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Abstract: Hand gestures and voice inputs have been measured as the vital communication component for the past 

few decades. Here, deep learning-based Reversible Convolutional Neural Network (Rev-CNN) is explicitly 

modelled to predict gesture-based sign language. Similarly, this work concentrates on modelling a reversible model 

to identify the voice gesture into sign language. It shows reversible representation by attaining superior accuracy 

with a lesser amount of model parameters and various CNN architecture. Here, the efficiency of the reversible model 

is evaluated with the prevailing G-CNN, VGG-11/16 model over the testing and training environment. Here, two 

diverse datasets like ROBITA Indian Sign Language Gesture Database and the standard voice-input dataset, is 

considered for evaluation purpose. The highest prediction accuracy of 94.38 % and 97.89 % is attained using the 

proposed reversible CNN model over the other approaches like GCNN, VGG-11 and VGG-16 model. The 

experimental outcomes and metrics like loss function, error rate and execution time are measured and compared with 

different methods like GCNN, VGG-11/16. Additionally, other efficiency metrics are utilized to determine the 

efficiency of the anticipated model. The model outperforms the existing approaches by categorizing the gestures 

with reduced error rate. The prediction accuracy of the reversible CNN (dataset 1) is 95.38 % and for dataset 2 is 

96.69%. Similarly, the execution time is 5.5 minutes.  

Keywords: Sign language, Voice input, Deep learning, Reversible CNN, Gesture model. 

 

 

1. Introduction 

Millions of deaf and hard of hearing persons 

communicate with each other through sign language. 

For example, in America, around 32 million people 

with hearing loss share using American sign 

language [1]. On the other hand, most people have 

limited sign language knowledge, making it 

complex to interact with the deaf and hard of 

hearing [2]. Therefore, sign language recognition 

(SLR) has attracted much interest to bridge the large 

communication gap. On the other hand, sign 

language is far more complicated and unpredictable 

than other activities, consisting of perfect finger and 

irregular arm motions, making accurate recognition 

[3]. Many various types of sign language 

recognition (SLR) systems have been developed, 

including vision, acoustic, radio frequency (RF), and 

inertial measurement unit (IMU) sensor-based 

model. Although, most people are unable to give 

SLR consistently and rather identify sign language 

in a confined manner. Although few vision-based 

techniques offer consistent identification by training 

on whole sentences, the signals (video) are unable to 

capture fine-tuned finger movements and exposed to 

background textures and illumination noises [4]. 

Practically the signals employed in current SLR 

systems are incapable of capturing sign gestures 

effectively. Acoustic-based approaches, record 

motions are sensitive to noises, and they do not 

detect finger movements [5]. RF-based approaches, 

record arm motions only, whereas 

photoplethysmography (PPG)-based approaches [6] 

do not influence movements. Sign speaker [7], the 

most recent SLR technology, identifies 

fingerspelling and does continuous SLR with one 

smartwatch. However, the gyroscope and 

accelerometer make sign speaker capture finger 
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movements correctly and detect only one-handed 

signals when using one smartwatch [8]. 

The following obstacles need to be addressed to 

construct an SLR system that can be employed in 

practical circumstances. First, how can two arms 

consistently capture perfect finger movements as 

well as irregular arm motions? It’s impossible to get 

accurate SLR without the proper signals. Second, 

without signal segmentation, how can continuous 

SLR be achieved? Instead of performing signal 

segmentation, it may be preferable to identify the 

entire text. Third, how can the scalability of SLR be 

improved in terms of diverse sign signal strengths? 

Because different people's sign signals are different 

strengths, the proposed SLR should be adaptable to 

various persons to ensure identification accuracy [9]. 

Finally, can we also create an SLR system can be 

adopted in real-life? Various prevailing solutions are 

bulky (vision or sensing gloves) or requires calm 

environment (acoustic) causes impractical outcomes 

[10]. As a result, a portable and effective SLR 

system is immediately needed to assist the hearing 

impaired in communicating with common people at 

any time and in any location [11]. Existing study 

proposes and develops DeepSLR, a unique end-to-

end SLR system. It continually converts sign 

language into audio in real-time so that individuals 

can realize what a deaf person is saying, even if they 

are unfamiliar with sign language [12]. We employ 

two armbands with an IMU and sEMG 

(Electromyography) sensors to gather sign signals 

on both forearms, different from existing SLR 

systems. Arm movements are captured by the IMU 

sensor, consisting of a gyroscope and an 

accelerometer; the sEMG sensors capture fine-

grained finger motions [13]. The author uses IMU 

signals to extract the euler angle and quaternion to 

describe complicated hand motions for improved 

SLR. However, there are common drawbacks like 

computational complexity and loss error [14, 15].  

 

• An E2E prediction system performs some 

preliminary pre-processing steps to avoid the 

redundancy and noise over the input data.  

• The feature vectors are clustered using 

conventional k-means clustering (clusters sign 

and voice feature vectors separately) which is 

followed by feature learning process. 

• The feature vector classification is done with 

the proposed reversible CNN which is 

embedded with auto-encoder and decoder to 

extract the input without any loss or error rate. 

• The simulation is done with MATLAB 2020a 

simulation environment where the comparison 

is made among the existing G-CNN, VGG-11 

and 16 models where various performance 

metrics like accuracy, error rate, CV are 

compared and evaluated. 

 

The work is organized as: In section 2, a 

comprehensive analysis is done with various 

existing approaches where the pros and cons of the 

anticipated model is highlighted; in section 3, the 

anticipated model is deliberately explained to show 

the models’ significance. The experimented 

numerical outcomes are discussed and compared 

with existing approaches in section 4. The summary 

of the research is given in section 5 with the idea for 

future research enhancements. 

2. Related work 

Koller [16, 17] suggested an approach for SLR 

using EMG and data glove sensors. In continuous 

SLR, electromyography signals from hand muscles 

are gathered for word. Joshi, [18] presented a 

moment invariant sign language recognition system 

for Australia. The design created a database with ten 

images for each sign and extracted features using the 

moment-consistent approach. A neural network is 

used to classify the data. The experimental results 

revealed that the proposed method successfully 

ranks six postures for interpretation, whereas four 

are not identified, and it may occasionally 

misclassify 5–15 % of the time [19]. Moment 

invariants are traditionally generated in “geometric 

moments analysis” using information from the 

interior region and shape boundary. The moments 

utilized to create moment invariants are depicted in 

a consistent manner; however, it is evaluated for the 

practical purpose in discrete manner. On the other 

hand, using cosine functions indeed of sine tasks is 

vital for compression because some cosine functions 

are needed to suitable distinctive signal [20]. 

However, cosines express certain boundary 

conditions set in differential equations. The 

suggested methods demonstrate how numerous 

characteristics depicted on hand geometry in depth-

based images describe finger and hand postures to 

predict the difficult hand postures correctly [21]. 

In 2013, an eight different signers video stream 

proposed a dynamic hand posture identification 

technique. Skin colour detection techniques are used 

to extract features from the videos [23]. Twenty 

various Arabic postures were studied with this 

method and attained a recognition ratio of 85.67 %. 

Although the current approach lowered the error rate 

from 45 % to 28 %, distinguishing between the same 

postures remains a challenge. Simonyan [24] offers 



Received:  November 29, 2021.     Revised: January 4, 2022.                                                                                          165 

International Journal of Intelligent Engineering and Systems, Vol.15, No.2, 2022           DOI: 10.22266/ijies2022.0430.16 

 

Microsoft Kinect approach for hand posture 

identification. They took advantage of Kinect’s 

ability to capture density, depth, and 3D objects scan. 

They then used a Bayes classifier to classify the 

postures, achieving a 100 % accuracy rate, but the 

algorithm calculated only for five poses. 

Furthermore, it does not distinguish between various 

rotations and orientations of hands. Finally, 

Shrenika [25] introduced MCNN for implicit feature 

extraction and hand posture detection. Based on the 

JTD dataset and employs video camera of an NAO 

robot where it merges cubic kernel to increase 

features for classification and multi-channel 

information flow for detecting images. The multi-

channel architecture is used to tune the Sobel 

operator-based filters, but it couldn't get the best 

characteristics out of them. Nevertheless, they 

scored 91 % recognition in all images, 92 % in the 

smaller images, and 94 % in the original images. 

Gemmeke [26] discusses SVM, ANN, DT, and 

RF, and CNN are some of the machine learning 

patterns that can be employed. The assumption that 

multiclass operations can prevent overfitting and be 

considerably more accurate on large databases is 

undoubtedly correct. The primary goal of SVMs is 

to do data correlation using non-linear mapping. 

Rather than computing the inner products of all 

pairings of data in the feature space, kernel 

techniques function in implicit feature space and 

high-dimensional without computing the data co-

ordinates. This procedure is frequently less 

computationally expensive than explicit coordinate 

computation. ANN design is not chosen as it fails 

previously to offer satisfactory outcomes; while 

SVM perform linear and non-linear classification by 

translating inputs into high-dimensional feature 

spaces with kernel property [27, 28]. 

3. Methodology 

The research flow includes four essential phases: 

1) data acquisition, 2) pre-processing the input voice, 

and 3) classification. Here, simulation is done with 

MATLAB 2020a environment, and metrics like 

accuracy, loss function, error rate, CV and execution 

time are evaluated to show the model significance. 

Fig. 1 depicts the block representation of the 

anticipated model. 

 
Table 1. comparison of various approach  

Categorie

s 

Reference

s 
Advantages 

Disadvantage

s 

Separating 

speakers 
Hou, [10] 

Identify the 

voice of 

speakers 

Adopted only 

under the 

controlled 

based on 

facial video 

using 

filtering 

model 

environment 

 

Predict soft 

mask for 

filtering the 

wild nature 

--- 

Gemmek, 

[26] 

Differentiate 

the 

association 

among the 

lip 

movement 

and speech 

It considers 

only two 

speakers and 

incredibly 

adopted for 

background 

noise 

Chung, 

[27] 

Identify the 

problematic 

spectrogram 

mask for 

every 

speaker 

It is a highly 

complex and 

weaker 

explanation 

Leidal, 

[28] 

Robustness 

and acquire 

speakers’ 

information 

Enormous 

preparation 

and complex 

network 

 

Single 

image and 

more robust 

sub-network 

capacity 

Lesser 

complex 

towards the 

applications 

Localized 

and 

separated 

objects 

Joshi, [18] 

Modelling 

visual and 

auditory 

modalities 

Localized 

audio source 

Adopts low 

rank for 

extracting 

the 

correlated 

components 

It does not 

work 

effectually in a 

wild 

environment 

Provide 

mixed and 

separate 

audio devoid 

of 

conventional 

supervision 

Motion 

information is 

not determined 

for evaluation 

Koller, 

[17] 

Produce 

curriculum 

learning and 

motion 

trajectory 

Suitable for 

audio and 

video 

synchronizatio

n 

Predicting 

unlimited 

videos and 

entertainmen

t media 

Requires 

added sound 

source 

localization 

(video and 

audio) 
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Figure. 1 Block diagram of reversible-CNN model 

 

3.1 Dataset description (sign language) 

The real-time data is collected from ROBITA 

Indian sign language gesture database. The dataset 

includes both testing and training data with labels 

and counts. There are three labels above_dynamic, 

across_dynamic, and advance_dynamic. In training 

set, the counts of these labels are above_dynamic = 

210, across_dynamic = 112, and advance_dynamic 

= 34; similarly, in case of testing set, the count of 

these labels are above_dynamic = 34, 

across_dynamic = 34 and advance_dynamic = 34. 

The size of the dataset is smaller, which the main 

cause of reduced accuracy is when the number of 

training samples is higher. It is directly proportional 

to the prediction accuracy. The real-time videos are 

captured and transformed into image frames. The 

converted images (frame-by-frame) is cropped and 

resized for 200x200 pixels. It reduces the image 

quality; thereby image enhancement process is 

carried out to improve the visualizing nature of the 

image.  

3.2 Dataset description (voice input) 

The dataset is acquired from the real-time 

standards, and it is not a benchmark or standard 

dataset. Even though it is considered the research 

constraint, it is efficiently achieved for the data 

collected from real-time samples. It includes both 

pros and cons.  

3.3 Pre-processing 

Pre-processing is considered an essential task in 

gesture recognition to enhance the dataset quality. 

The acquired sign gesture of diverse sizes with high 

resolution influences the efficiency and speed. 

Therefore, dataset with the signing gestures is 

cropped for all the available images. Then, to 

provide the dataset in a usable format for the DL 

model, every image is down-sampled spatially to 

256x256 size. The reduced image resolution and 

size reduce the computational complexity and assist 

in faster convergence. 

3.4 Labelling 

Data pre-processing is followed by a crucial part 

specifically for supervised learning. It is the process 

of dataset samples tagging with meaningful tags to 

offer learning bias. The collected images are 

categorized into various classes, and the images of 

various classes are provided in various folders, 

respectively. Therefore, data labelling is done based 

on the class name. 

3.5 Mathematical modelling of encoding and 

decoding part 

The auto-encoding part of NN is split into two 

diverse parts: encoder and decoder. It is 

mathematically provided as in Eqs. (1 - 3): 

 

𝜙 =  𝜒 →  ℱ (𝑒𝑛𝑐𝑜𝑑𝑒𝑟)                           (1) 

 

𝜓: ℱ →  𝜒 (𝑑𝑒𝑐𝑜𝑑𝑒𝑟)                                (2) 

 

𝜙, 𝜓 = arg min
𝜙,𝜓

||𝑋 − (𝜓   𝑜   𝜙)||2           (3) 

 

The encoder part ϕ marks the provided original 

data 𝜒 towards the latent space ℱ for dimensionality 

reduction. Subsequently, decoder function ψ needs 

to map latent and reduced output space. Here, the 

output is the same of input data 𝜒 where the encoder 

and decoder pair intends to reconstruct the data and 
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shape after capturing and performing certain 

generalized non-linear data transformation. The 

network’s encoding part is specified with some 

standard NN (here CNN is considered) function  

passed via bias parameter 𝑏, activation function 

𝜎 and latent dimension 𝑧, and it is shown in Eq. (4): 

 

𝑧 =  𝜎 (𝑊𝑥 + 𝑏)                                    (4) 

 

It is a related way for providing the NN’s 

decoding part, and it is represented with diverse 

activation functions, weight, and bias. It is expressed 

as in Eq. (5): 

 

𝑥′ =  𝜎′ (𝑊′𝑧 + 𝑏′)                              (5) 

 

The loss function 𝐿  for the provided NN is 

expressed using the encoding and decoding network 

function. It is expressed as in Eq. (6): 

 

𝐿(𝑥, 𝑥′) = ||𝑥 − 𝑥′||
2

= ||𝑥 − 𝜎′(𝑊′ (𝜎(𝑊𝑥 +

𝑏)) + 𝑏′)||
2
            (6) 

 

Based on the provided Eq. (6), the loss function 

𝐿  is used for training the NN via the standard 

backpropagation process. The objective of auto-

encoder is to choose suitable encoder and decoding 

functions with minimal information encoded and re-

generated using the decoder with a minimal loss 

function. This method facilitates supervised learning 

with the construction of cluster labels (sign and 

voice) using k-means clustering and the generated 

tags for a different purpose. The following are the 

step-by-step process: 

 

1) Initially, capture the meta-data descriptive and 

characteristics as features and construct the feature 

vectors as < 𝑓1, 𝑓2, … , 𝑓𝑛) for all the sign data.  

2) Apply the traditional k-means for feature vector 

clustering and predict the cluster group (sign and 

voice). 

3) Consider the class groups and corresponding 

identifications (tags) as labels; 

4) Fed the input data with its corresponding feature 

vectors and generate labels for its successive stages. 

 

Then, construct the auto-encoder model based 

on NN with specific hidden neurons and layers, i.e., 

nodes. 

 

1) The number of nodes over the inner layers 

specify the number of clusters; 

2) The number of nodes over the input layer 

specifies the feature size and vectors; 

3) The nodes over the output layer specify the 

probabilistic values for the provided two datasets 

representing the cluster labels.  

4) Then, partition the constructed data to 

testing/training datasets. 

5) Train auto-encoder based CNN with the training 

dataset. 

6) Predict and cluster the testing dataset labels with 

the trained NN. 

 

The encoding part is accountable for predicting 

the sign or voice data's most influencing or essential 

features. However, the encoder and decoder 

decrease the feature space, and the chosen features 

are used for clustering. The encoder then diminishes 

the total features from the most critical input data 

components. Subsequently, the decoder considers 

the diminished set of influencing features and 

intends to reconstruct initial values devoid of losing 

the information. The < 𝑒𝑛𝑐𝑜𝑑𝑒𝑟 𝑎𝑛𝑑 𝑑𝑒𝑐𝑜𝑑𝑒𝑟 > 

pair forms the mechanism for diminishing the data 

dimensionality for clustering the clustered data.  

3.6. Reversible CNN 

Here, a well-known CNN model is modelled 

explicitly for voice and gesture-based sign language 

recognition. The anticipated model is known as 

reversible CNN and it is composed of 4 

convolutional, 3 pooling, 2 dropouts, 2 fully-

connected and 1 SoftMax layers with a total of 12 

layers. With the weighted layer, the filter size of 3, 2, 

and 1 (smaller) is used indeed of other CNN 

architectural model (larger). The gesture size (256 ∗
256) is fed to the convolutional layer for extracting 

features using sliding window. The filter weights are 

learned automatically for feature extraction from the 

input image. Here, 32 convolutional filters with 

reduced features [3 ∗ 3 ∗ 32]  are used. As an 

outcome, the higher-level features are specified by 

[256 ∗ 256 ∗ 32]  dimensions are extracted. The 

non-linear activation function is performed after 

convolutional layers and known as a hyperbolic 

tangent for learning non-linear boundaries. The 

anticipated R-CNN architecture model is not so 

comprehensive; therefore, the computation load of 

tanh is not influenced by efficiency. The adoption of 

the tanh function provides faster training process 

(training time). Therefore, the tanh function 

utilization seems to be more advantageous. The 

activation function tanh is provided in Eq. (7): 

 

𝑓(𝑥) =  
1−exp−2𝑥  

1+exp−2𝑥  
                                     (7) 
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Figure. 2 Block diagram of reversible-CNN model 

 
 
The size of the outcoming feature maps is scaled 

down by factor (2) with maximal pooling operation. 

Some other sets of max-pooling and convolutional 

layers are stacked for the generation of spatio-

temporal gesture representation. Here, 4 

convolutional layers with 1 stride are used, and the 

tanh activation functions are used. The kernel size 

for all convolutional layers is 3, 3, 1 and 3, with a 

broader depth of 32, 64, 64 and 128, placed over the 

model. The smaller kernel size is used to learn the 

smaller sign textures. During pooling operations, 

max-pooling is utilized to reduce the feature size 

with 2 filter sizes and 2 strides. Some fully 

connected layers are utilized to link the extracted 

features, and the number of hidden layers is utilized 

towards 2 FC layers, i.e., 84 and 512. During 

training process, two dropouts with the probability 

of inactive neuron discarding are used for 

eliminating the over-fitting issues. At last, the output 

from the final fully-connected layers are provided to 

the soft-max layers to identify the clustered classes 

with the evaluation of corresponding probability 

function as in Eq. (8): 

 

𝑃(𝑦 = 𝑖|𝑥) =  
𝑒𝑥𝑇

𝑤𝑖

∑ 𝑒𝑥𝑇
𝑤𝑘

𝐾
𝑘=1

                                (8) 

 

Here, 𝑥𝑇 specifies the 𝑇𝑡ℎ array element, and 𝐾 

sets the total element count over the array 𝑥. The 



Received:  November 29, 2021.     Revised: January 4, 2022.                                                                                          169 

International Journal of Intelligent Engineering and Systems, Vol.15, No.2, 2022           DOI: 10.22266/ijies2022.0430.16 

 

Reversible-CNN configuration is given in table 2. 

Similarly, the algorithm for the reversible-CNN 

model is shown below. Here, the model is designed 

explicitly for gesture prediction to handle both the 

sign and voice of the recognition model. The 

efficiency of the model is evaluated with the various 

existing approaches. The foremost objective of 

considering this reversible--CNN model is to predict 

the features automatically. As an outcome, the 

model is superior than the prevailing recognition 

process. The convolutional layers followed by 

pooling, drop out, fully connected, and SoftMax 

layers are provided for compact representation of 

the CNN model. With the less-dependent 

Reversible--CNN architecture, the model provides a 

superior recognition system with lesser training time 

consumption over prevailing deep learning 

approaches. Fig 2 depicts the overall architectural 

diagram. 

 

Algorithm 1: Reversible-CNN functionality 

Input: Feature extraction from convolutional layers; 

Output: Reduction of negative values; 

1. 𝑖𝑛𝑡 𝑖 = 1; 

2. Feature vector extraction from the 

convolutional layers; 

3. For all 2 < 𝑖 < 5;  // Reversible-CNN 

convolutional layres; 

4. { 

5. Attain feature vectors extracted from the 

successive layers 𝐿𝑖−1; 

6. Use activation function 𝑡𝑎𝑛ℎ; 

7. Apply 𝑓(𝑥) =  
1−exp−2𝑥  

1+exp−2𝑥  
  as in Eq. (7); 

8. Use feature vector refined using activation 

function to the successive Reversible-CNN; 

9. Extracting features with successive 

convolutional layers 𝐶𝑖+1; 

10. } 

11. End process 

4. Experimental analysis 

Here, two diverse architectures of the standard 

CNN model and tested for sign and gesture 

recognition. The experimental analysis is done 

where the comparison with other approaches is 

discussed in section 3. The expected model is 

executed on the system using the MATLAB 2020a 

simulator. Various metrics like classification 

accuracy, processing time, loss, and accuracy are 

considered for the performance evaluation.  

4.1. Accuracy 

The accuracy is a quality index to evaluate the 

classifier efficacy and it is properly depicted as the 

predicted sample ratio to the total provided/input 

samples. It is mathematically expressed as in Eq. 

(9): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁+𝑇𝑃

𝐹𝑁+𝐹𝑃+𝑇𝑁+𝑇𝑃
                              (9) 

 

Here, 𝑇𝑁, 𝑇𝑃, 𝐹𝑁, 𝑎𝑛𝑑 𝐹𝑃  are true negative, 

true positive, false negative and false positive, 

respectively. The accuracy with the provided dataset 

1 using existing and proposed approaches like 

GCNN, VGG-11/16 and reversible CNN model is 

depicted in table 3. The accuracy attained with 

reversible CNN model is 95.38 % and 96.69 %, 

respectively. The accuracy attained by GCNN is 

94.38 % and 97.89 % for dataset 1 and dataset 2. 

Similarly, the accuracy achieved by VGG-11 model  

 
Table 2. Reversible CNN description 

Layers 
Filter

s 

Feature 

mapping 

size 

Kernel 

size 
Stride 

Input -- 256x256 -- -- 

Conv 1 32 256x256x32 3x3 1x1 

Max-pool 

1 
1 128x128x32 2x2 2x2 

Conv 2 64 128x128x64 3x3 1x1 

Conv 3 64 128x128x64 1x1 1x1 

Max-pool 

2 
1 64x64x64 2x2 2x2 

Conv 4 128 64x64x128 3x3 1x1 

Max-pool 

3 
1 32x32x128 2x2 2x2 

Dropout 1 -- -- -- -- 

FC 1 -- 512x1 -- -- 

FC 2 -- 84x1 -- -- 

Dropout 2 -- -- -- -- 

Output -- 43x1 -- -- 
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Table 3. Original and augmented outcomes of datasets 1 

and 2 

Approac

hes 

Dataset 1 Dataset 2 

Origin

al 

outcom

es 

Augment

ed 

outcomes 

Origin

al 

outcom

es 

Augment

ed 

outcomes 

Reversibl

e CNN 
95.38% 97.34% 96.69% 97.58% 

CNN [7] 94.38% 96.34% 97.89% 96.23% 

VGG-11 

[16] 
93.06% 94.02% 96.78% 94.73% 

VGG-16 

[16] 
93.5% 94.86% 96% 94.24% 

 

Figure. 3 original and augmented outcomes of dataset 

1 

 

is 93.06 % and 96.78 % for both datasets. The 

prediction accuracy of the VGG-18 models for both 

datasets is 93.5 % and 96 %. The outcomes reveal 

the superiority achieved with reversible CNN over 

GCNN, VGG-11 and VGG-16 (see Fig 3). The 

existing model like GCNN, VGG-11/16 and its 

performance are compared over the provided dataset. 

It is performed to attain the generalization ability of 

the training model. Generally, augmentation is done 

for the generation of newer samples by converting 

the collected initially dataset. Here, four diverse 

samples of signers are produced above, across and 

advanced. The classification outcomes of the 

provided dataset are shown in table 3. The 

predominant outcomes on the provided datasets are 

more convincing to foresee the generalization 

capability of the training model. 

 

Table 4. Comparison of execution time and parameter 

considered 

Approaches 
Execution time 

(mins) 

Parameters 

considered 

Reversible CNN 5.5 65, 052, 548 

CNN [11] 9.20 67, 250, 845 

VGG-11 [16] 40.50 160, 298, 368 

VGG-16 [16] 45.33 164, 791,580 

 

4.2. Loss function  

Here, the categorical loss function (cross-

entropy) is used to evaluate the loss identified 

during multiple sign language gestures classification. 

It is mathematically expressed as in Eq. (10): 

 

𝐿𝑜𝑠𝑠 =  ∑ 𝑂𝑖 log �̂�𝑖
𝑛
𝑖=1                                     (10) 

 

Here, �̂�𝑖 is the output model value, 𝑂𝑖 specifies 

the targeted value, and ′𝑛′ specifies the number of 

scalar values over the output model. The loss value 

observed for all these four models for both datasets 

is evaluated to highlight the training accuracy. The 

evaluated loss for all the four diverse approaches of 

CNN variants constantly drops with the iteratively 

increasing time, and over the successive iterations, it 

reaches the fixed values. For the provided dataset, 

the loss of the reversible CNN model is 0.2897, 

GCNN is 0.3565, VGG-11 is 0.465, and VGG-18 is 

0.450, respectively. For the following dataset, the 

loss function of reversible CNN is dropped to 0.012, 

GCNN is 0.0135, VGG-11 is 0.0615, and VGG-16 

drops to 0.178. Reversible CNN converges faster 

than the prevailing GCNN, VGG-11 and VGG-16, 

respectively. Table 4 depicts the execution time of 

the reversible CNN over other approaches. 

4.3. Prediction result  

Another performance metric known as the 

confusion matrix is also evaluated as it summarizes 

the appropriately and non-appropriately predicted 

samples of every class. Therefore, the recognition 

accuracy of these classes is extracted. Fig. 4 shows 

the broader way of analysing the prediction 

accuracy for every class of given dataset attained by 

all these variants of the CNN model. It is observed 

that the anticipated CNN model provides promising 

outcomes for all the available courses.  
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4.4. Other prediction parameters 

The computational time is the crucial parameter 

for hand gesture or sign language prediction for 

some real-time applications. Table 4 depicts the 

training time taken by all these CNN variants. The 

parameter details considered by these models are 

provided in this table for determining the model 

complexity. The total amount of trainable 

parameters is evaluated using some expressions. The 

parameters for every convolutional layer are 

computed with Eq. (11): 

 

𝑃𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = ((𝑤𝑖𝑑𝑡ℎ 𝑓𝑖𝑙𝑡𝑒𝑟 ∗ ℎ𝑒𝑖𝑔ℎ𝑡 𝑓𝑖𝑙𝑡𝑒𝑟 ∗

𝑛𝑜. 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑙𝑎𝑦𝑒𝑟 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 + 1) ∗

𝑛𝑜. 𝑜𝑓 𝑓𝑖𝑙𝑡𝑒𝑟𝑠                                                      (11) 

 

Here, total parameters considered for the fully 

connected layers are computed with Eq. (12): 

 

𝑃𝑓𝑐 = ((𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑙𝑎𝑦𝑒𝑟 (𝑝) ∗

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑎𝑦𝑒𝑟 (𝑐)) + 1 ∗ 𝑐                                (12) 

 

It is proven that the predictions with the four 

diverse variants of the CNN model take lesser 

computational time and some fewer parameters than 

the prevailing variants of the CNN model. 

4.5. Cross-validation (CV) 

Generally, k-fold CV is used for stabilizing the 

model performance. Here, a 10-fold CV is 

considered to measure the performance of the 

complete data range, and it is adopted over the 

reversible CNN model. 

 

 
Table 5. Overall prediction accuracy comparison 

Total 

gestures 

Total 

signers 
Dataset 

Prediction 

accuracy 

(%) 

16 signs  18 NA 63.87% 

16 signs 18 NA 63.93% 

10 signs 72 Single 90% 

26 signs 90 Single 93.5% 

23 signs  10 Single 91.4% 

18 signs 10 NA 91.2% 

24 signs 7 Multiple 90.2% 

26 signs 12 Single 80.67% 

Category 1 50 Single 93.38% 

Category 2 50 Single 94.69% 

Real-time  3 Multiple 95.38 

Real-time  3 Multiple 96.69 

 

 
Figure. 4 Comparison of various prediction accuracy 

 

 
Table 6. Comparison of reversible CNN with existing 

approach 

Method Prediction accuracy (%) 

EGM [12] 92.8% 

MCT [16] 89.7% 

WEST [29] 85.1% 

Geometric features [18] 84.36% 

KM [6] 91.5% 

DHM [3] 92.6% 

F-ratio + DWT [1] 94.24% 

DHM + KM [2] 94.8% 

Reversible CNN Dataset1 95.38% 

Reversible CNN Dataset2 96.69% 

 

4.6 Comparison of prediction outcomes 

Here, the performance outcomes are evaluated 

with the various prevailing approaches of similar 

classifier problems of sign-to-voice and voice-to-

sign language prediction. The broader analysis of 

this evaluation is provided in table 5 and table 6. 

The assessment is done to attain the prediction 

accuracy, and it is observed as a widely adopted 

performance metric of all the prevailing approaches. 

Table 6 shows the evaluation of the reversible CNN 

model is done with the provided real-time and voice 

dataset. From this table, it is proven that the existing 

models have simulated with the constraint number 

of signs and attained better prediction accuracy 

64.87 %, 64.93 %, 91 %, 94.35 %, 92.4 %, 91 %, 

91.2 %, 81.67 %, 95.38 % and 96.69 %, respectively. 

The classification accuracy attained by GCNN is 

94.38 % and 97.89 %, respectively (see Fig. 4). It is 

proven that the prediction with the reversible CNN 

model exceeds all these prevailing approaches as it 

acquires the superior prediction accuracy of 94.38 % 
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and 97.89 % for the provided real-time ROBITA 

Indian sign language gesture database (converted to 

image frames) and real-time voice standards, 

respectively. Table 6 compares the prevailing 

proposed work with the various overall result for the 

online publicly available dataset. The prediction of 

these reversible CNN models seems to be robust for 

all these datasets. The efficiency of the model 

completely relies on the model design in a reversible 

manner. Generally, all the existing works 

concentrate only on either encoding or decoding part. 

However, this work intends to predict both the sign-

to-voice and voice –to-sign language prediction. 

There are only limited studies that attempts to 

concentrate on both. Also, the efficiency is achieved 

with reduced execution time. The computational 

time is lesser which is directly proportional to 

reduced computational complexity. 

5. Conclusion  

This research concentrates on modelling 

efficient sign language and voice prediction for 

gesture-based and vision-based recognition models. 

Here, a novel deep learning-based reversible CNN 

model with proper representation. Additionally, 

three diverse variants of CNN like GCNN, VGG11 

and VGG16 are also evaluated and modified to 

predict sign language and voice input. The 

anticipated vision-based approach avoids the user 

dependency; thus, it is suitable for practical adoption. 

The research contribution is its competency to 

predict the difficult sign and voice input for the 

provided standard dataset with superior prediction 

outcomes over the prevailing approaches. The 

reversible model performance is tested under 

various gestures and voice input with the ROBITA 

Indian sign language gesture database (converted to 

image frames) and real-time voice standards. With 

the complete experimental evaluation, it is evident 

that the three diverse categories (above, advance, 

and across) of signs are used in this work. The 

anticipated reversible CNN model attains superior 

classification accuracy of 94.38 % and 97.89 %. 

Along with the prediction accuracy, some other 

efficiency metrics are used to establish the model 

efficiency. It is experimented with the augmented 

data and known as an invariant towards various 

transformations. It is proven to be entirely robust 

towards the classification process with the voice 

input and gestures with lesser error rate. However, 

the anticipated architectural deep learning 

approaches are further optimized for hand and voice 

input in the future, and a detailed comparison is 

made. They provided architectural model is 

explored to reduce the error rate over the real-time 

sign language recognition. In the future, the work is 

extended with the adoption of meta-heuristic 

optimization approach to attain global solution.  
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