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Abstract: Faults in machines are common and may cause detrimental damage to the products. Also, faulty raw 

materials may cause less than the required quality. These machines may be automated, and the fault may go 

undiscovered for somewhile during which many substandard products may have been produced. Thus, it is important 

to develop techniques to discover the very minute change in the manufacturing process. For this purpose, many sensors 

and data acquisition systems are added to some of these machines to monitor the working health of the machine. Faulty 

machines may manifest themselves as shifts in sensors readings that collect data about the manufacturing process 

status. Algorithms are then developed to analyse the sensors reading and detect this awkward behaviour as early as 

possible prior to producing faulty products. This is especially important for machines producing at high speed where 

faults may result in a significant number of unacceptable products. However, algorithms developed to detect this 

abnormal behaviour may make wrong decisions and classify normal process as abnormal causing false alarms. These 

false alarms may be more expensive than faulty products as they reduce the productivity due to unnecessary stoppage. 

This research work developed an algorithm which is an artificial neural network ensemble formed of two artificial 

neural networks (ANNs) and two Radial basis functions (RBF) networks in addition to a leader artificial neural network. 

Individual networks may produce high sensitivity to any changes in the process, but at the same time may cause huge 

amount of stoppage time due to false alarms. The ensemble suggested addresses that problem and makes a final 

decision as a second stage from the initial stage decisions of several diverse and tunned networks. The individual 

networks are trained using various population percentages to intentionally cause decision diversity. The networks’ 

performance is tuned by varying the cut-off parameter. We noticed that the performance of the ANN and RBF in 

detecting abnormal behaviour is sensitive to the population percentages during the training and the cut-off or threshold 

parameter. Moreover, through evaluating contradictory metrics, mainly sensitivity, specificity, and accuracy, it was 

found that the suggested ensemble can be tuned to give multiple acceptable solutions. Also, when benchmarking to 

literature, it was noticed that the average accuracy of the devised ensemble is 99.13 which is comparable to the best 

methodologies found in the literature. 

Keywords: Artificial neural networks, Artificial neural network ensemble, Artificial neural networks tuning, ANN 

training population percentages, Control chart pattern recognition, False alarms, Radial basis functions. 

 

 

1. Introduction, background, and research 

aims 

In smart manufacturing systems machines are 

equipped with many sensors and communication 

systems that collect data about the manufacturing 

process status. This is of utmost importance since 

some machines produce at high speed and the 

presence of faulty condition -without early detection- 

may result in a tangible number of substandard or 

even defective products. Faulty machine conditions 

may manifest itself in the form of shift patterns in 

sensors readings. These patterns can be revealed or 

analysed using statistical Process Control. Statistical 
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Process Control (SPC) can be employed to reveal 

several hidden (perhaps abnormal) patterns through 

drawing and analysis of control charts. As a result, 

control chart pattern recognition (CCPR) problem 

has become extremely important problem which has 

been addressed by a rising number of research work 

and it included the development of new algorithms 

for the detection of abnormal patterns or shifts in the 

sensors readings. The CCPR problem is highly 

challenging and requires much faster and more 

intelligent algorithms [1].  

Real time detection of non-standard products or 

performance is of utmost importance.  Statistical 

Process control is useful in that respect to test for 

persistent quality performance. Quality control charts 

are graphical SPC tools that are traditionally used for 

the detection of patterns in the charts [2]. The system 

designed to detect these patterns must handle vague 

situations or patterns that can have similarity between 

“normal” or random and “abnormal” or causative 

conditions. In such a vague case a decision might be 

made to stop the machine thinking that it is in the 

abnormal condition while it is normal. This case is a 

false alarm. False alarms reduce the productivity of 

machines. Another problem with vague situations is 

to decide to continue with the production while the 

machine has a faulty behaviour which must be 

corrected. This situation can lead to faulty products.  

CCPR algorithms can substantially minimize the 

time and cost to detect an out-of-control process with 

high accuracy [3]. The most commonly analysed 

patterns in CCPR are normal (Nor), up-shift (US), 

down-shift (DS), up-trend (UT), down-trend (DT), 

cyclic (CYC), and systematic (SYS) patterns. The 

first mention for normal and abnormal patterns was 

in 1958 by Western Electric Company [4].  

This important problem had been approached 

using several methodologies that included basic 

statistical analysis perspective or Bayesian 

perspective [5-7, 9, 10, 48, 52], soft computing 

perspective [8], clustering perspective [11-14], 

regression perspective [8, 15], Support vector 

machine perspective [8, 16-23, 41, 43], principle 

component perspective [19-21, 24], decision tree 

perspective [25-27, 75] Artificial Neural Network 

perspective (ANN) [2, 8-11, 16, 28-33, 44, 46, 47], 

convolution neural network (CNN) perspective [34, 

49], expert system perspective [5, 35, 36] , Radial 

Basis Function (RBF) neural network [40, 42], and 

neuro-fuzzy system perspective [14, 37-39]. Some 

researchers used wavelet pre-analysis prior to chosen 

artificial intelligence methodology [21, 29, 33], while 

others used some kind of feature extraction [50] or 

mix ratio data simulation [74]. A more thorough 

literature survey for control-charts pattern  
 

 
Figure. 1 Change in defective products or material 

produced with a shift in the process 

 
recognition is available in [45, 73]. 

Control charts were originally developed by 

Shewhart in 1920 to address the abnormal process 

behaviour [51]. It played a critical role in quality 

engineering. CCPR was specifically developed partly 

to detect patterns in control charts and partly to 

categorize these patterns in a way to help in reaching 

the root cause for abnormal patterns. Huge change in 

the process, can easily be detected since it will cause 

a large change in the process sensors readings or 

product quality measurement. Most of the 

methodologies developed can easily detect such a 

major change even the most early developed 

heuristics can detect these high changes. The real 

problem, however, is in detecting minor process 

changes as early as possible. It is also important to 

differentiate these minor changes from random 

process variations. Processes include normal 

variability which has no specific cause, and it cannot 

be remedied. While minor process changes have 

causes and can be remedied. The cost incurred in the 

abnormal process changes may be tangible, in that 

more material is wasted, more energy is used, more 

scrap is produced, etc. Even the slightest tangible 

change in process parameters may incur added costs. 

Fig. 1 shows what happens to the % defective 

when the process encounters a shift. The % defective 

which represents the products below a specified limit 

and is calculated as the area under the normal curve. 

The percentage of defectives will encounter tangible 

increase under even minor shift in the process mean 

as illustrated in Fig. 1. 

Most of the methodologies devised for pattern 

recognition will discover major process changes very 

early in the process, but minor changes might go 

undetected for a long process run. The length of the 

run prior to detection of abnormal behaviour is called 

the Average Run Length (ARL). The ARL is 

traditional used to quantify the performance of CCPR 

algorithms. These CCPR algorithms may include 

tuning parameters that increase the sensitivity to 

discovers minor changes earlier, however, this 

increased sensitivity will result in more false alarms 

because process random behaviour is mixed up with 
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causative behaviour. Now most of the methodologies 

did not address this sensitivity mix-up seriously and 

limited itself to medium to major changes in the 

process. This work on the other hand builds upon 

previous work by the authors of this research work 

[2] which is related to tuning the population 

composition to improve the performance of the ANN. 

The population composition effect on the detection 

accuracy or correct classification was discussed early 

in the literature as a resampling for imbalanced data 

[53-68]. The concept of imbalanced population was 

related to data collected with different numbers of 

main pattern samples. One pattern may be abundant 

and the other may be scarce. It was discovered that 

this variability in the number of pattern samples 

affected the error rate. It was also discovered that 

resampling (reducing or increasing the number of 

pattern sample through copying or reinsertion) can 

reduce the error rate in the algorithm trained to detect 

these patterns.  

The other approach to handle population 

composition was through intentionally misbalancing 

data [2]. The work was related to testing the effect of 

the training parameters including patterns 

percentages in control chart on the error rate. In this 

perspective the intentional imbalance can lead to 

variation in performance for the ANN. This variation 

was looked at in two manners: 1) Varying parameters 

to obtain the best performance, and 2) Varying 

parameters to obtain neural networks that has 

different accuracies. This was later used to form an 

ensemble of different neural networks to obtain more 

accuracy [69]. 

The earlier research in pattern recognition in 

control charts, utilized single type of modelling or 

clustering analysis techniques to make the decision 

whether the process is normal or abnormal, such as 

neural networks, support vector techniques, statistical 

techniques, expert systems, etc. Moreover, feature 

extraction had been used to convert that data into 

features prior to inputting to the classification 

algorithm. Many of these used threshold-based 

scoring. A specific window size of the data, whether 

normal or not, is input to the model and the output of 

the model is evaluated against a threshold. If the 

output is above the threshold, it is considered as 

abnormal otherwise it is normal. These single-model 

techniques when faced with high similarity of the 

patterns especially in the case of small shift will result 

in notifiable awkward outcomes. Many normal 

patterns may be classified as abnormal and vice versa. 

Or in the case of evaluating the ARL through window 

shifting with time, instabilities in the decision will 

occur. That is, the single model will change its 

decision with time. Also, if we apply the same pattern 

to different classification models, there might be 

different classification decisions across the different 

models.  

The above within-class decision variability or 

instability in the decision with time, or even 

variability across models for the same patterns, opens 

full potential research work that necessitates group-

based techniques to handle these multiple decisions 

or multiple scores for the same data.  This issue can 

be handled through different techniques including 

convolutional neural networks,  where  the input data 

passes through multiple analysis stages ending with a 

single vector of class scores [34], or consensus 

clustering where multiple clustering algorithms are 

applied to the same data pattern and then consensus 

matrix is developed [13], or ensemble based 

techniques  where the same data patten is input to 

multiple neural networks which are trained separately 

to obtain  multiple scores [69]. Following to that step, 

these multiple scores are used to attain a more reliable 

and stable decision. This research work is an 

extension within this current trend in considering the 

variability in decision across multiple algorithms, and 

to handle the problem of stabilizing decisions of 

single models to obtain better classification decisions. 

This work is a continuation of the work by using 

multiple type of neural networks namely Artificial 

Neural Networks (ANN) and Radial Basis Functions 

(RBF), in one ensemble to detect shifts in process 

mean. The ensemble is composed two well-tuned 

ANN’s and two well-tuned RBFs with one leader 

ANN to make the final decision. We also used in the 

work 3D graphs to aid the tuning process, and contour 

maps of the accuracy, sensitivity, and specificity to 

analyse the behaviour of the ensemble under different 

settings. In order to achieve this work objectives, 

Section 2 presents the methodology including 

ensemble of networks and leader net, patterns 

generation for training of the ensemble nets, and 

evaluation metrics. Results are discussed in Section 3 

including RBF network tuning, tuning the ensemble 

leader, and benchmarking the results with literature, 

while conclusions are found in Section 4. 

2. Methodology 

2.1 Ensemble of networks and leader net  

ANN uses connectivity to transform highly 

complex nonlinear problems to simple linear problem 

in the multi-dimensional space. Therefore, ANN’s 

found use in many research areas. The multi-stage 

ensemble tends to extend that power and simplifies 

complex problems which may otherwise lead to huge 

errors [69]. 
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For this work we have used several neural 

networks of various types. Each one is fine tuned to 

its best performance. The types of networks used are 

back propagation neural networks and radial basis 

networks. Fig. 2 shows the methodology for this work. 

For each type of network, we modify the training 

population parameters including the population 

percentages and the cut off point at which the pattern 

is considered a shift pattern (minimum shift). 

Training patterns with very small shift may results in 

high confusion for the network due to closeness of the 

two patterns. The normal patterns and the shift 

patterns only differ by the change in the mean. If that 

change is not significant, there will be a confusion. 

Thus, during pattern generation for the shift, the mean 

change should not be less than a certain minimum 

value. Then, the population percentages are modified 

to obtain the best performance for each network type. 

Following that the results for the neural networks are 

passed to the ensemble for the final training and one 

decision is made by the leader network which is an 

ANN network.  To stabilize the leader network, we 

use several decision points from each network. 

Fig. 3 shows a schematic for the suggested 

ensemble. The most noticeable features in the devised 

ensemble are reducing instability (changing decision 

with time) through multiple timely decisions per 

network (3 decisions), using the diversity of the 

networks to obtain more accurate classification and 

finally using a threshold-based output network 

classification for tuning the performance. Thirty 

consecutive sample points are passed each time to 

input networks. Then, the ensemble assembles three 

consecutive decisions per input network to form the 

input for the leader network. A threshold-based 

classification is then used; that is, if the output of the 

leader network is below the threshold, process is 

considered normal, otherwise a shift in mean is 

detected. Several neural networks are trained to 

detect either normal patterns or shift patterns. 

Population percentages used are 50% normal and 

50% shifted, or 10% normal and 90 % shifted. The 

networks are trained to high accuracy reaching to a 

minimum sum of squares error. The ANN networks 

are formed of four layers with the first and the second 

layer being logsig functions, the third layer being 

tansig function, and final output layer being purelin 

function (see Eqs. (1) to (3)). Mathworks MATLAB 

2021 is used. The networks are trained using trainlm 

training algorithm in MATLAB. 

 

𝐿𝑜𝑔𝑠𝑖𝑔(𝑥) =
1

1+𝑒−𝑥
                     (1) 

 

𝑃𝑢𝑟𝑒𝑙𝑖𝑛(𝑥) = 𝑏 + 𝑥                    (2) 

 

𝑇𝑎𝑛𝑠𝑖𝑔(𝑥) = 𝑠𝑖𝑔𝑛 (
2

1+𝑒−2𝑥
− 1)         (3) 

 

 

 
Figure. 2 General methodology 
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Figure. 3 A schematic of the suggested ensemble 

 
 

The threshold level classification is the most used 

classification for the output of the neural nets among 

the researchers. It was tuned in this work to produce 

better than the benchmark. The benchmark is usually 

the Shewhart X-bar chart performance levels which 

has an ARL equal to 370 for the normal process and 

an ARL of 155 for the 0.5 sigma shift in the mean. 

Any developed algorithm is considered better if it 

produces an ARL above 370 for the normal process 

and an ARL less than 155 for the 0.5 sigma shift in 

the mean. 

2.2 Patterns generation for training of the 

ensemble nets 

The following represents the model for 

generating the normal and the shifted patterns. 

 

𝑦(𝑖) = 𝑛(𝑖) + 𝑑                        (4) 

 

Where y(i) is the shifted process signal, n(i) is the 

normal process with mean µ and standard deviation 

of σ, and d is the shift size as a multiple of σ. The shift 

values can be expressed in a standardized form: as -

3,-2.5,-2,-1.5,-1,-0.5, 0.5,1,1.5,2,2.5 and 3. 

Furthermore, y(i) is standardized into Y(i) using the 

following equation.  

 

𝑌(𝑖) =
𝑦(𝑖)−𝜇

𝜎
                          (5) 

 

 
Figure. 4 A sample chart showing a shift in the mean at 

sample number 100 

 
Fig. 4 shows a sample chart with a mean shift 

occurring in sample point number 100. Prior to the 

shift the mean is zero after the shift the mean becomes 

-3. 

2.3 Evaluation metrics 

In this work, we will use two types of metrics: 

detection speed metric, which is the ARL, and 

classification metrics. The ARL is the number of 

samples testing negative (normal) while the process 

is having problems manifested as a shift in the mean. 

The classification metrics are based upon counting 

the number of right classification and wrong 

classification. The following counts are made: True 

Positive (TP), False Negative (FN) and these two are 

evaluated for abnormal processes (shift occurring). 

-6

-1

4

0 50 100 150 200

Sample number or time
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Truly Negative (TN) and False Positive (FP) and 

these are evaluated for a normal process (no shift 

case). We can then define the following measures 

[70]: 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                      (6) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                      (7) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
                  (8) 

 

The sensitivity is the proportion of true shift 

detected patterns to the total shifted patterns. It shows 

how good the test is at detecting a shift. Specificity is 

the proportion of the true normal detected patterns 

relative to all normal patterns. It suggests how good 

the test is at identifying normal (negative) condition. 

Accuracy is the proportion of true results, either true 

positive or true negative, in a population. It measures 

the degree of veracity of a diagnostic test on a 

condition. A test with high sensitivity tents to capture 

all possible positive conditions without missing 

anyone. Thus, a test with high sensitivity is often used 

to screen for shifted patterns or abnormal behavior. 

The numerical value of specificity represents the 

probability that a normal process will be classified as 

normal [70]. These measures are contradictory, in 

that one algorithm tuned setting will increase the 

sensitivity but will reduce the specificity. We need to 

find a tuned setting that will best compromise 

between these measures.  

3. Results 

This section discusses the tuning of the networks 

and the effect of the cut off parameter for various 

shifts sizes. This is important as an initial stage to the 

development of the ensemble leader network. The 

ensemble leader network is then tuned using the cut 

off parameter to obtain the best possible performance. 

3.1 RBF network tuning 

Cut off parameter or threshold parameter is 

extremely important for classification. Usually, the 

output of the neural network is analogue, and we need 

to set this parameter such that if the output of the 

network is above the threshold it is classified as 

abnormal, otherwise it is considered as normal. Fig. 

5 is a 3D plot for the average run length of RBF 

network established with population percentage 50% 

normal and 50% shifted. The X-axis is the cut-off 

parameter. As that parameter is reduced, less patterns 

are classified as normal, and the average run length is 

reduced. The y axis in Fig. 5 is the amount of 

standardized shift. As the shift in the mean increase, 

the network will easily discover the shift and the 

average run length is reduced. We need now to 

compromise between the need to discover shifts early 

and the false alarms. The false alarm occurs when the 

shift is zero, and yet the process is classified as 

abnormal. Tuning the neural here means selecting the 

right cut off. It is useless to select the cut off for this 

network below 0.8. Below this value the average run 

length is low for normal cases when the shift is zero. 

At a threshold of 0.8 the ARL for shift size zero is 

nearly 2800. Which is excellent and much better than 

the benchmark of 370 obtained through traditional 

techniques. But, for small shift sizes of 0.5 we have 

an ARL of nearly 2000 which is a very high value, 

and the system fails to discover this small shift early. 

Fig. 6 plots the ARL for the RBF network trained 

with population percentage 90% normal and 10% 

shifted. The difference in the two Fig. 5 and 6, 

stresses the importance of population percentages 

tuning. This RBF network performance has an ARL 

of nearly 6000 for no-shift case (shift=zero) while at 

a shift size of 0.5, it has an ARL of nearly a 1000. 

Although the performance in discovering small shift 

is not acceptable, it still has the advantage of very low 

false alarms rate. 

3.2 RBF tuning the ensemble leader 

Fig. 7 shows the tuning 3D curve for the leader 

network of the ensemble. It can be clearly noticed that 

the ensemble is providing better results than 

individual networks. When selecting the right cut off, 

there are three regions, cut off valve below 0.3 where 

all patterns are classified as abnormal, and the false 

alarms are excessive. The next region is for cut off 

having any value between 0.3 and 0.6, and the 

process in this case has excellent high-speed 

detection of even the smallest shift, and low number 

of false alarms with an ARL of 1003. The last region 

has the lowest false alarms with an ARL of 7016 for 

the no shift case (shift =0) and slightly high ARL for 

small shifts and excellent performance for detecting 

the high shift case. 

Table 1 shows the details for Fig. 7 where the 

ARL sizes for different shift sizes and selected cut-

off is evaluated. The recommended two tunning cases 

are highlighted one for excellent low false alarms and 

excellent high and moderate shift detection. The other 

highlighted is for moderate false alarm and excellent 

detection of even the smallest shift. 
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Table 1. Tabulated results for the ensemble 

 
 

 

Fig. 8 shows the “filled contour” for the count 

classification metrics, namely accuracy, sensitivity, 

and specificity. The first impact of such a chart 

indicates contradictory effect of the tuning parameter 

on these important objectives or measures. This in 

turn makes the selection of the tuning parameter 

difficult. Let us elaborate in that as follows. The 

specificity is the simplest of all charts, as we need to 

select the cut off parameter above 0.2 to provide 

acceptable performance for all shift sizes. And this is 

independent of the shift size. This is logical as we 

only take into consideration the normal patterns. 

Logically speaking the sensitivity is best when 

selecting the tuning parameter as low as possible. 

This is well shown by the chart. But it is also affected 

by the shift size. The less the shift size, the more it 

can get confused with a normal pattern and thus 

requires lower cut off value to be distinguished better. 

This requirement contradicts that of the sensitivity. 

The accuracy on the hand shows more complex 

behavior than that of the sensitivity or the specificity. 

This is due to considering both normal and abnormal 

patterns. The higher the shift size, the higher the 

accuracy. We also notice that if we select the cut off 

parameter extremely close to training limits of 1 or 

zero the accuracy deteriorates.   

Fig. 9 shows a comparison between one of the 

selected tuned settings and the Shewhart X-bar chart 

performance levels. The new ensemble appreciably 

outperforms the benchmark. In that, the number of 

false alarms will be much less, as the ARL for zero 

shift size or normal performance is much higher. Also, 

a 0.5 sigma shift in the mean is detected earlier by the 

new ensemble. 
 

 

 
Figure. 5 ARL versus standardizes shift size and cut for an RBF trained for 50% normal 50% shifted population 
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Figure. 6 ARL versus standardizes shift size and cut for an RBF trained for 90% normal 10% shifted population 

 

 
Figure. 7 The ensemble leader ANN tuning results in 3D 

 

 
Figure. 8 Accuracy, sensitivity, and specificity for the leader network 
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Figure. 9 A comparison of the ensemble performance to the X-bar chart benchmark 

 

 

Table 2. Performance comparison of different methods: 

Modified from [72] 

Reference CRR% 

Guh and Tannock (1999) 94.38 

Hassan et al. (2003) 96.80 

Assaleh and Al-Assaf (2005) 97.22 

Cheng and Ma (2008) 95.58 

Zan et al. (2010) 95.00 

Ranaee and Ebrahimzadeh (2013) 99.15 

Kao et al. (2016) 98.94 

Zhou et al. (2018) 99.28 

Addeh et al. (2018) 99.63 

Zan et al. (2020) 99.30 

This work 99.13 

3.3 Benchmarking the results with literature 

We have compared the results of this work with 

literature using shift sizes of 1.5σ to 3σ, and with shift 

starting at time zero, same as that used by comparable 

research. The measure used was the accuracy 

sometimes referred as average accuracy or correct 

recognition ratio (CRR) [72]. Table 2 shows the 

comparison of the results of this work with literature.  

Few literature reference were available for low 

shift sizes so benchmark with literature is difficult in 

that respect. Also, few literature adopted the ARL 

measure although it is the most accurate measure in 

the quality control standard literature. 

4. Conclusions 

This work developed an ensemble to detect shifts 

in the process mean which may detect faulty 

production. The ensemble is formed of two ANN’s 

and two RBF networks. They were trained with 

population percentages of 10% normal: 90% shifted 

and 50% normal: 50% shifted. The cut off for each 

network is tuned to obtain the best performance. The 

ensemble has a leader network to give the final 

decision. The following was this work conclusions: 

1- The ANN and RBF is sensitive to both the 

population percentage and the cut off parameters. 

2- The ensemble performed better than individual 

neural networks in terms of the compromise 

between the false alarms and abnormal behavior. 

3- The tunning parameters should be chosen to 

compromise between the accuracy, sensitivity and 

specificity and is difficult to optimize all at the 

same time. 

4- The developed ensemble suggested more 

acceptable settings that will enable users to select 

what is best for them. This can be interpreted as an 

added flexibility. 

5-The results of this work showed a positive 

comparison with respect to best-performing 

models in related literature. 
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