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Abstract

Introduction

‘What doesn’t kill you makes you stronger’. The ear-friendly 
aphorism illustrated the original idea of hormesis, which 
involved an initial exposure to induce an adaptive response 
before it can be referred to as ‘stress-response’ hormesis.(1) 
At a glance hormesis seems like counterintuitive, but in a 
deeper philosophical thinking, if ‘too much of a good thing 
is a bad thing’, a little bad thing can be good. At a precise 
dose and time, we can transform an adverse effect into a 
favorable effect, as articulated in the philosophy of Yin and 
Yang that ‘illness is the doorway to health’. 
	 The hormesis scenario involves three factors: first, 
the initial stress exposure that ‘tries to kill you’; second, 
the following exposure which you are more resilient 
against; and third, the time interval between those two. 

The initial dose low-dose exposure may protect against 
the following exposure of the same substrate in a higher 
dose (‘single mode’ stress-response), against a different 
substance (‘cross-mode’ stress-response), or may develop 
a process in the interval time (‘developmental’ stress-
response).(2) A classic example of single-mode stress-
response hormesis is priming the body with an initial low 
dose of xenobiotic chemical to induce the expression of 
detoxification enzymes, which can confer protection against 
subsequent exposures to the same chemical in a higher 
dose. Some xenobiotic chemicals serve directly as ligands 
for nuclear receptors such as the constitutive androstane 
receptor (CAR) or pregnane X receptor (PXR). Some other 
indirectly activate other transcription factors, for example 
altering the intracellular stress-response signaling pathways 
such as redox status, to activate the nuclear factor erythroid 
2-related factor 2 (Nrf2). The transcription factors activation 
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BACKGROUND: Hormesis was initially defined 
as a phenomenon where a small dose of harmful 
agent exposure to living organisms gives beneficial 

effects. The dose and time of this ‘tress’ exposure has 
become the object of investigation across the broad range 
of biomedical studies.

CONTENT: Hormesis characterized by the biphasic dose-
effect or time-effect relationship for any substance. Some 
hormetic mechanisms performed biological plasticity, 
involve oxidative damage which instead induce antioxidant 
enzyme production in various cells. Early-life stress can 
increase resilience in later life and lack of stress can lead to 
vulnerability. Many stressors like dietary factors and natural 
environmental toxins can be occupied for healthy growth or 

homeostasis, which exemplifies how illness is the doorway 
to health. 

SUMMARY: Hormesis reconcile many paradoxical 
phenomena exert opposite effects of the same substance, 
either a xenobiotic or an endogenous substance, a hormone 
or a metabolite, a genetic manipulation or an epigenetic 
alteration, an experimental intervention or a natural event. 
Human  bodies  are  highly  adaptive.  A  resilient  body 
would be resulted after the ‘training’. In this review, we 
will elucidate the hormesis’ definition, mechanisms and 
pathways, and also how hormesis impacts in human health 
and lifespan.  
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Defining Hormesis

Figure 1. Dose-response curve showing the quantitative 
features of hormesis. NOAEL: No-observed-adverse-effect level; 
ZEP: Zero equivalent point.(7) (Adapted with permission from 
John Wiley and Sons).

will upregulate the genes that encode the enzymes for 
xenobiotic metabolism in three phases. Phases I including 
cytochrome p450 family enzymes, phase II is glutathione-
based conjugation enzymes, and phases III is adenosine 
triphosphate (ATP)-binding cassette transporters. Those 
three phases collectively detox and secrete the xenobiotic 
from the body.(3)
	 The dose response concept is central to biology, 
medicine, and public health. It represents the biological 
integration of how living systems at all levels of organization 
(from the cell, more complex organisms, human being) 
respond, adapt or fail to adapt to endogenous agents, 
metabolic stress, and externally dynamic threats/stressors.
(4-6) The substance’s dose–effect or time-effect relationship 
was presented in a bell-like biphasic curve, either U-shape 
or inverted U-shape (2,7), describe the portion of the dose-
response immediately below the threshold which is related 
to performance, contrast to the portion of the dose-response 
above the threshold, which have the potency of toxic 
interactive effects. Hormetic dose-response can occur as 
a direct stimulation response, a modest overcompensation 
response after an initial disruption in homeostasis, or as 
a response to an ‘adapting’ or ‘pre- conditioning’ dose 
followed by an extensive challenging dose.(8)
	 In the broadest sense, everything can be hormesis. 
The term often used to describe a paradoxical low-dose 
beneficial effects of stressors. The paradox arises due to 
our own preconception about what is good and bad, and 
we often cognitively biased towards the monotonic cause-
effect relationships. The hormetic dose-response model is 
apparently the most fundamental and very common in the 
biological and biomedical sciences, across biological model, 
endpoint measured and chemical class and physical agent.
(7) In this review, we will elucidate the hormesis definition, 
mechanisms and pathways, and also how hormesis impacts 
in human health and lifespan.

studies involve brief stress exposure to induce mechanisms 
that protect against stress. This form of hormesis refer as 
‘stress-response hormesis’ to distinguish it from hormesis in 
the broader sense.(1) For example, a brief exposure to very 
high levels of oxygen increase life span in the nematode 
Caenorhabditis elegans.(11)
	 The most consistent and reliable character of the 
hormetic dose-response is its biphasic feature, i.e., a low 
dose stimulation zone, followed by a higher dose with 
inhibitory response (Figure 1). The maximum magnitude 
of the stimulatory response is typically modest, being only 
about 30-60% above that of the control response. The strong 
majority of stimulatory responses are less than twice the 
control value.(7) The Hormesis concept suggested that dose 
responses in the low dose zone were not only not linear but 
possibly not even a threshold but probably biphasic (i.e., 
J-shaped or inverted U-shaped depending on the endpoint 
graphed).
	 Figure 2 proposed the nomenclature for hormesis 
that recognizes  the  classic  hormetic-like  biphasic 
dose±response relationships, and the temporal hormesis 
which also include the duration of exposure.(12,13) The 
classic  definition  of  hormesis  is  more  common  in  the 
fields  of  radiation  biology/health  physics  and  ecological 
and human toxicology. Adaptive response of temporal 
hormesis could result from direct stimulation hormesis 
(DSH), or as the compensatory biological processes after 
initial disruption in homeostasis  or overcompensation 
stimulation hormesis (OCSH)).(10)	
	 Calabrese and Baldwin (10,14) defined hormesis as 
an adaptive biphasic response, i.e., OCSH. Therefore, the 
adaptive response of hormesis can be low, no response 
at an intermediate level, then a second response at a high 
level of deviation from homeostasis, described in a U- or 
J-shaped response.(10) In other words, a low to moderate 

The term hormesis first coined in 1943 by Chester Southam 
and John Ehrlich after their observation on low concentration 
Red Cedar tree extract benefit in enhancing the metabolism 
of fungal species.(9) The definition later been revived by 
Edward Calabrese.(10) Many variants have been grown of 
its exact meaning. In general, the term hormesis related to 
the dose-response relationships of treatments, including 
chemical, thermal, or radiological which are beneficial at 
a low level but harmful at a higher level. However, some 
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levels of acute stress alerts multicellular organisms, disrupt 
and trigger a slight overcompensation before it return 
to homeostasis. The natural explanation for the biphasic 
response is either ignores the conventional dose response, 
or due to a different mechanism for the response.(10,15,16)

Figure 2. Schematic of hormetic nomenclature.(10) 
(Adapted with permission from SAGE Publication).

Hormetic Mechanisms

The hormetic dose/concentration response relationship 
has attracted many researchers from a broad range in 
biological and biomedical disciplines, seen from the 
markedly increased peer-reviewed scientific literatures 
over the past two decades (10,17,18), bring up hormesis as 
a highly generalizable, independent of biological model, 
endpoint measured, inducing agent and level of biological 
organization (e.g., cell, organ, organism).(19)	
	 It’s not easy to provide one clear mechanism on 
hormesis, since more than 100 agents and signaling pathways 
involved in almost 400 dose/concentration responses from 
a wide range of chemical classes, with a broad range of 
endpoints. However, a general mechanism must underlie 
those all. Vast range of mechanisms mediate hormetic 
responses 400 different hormetic dose response relationships 
at the level of receptor and cell signaling pathways.(19,20) 
Hormetic-like biphasic dose/concentration responses occur 
by a single agonist which act via two different receptor 
subtypes, that antagonistic mediated the stimulatory and 
inhibitory pathways.(21) Receptor with high affinity to the 
agonist but have lower capacity (fewer receptors) mediate 
the stimulation, and receptor with lower affinity but have 
a greater capacity mediate the inhibitory response.(22-
25) From this concept, numerous receptors that mediated 

biphasic dose/concentration responses were identified since 
1980s with many examples that conformed to the hormetic 
dose/concentration response quantitative features.(23,24) 
The mechanism involving a complex and integrative array 
of signal transduction pathways. A part of these pathways, 
the relationship to the cell membrane and membrane 
receptors, and the inter-connections among the signaling 
pathways described in Figure 3.(26) Hormesis employed 
the same mechanisms to yield a response, either mediated 
by cell signaling or by any receptor. The experiment on 
finding which pathway is mediating the hormesis response 
performed by blocking a specific cell signaling pathway and 
see if it prevents the hormetic stimulation.
	 There are three types of hormetic dose/concentration 
response mechanisms for signaling pathways, based on their 
pathways for stimulation and inhibition. First, low dose 
stimulation and higher dose inhibition were mediated by 
the same receptor; second, the receptor only mediated the 
stimulation and the inhibition mediated by another subtype 
of receptor; or third, the stimulation and inhibition do not 
share the same family of receptor, or happen in different 
mechanisms. Despite these differences in mechanistic 
strategies the quantifiable features of the dose/concentration 
responses are similar, suggesting a similar functional and 
adaptive strategy.(19) A lot of hormetic dose response with 
end point of cell proliferation was mediated via mitogen 
activated protein kinase (MAPK)-extracellular-signal-
regulated kinase (ERK)1/2 cell signaling pathway (Figure 
4), counted about 14 different cell types, except V79 cells 
in which p38 was essential whereas ERK1/2 involvement 
was absent. Meanwhile, when the same cell type have the 
hormetic dose responses for cell migration, it is typically 
mediated via a different cell signaling pathway such as p38 
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Figure 3. Signal transduction pathways.(26) (Adapted from Wikimedia Commons).

(e.g., rat aortic smooth muscle), c-Jun N-terminal Kinase 
(JNK) or ovarian tumor cell lines (28), and microglia (29). 
Thus, advance researches is needed focused on hormetic 
dose response quantitative features mechanisms, and how 
modifying dose could modulate it in a biological switching 
context.

Hormesis and Biological Plasticity

	 In the principals, hormesis represents a central 
evolutionary strategy that is constrained by the limits of 
biological plasticity, where a high dose of stressors damaged 
a biological system, while a low dose of the same substance 
yield in a positive response in several physiologic functions 
from cell growth to cognition, thus hormesis can be seen as 
a component of biological plasticity.(35,36) Hormesis dose 
response model is the quantitative features of plasticity.
(34) Generally, the degree of phenotypic adaptive change 
and type of phenotypic alternative can vary depends on 
environmental conditions.(36) The phenotypic adjustments 
induced by hormesis could be long lasting, and probably 
irreversible. This adjustment might regards as a mechanism 
of survival in organism, and one potential mechanism 
involving transmission of chromatin modifications through 
mitosis (somatic memory) and meiosis (trans-generational 
memory.(37)
	 In many biomedical disciplines such as radiation 
biology, toxicology and environmental mutagenesis, the 
phenomenon of preconditioning and adaptive responses 
involving a low dose exposures of numerous agents 
(radiation, heavy metals, hepatotoxins such as carbon 

Phenotypic plasticity represents changes in an organism’s 
observable properties such as behavior, morphology, 
and  physiology,  in  response  to  the  environment  
challenges.  It  is  a  fundamental  adaptive  feature,  which  
has  been  extensively assessed within an ecological 
evolutionary framework. Phenotypic plasticity is the 
basic concept in biology, and applied in many broader 
subjects including evolutionary biology, genetics, ecology, 
neurosciences, developmental biology, stem cell biology 
and biogerontology, among others which concern about 
phenotypical adaptation to heterogeneous environments as 
described in Figure 5.(30-33)
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Figure 4. Schematic representation of activation 
of corneal epithelial wound healing by MAPK.(27)
(Adapted with permission from American Society for 
Biochemistry and Molecular Biology).

tetrachloride, numerous oxidants, hypoxia) and stressful 
procedures to protect against a subsequent and more 
massive exposure.(38) The prior exposure aims to produce 
an environmentally induced phenotype alteration with an 
enhanced adaptive response to the subsequent higher dose. 
Different magnitude of the pre-conditioning dose result 
in altered phenotype created. When the higher dose was 
exposed, and the phenotype response generally follows an 
inverted U-shaped dose response, that indicates that the 
change in plasticity is both qualitatively and quantitatively 
described by the hormetic dose response. 
	 The point where the dose response crossed from 
stimulation to inhibition is called the Zero Equivalent Point 

(ZEP) or threshold (Figure 1). The stimulatory response is 
believed to be at the below threshold dose, i.e.., when the 
organism acquired an altered/new adaptation phenotype. 
Then, the quantitative features in hormetic stimulatory zone 
represent a quantitative index of phenotypic plasticity, or 
a measure of biological performance, usually in average 
maximum response being about 30-60% greater than the 
control.(39,40) The models are remarkable consistent 
in different substances and endpoints, suggest a similar 
plasticity strategies and constraints are the rule throughout 
the biological sciences. Therefore, assessing the hormetic 
dose response could revealed the quantitative features of 
biology plasticity and clarify the basic biological concepts.

Figure 5. Biological plasticity: A key to 
survival.(34) (Adapted with permission from 
Springer Nature).
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Signaling Pathways:  Mechanisms of 
Protection in Pre- and Post-conditioning

Preconditioning is an exposure of a sub-lethal physiologic 
stress to an organ, in order to confers subsequent protection 
from lethal injury by the prolonged exposure of same stressor. 
The term and concept of preconditioning later expanded 
rapidly with various modifiers for specific application such 
as ischemic preconditioning (IPC), hypoxic preconditioning 
and remote preconditioning. Hence, preconditioning concept 
developed into a different temporal exposure conditions 
where a low dose of stress administered in order to enhance 
repair and recovery processes after exposure of a more 
challenging stress, resulting in the term post-conditioning.
(38,42-44). Both pre- and post-conditioning phenomena 
were biphasic dose responses with quantitative features 
similar to hormesis.(38,45) The adaptive phenomena as the 
specific manifestation to hormesis could present as an auto-
protection, pre- and post-conditioning, and radiation- and 
chemical-induced adaptive responses.(46)
	 Hypoxia is one of the most frequently encountered 
stresses in health and disease. Previous studies demonstrated 
that hypoxia could be beneficial or harmful depend on the 
duration, frequency, and severity of hypoxic episodes. 
Obesity has been a growing problem worldwide, due to its 
cardiovascular morbidity and mortality.(47,48) Metabolic 
Syndrome (MS), a group of metabolism abnormality 
including central obesity, hypertriglyceridemia, low levels 
of high-density lipoprotein (HDL) cholesterol, hypertension 
and hyperglycemia, is the most frequent clinical and 
metabolic consequence of obesity among others.(49,50) 
Furthermore, overweight and obesity is the essential risk 
factor for obstructive sleep apnea (OSA). Indeed, two-
thirds of MS patients experience moderate to severe OSA, 
and the frequent association between OSA and obesity 

obscures the independent OSA contribution in metabolic 
and vascular dysfunction.(51,52) OSA itself is recognized 
to be an independent risk factor for cardiovascular (53) and 
liver diseases (54). Intermittent hypoxia (IH) is the major 
component in OSA that is responsible to hepatic, glucose 
and lipid metabolism impairment, liver and vascular 
consequences of OSA.(54-57) In contrast, IH then proposed 
as a technique to improve physiological performance by 
utilizing the adaptation capability on ischemia-reperfusion 
preconditioning mechanisms, and shown to improve 
endothelial function in hypertension (58) and to limit 
infarct size (59). Thus, adaptation to IH could offer confer 
cardiovascular protection against more severe and sustained 
hypoxia, and other stresses such as ischemia. The results are 
different depend on the diversity and duration of reduced 
oxygen patterns applied, age, genotype variations, which 
determine the homeostatic response and decompensation.
(60) The direct and cross benefit of IH was used as treatment 
and prevention of a variety of diseases, and to increase 
exercise training efficiency.
	 Hypoxia may affect nitric oxide (NO) production 
(Figure 6), NO tissue concentration, and nitric oxide 
synthases (NOS) expression by several mechanisms: (i) 
inadequate of O2 as NOS substrate, limit NO production; (ii) 
O2 act as NOS feedback inhibition; (iii) modulation of NO 
bioavailability; (iv) hypoxia inducible factor (HIF)-1 and 
other NOS transcription factors induced; (v) intracellular 
Ca2+ concentration and influx changed; (vi) NOS-regulating 
heat  shock  proteins  (HSP)  induced.(61)  NO  plays  a 
pivotal role  in  adaptation  to  IH.  It  may  be  beneficial  
by  increasing efficiency of vascular oxygen transport and 
energy supply (62,63), inducing protective antioxidant 
enzymes such as catalase and superoxide dismutase (59), 
and HSP (60), stabilizing cellular membranes, and restricting 
apoptosis (61). 
	 NO synthesis moderate stimulation and NO 
overproduction restriction, either directly or via NO 
negative feedback originating from NOS and alternative 
sources are the key of NO-dependent adaptation to IH. 
In adapted condition, NO synthesis and availability was 
enhanced despite of the oxygen lack, and this will induce 
the expression of other protective factors in robust and 
sustained way. Therefore, IH could represent an efficient 
and economic strategy to prevent and treat hypoxic or 
ischemic damage in organs and cells without drugs, with 
a similar protection resulted by physical training. In this 
respect strategic modulation of NO metabolism is of specific 
interest.(61) Some protocols were developed utilizing IH 
to improve cardio performance, induce neo-angiogenesis 

(34) The hormesis-induced phenotypic responses do not 
manifest only at the molecular level but even substantial for 
life-history or demographic traits.(37)
	 One clear example is the macrophages polarization. 
Over the past two decades, studies recognize that 
macrophages can be reprogrammed toward pro-oxidative 
(called M1 macrophages) or anti-inflammatory forms 
(called M2 macrophages). A recent study hypothesized that 
macrophage reprogramming with polarization to M1 or 
M2 macrophage forms may be mediated via concentration 
gradients of signaling agents utilizing many substances, and 
that conforms to an hormetic dose response.(41)
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Figure 6. NO-dependent mechanisms in protective effects of 
adaptation to hypoxia.(60) (Adapted with permission from 
SAGE Publications).

and resist to ischemia-reperfusion injury, mediates by 
the phosphatidylinositol 3-kinase (PI3K)-Akt signaling. 
Such preconditioning maybe not reduce the incidence of 
myocardial ischemia-reperfusion injury, but at least reduce 
the myocardial damage severity.(59,64)
	 Ischemic conditioning performed by induced 
a transient, subcritical ischemia in a tissue to form 
endogenous protection. It is promising to protect ischemia-
sensitive organs such as the heart, the brain, and spinal 
cord. Both pre- and post-conditioning give a similar level 
of neuroprotection. The effects can appear immediately 
after the sublethal stress, or with a delay of days, termed as 
early or late effects. The early effects may associate to post-
translational modification of critical proteins (membrane 
receptors, mitochondrial respiratory chain), while the 
late effects come after gene up-or down- regulation. The 
transient ischemic attacks (TIA) could be relevant to brain 
ischemic preconditioning and may reduce the severity of 
subsequent strokes.(65)
	 Ischemic preconditioning (IPC) was first described 
in 1986, implemented as four 5 minutes cycles of coronary 

occlusion, which was insufficient to cause myocardial 
necrosis, and continue with a prolonged (40 minutes) 
coronary occlusion and reperfusion which caused infarction. 
This resulted in a substantial reduction (75%) in the area of 
infarction in the subsequent exposure (66). The experiment 
in cerebral did in 4 years later using a brief (2 minutes) 
bilateral carotid occlusions, and could protect from neuronal 
death due to the subsequent 5 minutes bilateral carotid in 
gerbils.(67) 
	 Ischemic  pre-  and  postconditioning  complex  
signaling  pathways  involve  ligands  released  from  
ischemic  myocardium,  G-protein-linked  receptors, 
membrane growth factor receptors, phospholipids, signaling 
kinases, NO, protein kinase C (PKC) and  cGMP-dependent 
protein kinase or protein kinase G (PKG),  mitochondrial  
ATP-sensitive  potassium channels, reactive oxygen species 
(ROS), tumor necrosis factor (TNF-α and sphingosine-
1-phosphate. The mitochondrial permeability transition 
pore (mtPTP) is probably the final effector, together with 
the signal to prevent pore formation. Many studies tried 
to produce a roadmap of this signaling, hope to reveal a 
point to intervene and could patients with acute myocardial 
infarction whose hearts are being reperfused.(62) 
	 Scientists acknowledged IPC as the most powerful 
cardioprotective intervention to salvage ischemic 
myocardium, reduce infarct size, and protect the cardiac.  
Acute myocardial infarction (AMI) is caused by a coronary 
thrombus, which could be dissolved with a thrombolytic 
agent. the size of a myocardial infarction is not only 
determined by ischemic damage, but also by reperfusion 
itself which contribute up to 50% of the final infarct size. 
Current standard of treatment is revascularization therapy 
(62), such as mechanical postconditioning using short 
periods of ischemia immediately after reperfusion. Oxygen 
re-introduction leads to sudden changes in myocardial 
viability, mediated by a burst of ROS produced in the 
mitochondria. This led to membrane damage, ion pumps 
interference,  and  volume  dysregulation.   Another 
hypothesis  was  the  invasion  of  leucocyte  to  the  
reperfused tissue and attack viable myocytes by releasing 
free radicals.
	 Preconditioning and adaptive responses are the 
manifestation of hormesis. The constraints of biological 
plasticity may be an obstacle in enhancing the hormetic 
stimulation amplitude. However, in the resilient phenotype, 
the duration may be extended to resolve this.(68,69) 
It is expected  that  efforts  will  be  directed  in  these  
directions  via metabolic  engineering  and  other  molecular  
approaches.(20)
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Mitohormesis Promoting Health and 
Lifespan

The levels of molecular damage increase over time, 
contributes to the biological process of aging, and 
organism’s pathology and mortality. The precise 
mechanisms underlying aging process and how to control 
its rate to increase lifespan was investigated using models 
such as Saccharomyces cerevisiae, C. elegans, Drosophila 
melanogaster, and Mus musculus. From a molecular 
genetic perspective, hormetic adaptive and defensive dose 
response involving an alteration of genes’ expression, and 
result in stress resistance. Utilizing the hormetic principal, 
longevity may be increased after achieving a greater 
resistance to a range of stressors. The treatments applied 
in many studies involving insulin/IGF-1 signaling pathway 
manipulations, dietary restriction (food intake significant 
reduction without malnutrition), oxygen reduction, physical 
activity, etc (Figure 7).(70) The hormetic dose response has 
important implications for the fields of hazard assessment, 
risk assessment for carcinogens, endocrine disruption, for 
pharmaceuticals/natural products that enhance biological 
performance, and pre/post conditioning activities that 
upregulate adaptive mechanisms, enhancing resilience.
	 A brief thermal stress exposure is sufficient to 
induce thermotolerance in C. Elegans and cause small, but 
statistically significant increases in life span.(71) Apparently, 
the dose-response relationships for thermotolerance and 
longevity are very similar (68); after subjected to a mild 

Figure 7. A non-exhaustive overview on 
lifespan-extending interventions linked to 
mitohormetic ROS signalling.(70) (Adapted 
with permission from SAGE Publication).

heat stress, the expression levels of the small heat-shock 
protein gene hsp-16 in C. Elegans are predictive of both 
thermotolerance and life span.(72) Another study suggested 
an extension of lifespan in C. Elegans after glucose 
restriction, which induces hormesis via mitochondrial 
respiration and oxidative stress enhancement.(73,74) Seems 
that increased stress resistance will increased life span.(1) 
	 ROS regards as toxic oxygen-containing molecules 
that induce molecular damage in the cell, and contribute 
to aging.(75,76) In contrary, mildly elevated ROS alter 
physiologic rates (77-79) and contribute to longevity in 
some organisms including clk-1 worms (79-81). Treatment 
with the superoxide-generator paraquat induce oxidative 
damage (77,80,82) and decreased the levels of protein 
carbonylation (83,84), decreased lipofuscin accumulation 
(85), and decreased 4-Hydroxynonenal (4-HNE) (86,87), 
while increasing the levels  of F3-isoprostanes (88) in the 
worms. Measurement of ROS level in clk-1 worms using 
redox dyes showed increased level of ROS in whole worm 
extracts and in the heads of whole worms (82), but not in 
isolated mitochondria (80). This indicate that the worms 
have increased levels of ROS but decreased levels of at least 
some types of oxidative damage.
	 Oxidative damage is a result of the homeostasis 
between ROS production, ROS detoxification and repair, 
thus the result suggested that antioxidant defense or damage 
repair may be increased in the worms. The elevated ROS 
in clk-1 worms upregulates multiple classes of antioxidant 
genes during adulthood, increased the level of catalase 
activity (89), while the increasing of superoxide dismutase 
(SOD) protein or mRNA showed different results (83,90-
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92). Increased levels of ROS in the mitochondria further 
increase clk-1 lifespan, while cytoplasmic ROS decrease 
it, but actually the specific compartment does not affect on 
lifespan. What counted to the longevity of clk-1 worms is 
both ROS-dependent and ROS-independent mechanisms on 
stress resistance.(93)
	 Besides their responsibility in conversing the bulk 
of nutritive energy, mitochondria play an important role in 
aging processes and the related diseases. Over 90% of all 
intracellular ROS was produced as the inevitable by-product 
of mitochondria oxidative phosphorylation (OxPhos) 
process, with conversion of 0.15-5 % of total oxygen 
consumed by resting cells (89-92). Thus, mitochondria 
are the main producers of energy and ROS within the 
cell, which majorly impact on cell’s physiological and 
pathophysiological processes. Mitochondrial dysfunction 
increased oxidative stress and associated with many diseases 
such as diabetes, cancer and neurodegenerative disorders, 
including Alzheimer’s and Parkinson’s disease (94-97), and 
of course aging (97-99), whereas the role of ROS in this 
regard is still unclear. Hence, ROS in different levels may 
exert opposite effects on biological outcomes. At a high dose, 
ROS clearly induce detrimental effects on cellular integrity, 
while in low amounts ROS may exert specific functions 
in promoting general health, and specifically lifespan. By 
today, a range of stressors provide hormetic effects on aging 
process (10,11,18,100-102). The term of mitochondrial 
hormesis or mitohormesis later specified in 2006 (103), 
which used in setting for mitochondrial ROS (mtROS) as 
sublethal stressors promoting lifespan in a lower doses (73). 
Figure 8 showed how ROS transcriptionally influence stress 
resistance and lifespan.
	 Calorie restriction (CR) has been applied in study 
for aging since world war II, refers to dietary regimens 
that reduce 10-50% calorie intake without incurring 
malnutrition (104). CR induces metabolic adaptation and 
reduces regenerative diseases including cardiovascular 
diseases, cancer, and type 2 diabetes mellitus (T2DM) (105-
109) as well as the factors involved in the before-mentioned 
diseases (110-112). CR is capable of inducing stress defense 
mechanisms which reflect mitohormetic responses, notably 
in ROS detoxification, involving radical-scavenging 
enzymes and phase I and II biotransformation response 
enzymes.(73,74,81,113-125)
	 Mitohormetic mechanism was showed in CR as 
hypothesized in some independent observations. Initial 
induction of mtROS by CR induces stress defense 
mechanisms and culminate in secondarily decreased of 
mtROS levels, in a time-resolved manner.(81) Some 

misinterpretation happened to the subsequent decrease in 
ROS as being the primary result of CR, whereas it is an 
adaptive detoxifying mechanism, and CR is the essential 
trigger of mitohormetic mechanisms.(73,126) 
	 Thioredoxin is another important factor regarding the 
effects of CR. It extends C. elegans lifespan under dietary 
deprivation and knockouts of eat-2, a genetic surrogate of 
nematodal CR.(127) The oxidoreductase thioredoxin roles 
in antioxidant response via Nrf2 binding at the antioxidants 
responsive elements (AREs), redox regulation, acts as 
electron donor for metabolic enzymes, and  prevents 
aggregation of cytosolic proteins in the cell.(128,129) Nrf2 
transcription factor activation from the leucine zipper family 
is indeed a crucial pathway to mediate mitohormesis. Nrf2 
in a normal condition is insulated by its specific repressor 
Kelch-like ECH-Associated Protein 1 (KEAP1) in the 
cytoplasm. KEAP1 is an actin-binding protein, which also 
targets Nrf2 for proteasomal degradation.(130) The redox-
sensitive cysteine residues in KEAP-1 sensors oxidants and 
electrophiles, leading to abrogation of the Nrf2/KEAP1 

Figure 8. Overview on how ROS transcriptionally influence 
stress resistance and lifespan.(70) (Adapted with permission 
from SAGE Publication).
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complex.(130,131) Nrf2 is shown to be activated by ROS 
(131,132), and binds to the DNA via AREs to coordinate the 
stress response by boosting the expression of antioxidant 
proteins, and phase I and II detoxification enzymes.(133) 
	 Due to various interventions mechanisms, there 
are some other transcription factors which are important 
for lifespan extension including member of the Forkhead 
transcription factors (FOX) and heat shock factor 1 (HSF-1). 
FOXOs activate a number of target genes involved in cellular 
stress response. Oxidative stress induce mitohormesis and 
upregulates superoxide dismutase and catalase in FOXO-
dependent pathway (134-136), while stress-response 
induced by CR is mediated by FOXAs (137,138).  Overall, 
a number of important lifespan-regulating molecular 
pathways were unified in mitohormesis, and prospectively 
to become a common denominator in aging research.(70)

Dietary Factors, Hormesis and Health

Many studies demonstrated different dietary factors effect on 
health and longevity. Some of those showed incontrovertible 
evidences, while some other were inconclusive. Beyond of 
the food variety, the amount of calories consumed firmly 
showed an associated with the risk of many prominent 
age-related diseases.(139–141) Higher calories increase 
the risks of such metabolic and even neurodegenerative 
disorders. Regarding the dietary components, diet high in 
saturated fats, cholesterol and trans-fats may promote age-
related disease (142,143), while simple sugars increase 
the risk of diabetes (144). Healthy diets recommendation 
including  lots   of   vegetables  and  fruits  (145),  fish  (146) 
and nuts (147).
	 Oxidative stress is often be blamed for ageing process 
and mortality. Therefore, modifying dietary factors might 
influence disease processes and longevity. Dietary energy 
restriction (DER), and substances contain in vegetables, 
fruits, nuts and fish oils exert anti-oxidative effects.(148) 
Animal and in vitro studies found that dietary factor induced 
specific adaptive stress response signaling pathways, i.e., 
hormesis.(149) Another highly controlled studies on animals 
showed that DER either by controlled CR or intermittent 
fasting can increased animal cells to various types of stress. 
DER studies in human also resulted in counteract disease 
processes. Alternate day fasting reduced inflammation 
markers and oxidative stress and also improve symptoms in 
asthma subjects.(150)
	 DER regiment in animals change several biochemical 
and molecular which are consistent with the involvement 

of hormesis mechanisms, propose the beneficial effects of 
DER for health. HSP level was increase in several different 
tissues, which serve a chaperone function that protects 
proteins against damage. For example, HSP-70 levels are 
increased in liver cells of rats treated on CR (151), while 
intermittent fasting increased HSP-70 and glucose-regulated 
protein 78 in rat’s brain synapses (152).
	 Another cytoprotective benefit of DER is the 
upregulation of antioxidants. Diabetic rodents demonstrated 
increased levels of some antioxidant enzymes in their liver 
after DER maintenance (153), and reduced calorie diet 
result in increased vitamin E and coenzyme Q10, also higher 
plasma membrane redox enzyme activities, in brain cell 
membranes compared to control rats fed ad libitum (154). 
The increased antioxidant levels are consistent with reduced 
oxidative damage to proteins, lipids and DNA in various 
tissues of animals as a result of hormetic mechanisms on DER 
(155), which involve system adaptation on cellular energy 
regulation. For example, some proteins which involved in 
mitochondrial oxidative phosphorylation (138), glycolysis 
(148) and nicotinamide adenine dinucleotide (NAD)/NADH 
metabolism (166) regulation were upregulated in some cell 
types as respond to DER.
	 The current evidences for hormetic response due 
to environmental toxins in biological systems raise the 
possibility that the same mechanism also occurs by the 
induction from chemicals in foodstuffs (particularly plants), 
resulting from chemicals ingestion in doses within the 
hormetic range. Plants developed biosynthetic pathways 
and generate  more than 100 biotoxins in its evolution in 
order to prevent microorganisms and insects from eating 
them.(164) The harmful chemicals usually concentrated 
in exposed vulnerable regions of the plant such as the skin 
of fruits and the growing buds. The phytochemicals can 
be toxic to mammalian cells in high concentrations, but in 
subtoxic doses, it may induce adaptive stress responses. 
Several studies performed on the hormetic actions of specific 
phytochemicals, such as high levels of isothocyanates in 
broccoli which induced the expression of cytoprotective 
phase 2 proteins in liver, intestinal and stomach cells (167); 
curcumin contains in curry spices induce adaptive stress 
responses genes and protect cells in animal models of 
cataract formation, pulmonary toxicity, multiple sclerosis 
and Alzheimer’s disease (168); resveratrol found in grape 
skin protect cells in models of myocardial infarction and 
stroke (169). Nrf-2 is involved in the hormetic signal 
transduction, by its binding to ARE upstream of genes and 
encodes cytoprotective antioxidant enzymes and phase-2 
proteins.(170) Other pathways such in resveratrol, involving 
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Table 1. Summarized agents that induce hormesis-related to dietary and health.

activation of sirtuin – FOXO, and increase the expression of 
antioxidant enzymes, and cell survival-promoting proteins.
(162) Some other phytochemicals may activate the hormetic 
transcription factors NF-κB and CREB and induce genes 
encoding growth factors and anti- apoptotic proteins.
(163,164)
	 Since the early recorded history, alcohol has been an 
integral part of human culture. Moderate alcohol consumption 
associated with beneficial health effects, but excess and 
binge drinking leads to increasing risk of cardiovascular 
diseases and mortlity.(165-170) Thus, moderate amount of 
alcohol is protective against coronary artery disease (CAD), 
and the higher amount exert different effect.(171) Multiple 
studies observed a J- or U-shaped association between 
alcohol consumption and all-cause mortality.(169-175) The 
benefit of moderate alcohol consumption include an increase 
in HDL cholesterol, increased insulin sensitivity, favorable 
effects mediated by alterations in PKC, anti-inflammatory 
effect, increase adiponectin, increase fibrinolysis, decrease 
in platelet aggregation, and coagulation and improved 
endothelial function.(176-178) The complex metabolic 
pathways are interconnected on these mechanisms. The 
role of individual factors are not yet be elucidated, but 
some studies on the biphasic dose responses associated 
with increased expression of genes encoding cytoprotective 
proteins including antioxidant enzymes, protein chaperones, 
growth factors and mitochondrial proteins. Table 1 showed 
some summarized agents that induce hormesis-related to 
dietary and health. More research on how dietary factors 
exert dose response and kinetic characteristics in animals 
and humans will lead to a better understanding of hormesis 
and to improvements in dietary interventions for disease 
prevention and treatment.(149)

Hormetin Agents Food in Diet Stress Pathway Effect

Phytochemicals 
(isothocyanates, curcumin)

Broccoli, curry spices Activation of nuclear factor 
erythroid 2 (Nrf2)

Broccoli induced the expression of 
cytoprotective phase 2 proteins in liver, 
intestinal and stomach cells. Curcumin 
protects against cataract formation, pulmonary 
toxicity, multiple sclerosis and Alzheimer’s 
disease.

Resveratrol Grapes skin, red wine Regulation of redox 
homeostasis, Activation of 
Nrf2 and sirtuin pathway, 
Blocking of nuclear factor κB 
(NF-κB)

Resveratrol protect cells in models of 
myocardial infarction and stroke.

Alcohol Alcoholic drinks Alterations in protein kinase C 
(PKC)

Moderate consumption of alcohol increase in 
HDL cholesterol, increased insulin sensitivity, 
anti-inflammatory effect, increase adiponectin, 
increase fibrinolysis, decrease in platelet 
aggregation, and coagulation and improved 
endothelial function.

Conclusion

Human bodies are highly adaptive. Exposure to a stressor 
in adequate dose evidently can induce stress responses that 
are protective against the same stress exposure in higher 
levels. While constant high-level exposure induce tolerance 
to avoid overstressing the system. Our body needs to adjust 
to different functions from fecundity versus longevity until 
energy conservation versus expenditure. These adaptations 
are essential to protect us from unpredictable environmental 
changes. Our endocrine, nervous, and immune systems are 
capable to adapt, since these systems directly sense the 
environmental changes and communicate the perceived 
change to the rest of the body. A lot of adaptation occurred 
during evolution and the training formed the body that is 
more resistant to stress.
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