 

This new ATLBO variation has achieved 

amazing performance in terms of optimum mean and 

standard deviation by modifying the fundamental 

TLBO. The issue of benchmark functions repeating 

was also handled. 

4. Results and discussion  

EDNs are radial in nature. So the IEEE 33-bus 

radial distribution network (RDN) [20] was selected 

to test the suggested technique. All load sites are 

considered as controlled loads in line with DLC and 

DR programmes as possible in SG environment. A 

centralised EMS is also in the works. To achieve 

efficient operation, determine effective load 

management, and communicate and manage all 

financial settlements among all members. 

The IEEE 33-bus network requires (3715 + 2300) 

kVA total actual and reactive power. This MG's net 

effective demand on the main grid is (3924.64 kW + 

j 2442.05 kVAr) sans DGs. It is regarded as the MG's 
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peak demand (load plus losses). Total distribution 

losses are (210.998 + j 143.033) kVA, with bus-18 

having the lowest voltage of 0.9038 p.u.   

4.1 Network performance before load control 

In this case, only the main grid serves the whole 

MG demand (load and losses). The DGs are ignored 

here. All loads are constant power loads. Table 1 

shows the load scaling factor 𝑘(𝑡)  as an hourly 

permissible main-grid load level vs. peak load. 

Reduce the load on each bus to the hourly authorised 

load level before OLC installation. The MG draws 

more than allowed, including losses, therefore the 

error is negative. The MG operator may be fined 

according to mutual agreement. The penalty charges 

are estimated to be 0.25 $/h for (hour 1:9), 0.5 $/h for 

(hour 10:17), and 0.75 $/h for (hour 18:24). 

Using the given data, the MG drawn 4080.06 

kW/day additional electricity owing to distribution 

losses, resulting in a daily penalty of 2008.93 $. So 

OLC's goal isn't to pull additional MG power at any 

time. It also avoids fines. 

4.2 Network performance after load control 

In this example, the MG is assumed to be grid-

connected with no integrated DGs. Thus, the demand 

for MG is planned to be restricted to the allowable 

hourly load. To get the load control factor search 

space matrix [0.5, 1.0], multiply by DLC allows a 

maximum load reduction of 50% on any load bus. 

The population and search variables are 50 and equal 

to the number of buses in MG, respectively. 

Table 2 shows ATLBO's ideal results. Positive 

error indicates a deviation from the permissible 

demand. It is computed as the permissible load 

(3715 × 𝑘(𝑡)) – electricity extracted from the main 

grid (kW). Its precision while delivering appropriate 

load management relative to permissible demand. 

Based on the findings shown in Table 2, the MG 

is using 26.83 kW/day more electricity than allowed, 

saving 10.55 $ per day. Fig. 1 shows the grid power 

extracted before and after the OLC procedure. The 

permissible power and extracted power under the 

OLC scheme are practically identical, demonstrating 

ATLBO's precision in establishing load control 

variables. ATLBO's performance is compared to PSO, 

CSA, and simple TLBO. The allowable power 

demand factor is 0.85 (3715.2 kW). Table 3 shows 

the outcomes of several algorithms. The findings 

show that ATLBO outperforms all other algorithms 

in terms of accuracy. Figs. 2 and 3 show the resulting 

actual and reactive power needs. 

 
Fig. 1 Grid power drawn by MG before and after OLC by 

ATLBO 

 

 
Fig. 2 Real power load before and after OLC by ATLBO 

 

 
Fig. 3 Reactive power load before and after OLC by 

ATLBO 

4.3 Comparison of ATLBO with literature  

The performance of ATLBO is compared with (i) 

uniform load control factor for all buses, (ii) basic 

TLBO and (iii) backtracking search algorithm (BSA) 

[12]. Test system data including maximum load 

control change at bus is the same as in [12]. The peak 

hour-9 scenario from [12] is chosen for comparison. 

2.575 MW hour-9 load (i.e., 69.314 percent of 

peak load of 3.715 MW). However, the total power 

available in the system is 1.414 MW, supplied by DG 

sources. This scenario calls for load control due to a 

45.087 percent power production shortage. 

TLBO and ATLBO are used to compare network 

performance to BSA [12]. In Case 1, a uniform  
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Table 1. Network performance before implementing OLC 

Hr 𝑘(𝑡) 
Pgr 

(kW) 

Qgr 

(kVAr) 

PD 

(kW) 

QD 

(kVAr) 

Ploss 

(kW) 

Qloss 

(kVAr) 

Vmin 

@ 18 
P   

(kW) 

Penalty 

($/h) 

1 0.867 3376.09 2099.25 3220.91 1994.10 155.18 105.15 0.9176 -155.18 38.62 

2 0.852 3314.68 2060.90 3165.18 1959.60 149.50 101.30 0.9191 -149.50 37.21 

3 0.837 3253.39 2022.62 3109.46 1925.10 143.93 97.52 0.9207 -143.93 35.83 

4 0.830 3224.83 2004.79 3083.45 1909.00 141.38 95.79 0.9214 -141.38 35.20 

5 0.830 3224.83 2004.79 3083.45 1909.00 141.38 95.79 0.9214 -141.38 35.20 

6 0.859 3343.33 2078.79 3191.19 1975.70 152.14 103.09 0.9184 -152.14 37.86 

7 0.889 3466.38 2155.66 3302.64 2044.70 163.74 110.96 0.9153 -163.74 40.73 

8 0.926 3618.81 2250.93 3440.09 2129.80 178.72 121.13 0.9115 -178.72 44.44 

9 0.933 3647.74 2269.01 3466.10 2145.90 181.64 123.11 0.9108 -181.64 45.16 

10 0.937 3664.29 2279.35 3480.96 2155.10 183.33 124.25 0.9104 -183.33 91.16 

11 0.941 3680.84 2289.70 3495.82 2164.30 185.02 125.40 0.9100 -185.02 91.99 

12 0.933 3647.74 2269.01 3466.10 2145.90 181.64 123.11 0.9108 -181.64 90.33 

13 0.911 3556.93 2212.24 3384.37 2095.30 172.56 116.94 0.9131 -172.56 85.83 

14 0.904 3528.08 2194.22 3358.36 2079.20 169.72 115.02 0.9138 -169.72 84.43 

15 0.907 3540.44 2201.94 3369.51 2086.10 170.93 115.84 0.9135 -170.93 85.03 

16 0.911 3556.93 2212.24 3384.37 2095.30 172.56 116.94 0.9131 -172.56 85.83 

17 0.915 3573.42 2222.55 3399.23 2104.50 174.19 118.05 0.9127 -174.19 86.64 

18 0.919 3589.92 2232.86 3414.09 2113.70 175.83 119.16 0.9122 -175.83 131.18 

19 1.000 3926.00 2443.03 3715.00 2300.00 211.00 143.03 0.9038 -211.00 157.23 

20 1.000 3926.00 2443.03 3715.00 2300.00 211.00 143.03 0.9038 -211.00 157.23 

21 0.963 3772.02 2346.72 3577.55 2214.90 194.47 131.82 0.9077 -194.47 145.00 

22 0.911 3556.93 2212.24 3384.37 2095.30 172.56 116.94 0.9131 -172.56 128.75 

23 0.889 3466.38 2155.66 3302.64 2044.70 163.74 110.96 0.9153 -163.74 122.20 

24 0.867 3376.09 2099.25 3220.91 1994.10 155.18 105.15 0.9176 -155.18 115.85 

 
Table 2. Network performance after implementing OLC using ATLBO 

Hr   
Pgr 

(kW) 

Qgr 

(kVAr) 

PD 

(kW) 

QD 

(kVAr) 

Ploss 

(kW) 

Qloss 

(kVAr) 

Vmin 

@ 18 
P   

(kW) 

Savings 

($/h) 

1 0.867 3219.23 1997.61 3078.63 1902.30 141.19 95.74 0.9213 1.68 0.217 

2 0.852 3164.57 1966.29 3028.86 1874.31 136.26 92.38 0.9227 0.61 0.213 

3 0.837 3107.21 1899.87 2979.72 1813.50 127.97 86.72 0.9252 2.24 0.209 

4 0.830 3082.36 1876.69 2957.34 1792.18 125.48 84.83 0.9262 1.09 0.208 

5 0.830 3082.36 1876.69 2957.34 1792.18 125.48 84.83 0.9262 1.09 0.208 

6 0.859 3190.59 1980.74 3052.89 1887.44 138.26 93.71 0.9221 0.59 0.215 

7 0.889 3301.93 2060.78 3152.90 1959.83 149.70 101.44 0.9197 0.71 0.222 

8 0.926 3439.35 2103.02 3282.05 1996.40 158.03 107.16 0.9159 0.74 0.232 

9 0.933 3465.14 2151.74 3301.55 2041.00 164.39 111.33 0.9154 0.96 0.233 

10 0.937 3480.02 2189.86 3312.93 2076.59 167.93 113.89 0.915 0.94 0.469 

11 0.941 3493.66 2196.66 3327.75 2084.22 166.75 113.05 0.9148 2.15 0.471 

12 0.933 3464.93 2166.83 3304.93 2058.89 160.76 108.49 0.9182 1.17 0.467 

13 0.911 3383.58 2075.20 3231.02 1971.60 153.26 104.11 0.9176 0.79 0.456 

14 0.904 3356.76 2149.48 3193.39 2038.46 164.22 111.64 0.9153 1.60 0.452 

15 0.907 3368.91 2014.57 3225.64 1917.80 143.86 97.20 0.9211 0.60 0.454 

16 0.911 3383.39 2114.21 3223.75 2006.17 160.42 108.61 0.9181 0.98 0.456 

17 0.915 3398.30 2155.65 3235.60 2044.99 163.53 111.27 0.9139 0.92 0.458 

18 0.919 3413.17 2166.09 3255.46 2059.56 158.44 107.06 0.9188 0.91 0.689 

19 1.000 3713.88 2297.44 3527.03 2170.73 187.92 127.48 0.9091 1.12 0.750 
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20 1.000 3713.88 2297.44 3527.03 2170.73 187.92 127.48 0.9091 1.12 0.750 

21 0.963 3575.60 2186.35 3406.80 2072.18 169.64 114.79 0.9147 1.95 0.722 

22 0.911 3383.58 2074.50 3229.03 1969.58 155.27 105.44 0.9165 0.79 0.683 

23 0.889 3301.84 2023.22 3153.51 1922.25 149.01 101.47 0.917 0.80 0.667 

24 0.867 3219.60 1970.99 3079.03 1875.41 141.18 96.03 0.9187 1.31 0.650 

 

Table 3. Comparison of ATLBO performance with other algorithms for LSF = 0.85 

Algorithm 
Pg 

(kW) 

Qg 

(kVAr) 

Pd 

(kW) 

Qg 

(kVAr) 

Ploss 

(kW) 

Qloss 

(kVAr) 

Vmin 

@ 18 
P   

(kW) 

Before OLC 3306.5 2055.79 3157.75 1955 148.75 100.79 0.9193 -148.75 

PSO 3157.15 1931.44 3024.77 1841.82 132.38 89.62 0.9239 0.60 

CSA 3157.51 1978.1 3019.94 1884.92 137.57 93.18 0.9227 0.24 

TLBO 3157.54 1977.05 3020.67 1884.35 136.87 92.7 0.9228 0.21 

ATLBO 3157.59 1957.54 3021.91 1865.54 135.68 92 0.9226 0.16 

 

Table 4. Comparison of ATLBO with BSA [12] 

Case # Algorithm 
Pload 

(kW) 

Qload  

(kVAr) 

Ploss  

(kW) 

Qloss 

(kVAr) 

Vmin 

(p.u.) 

Load 

Reduction 

(%) 

1 USF 1407.61 871.47 6.202 5.165 0.988 (18) 62.11 

2 

TLBO 1407.73 850.44 6.026 5.185 0.988 (18) 44.34 

ATLBO 1407.82 886.35 6.001 5.001 0.989 (18) 43.71 

BSA [12] 1.414* - - - - 46 

 

scaling factor (USF) across all load locations 

decreases MG demand to 1.414 MW. Total 

distribution losses of 6.2021 kW reduce entire output 

to 1.414 MW and total load delivered to 1.408 MW. 

The comparative results are summarized in Table 4. 

5. Conclusion  

Due to many operational and economic 

restrictions, efficient load management is one of the 

smart grid's compensating duties. This paper 

proposes a novel multi-objective optimization 

technique for attaining energy balance in SG and 

avoiding contractual upstream network power 

extraction fines. OLC is a typical issue owing to a 

lack of capacity to calculate the global optimum after 

each run. Adaptive-TLBO involves adjustments in 

both the exploitation and exploration phases 

(ATLBO). The ATLBO is used on a modified IEEE 

33-bus system, hence the results are extraordinary. 

The energy balance has improved as well as the 

voltage profile and distribution losses. The proposed 

ATLBO algorithm results for only 43.71% load 

reduction and beats  NR LF (62.11 percent load 

reduction), basic TLBO (44.34 percent load 

reduction), and backtracking search algorithm (BSA) 

(with only 46 percent load reduction). 

On the way to sustainability, most MGs now 

include renewable energy-based distribution 

generating and electric vehicles. In the absence of an 

energy storage system, their unpredictability is a key 

problem. However, islanding activities cannot be 

ignored. In such instance, good load management can 

efficiently balance the load with local available 

generation. These aspects are considered as future 

scope of this work. 
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