
JCSI 20 (2021) 247–253

Received: 27 June 2021

Accepted: 9 July 2021

247

Comparative analysis of Unity and Unreal Engine efficiency in creating

virtual exhibitions of 3D scanned models

Analiza porównawcza wydajności silników Unity i Unreal Engine
w aspekcie tworzenia wirtualnych pokazów modeli pochodzących ze
skanowania 3D

Agata Malwina Ciekanowska*, Adam Krzysztof Kiszczak – Gliński*, Krzysztof Dziedzic

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

Abstract
The main purpose of this work was to compare two game engines (Unreal Engine and Unity) in creating virtual exhibi-

tions. The article is a scientific description of a test of their efficiency. For the needs of the research two identical test

applications built on the basis of the same assets were created. Those applications enabled researchers to examine and

compare the efficiency of engines in question, as well as familiarizing themselves with the workflow on each platform.

The comparative analysis of gathered data let more effective solution to emerge, which happens to be Unity engine.

Keywords: virtual museum; 3D models; game engines; comparative analysis

Streszczenie

Głównym celem tej pracy było porównanie dwóch silników gier (Unreal Engine oraz Unity) w tworzeniu wirtualnych
pokazów. W artykule opisano doświadczenie badające ich wydajność. Na potrzeby eksperymentu przygotowano dwie

bliźniacze aplikacje testowe, zbudowane na bazie tych samych assetów. Pozwoliły one na zbadanie i porównanie wy-

dajności rozpatrywanych silników oraz zapoznanie się z tym jak wygląda praca na każdym z nich. Analiza porównaw-

cza zebranych danych pozwoliła wyłonić wydajniejsze rozwiązanie, którym okazał się silnik Unity.

Słowa kluczowe: wirtualne muzeum; modele 3D; silniki gier; analiza porównawcza

*Corresponding author

Email addresses: agata.ciekanowska@pollub.edu.pl (A. M. Ciekanowska), adam.kiszczak-glinski@pollub.edu.pl (A. K. Kiszczak – Gliński)

©Published under Creative Common License (CC BY-SA v4.0)

1. Introduction

The number of internet connections across the globe is

growing rapidly. Thanks to this process, developing

virtual entertainment and education systems is easier

and faster than ever. This trend also includes virtual

museums, which are quickly gaining in popularity.

Considering recent restrictions related to the pandemic,

the value of virtual exhibitions is even greater lately.

In “The virtual museum”, F. Antinucci attempted to

create a definition of virtual museum [1]. According to

the author, virtual exhibition is not a real museum, as

watching 3D models cannot replace the impression of

watching an exhibit in real life. The author underlines

the importance of experiencing a real museum space.

Such visit makes perceiving sizes, volumes and textures

of artefacts easier. That said, he values virtual museums,

for the flexibility to create exhibitions which are diffi-

cult or even impossible to create in real life. In the dis-

cussed work, virtual museums are considered by the

author more as a supplement to the existing, real life

exhibitions rather than a separate entity.

J. Derwisz in “Współczesne technologie multimedi-

alne w wirtualnej rekonstrukcji oraz prezentacji histo-

rycznych obiektów architektonicznych” indicates issues

with the reconstruction of objects that changed their

form or appearance over the years [2]. Further, she

points out, that such exhibitions often do not have a

sufficient financial support. The author suggests 3D

scanning and modelling of the artefacts as a viable solu-

tion for those complications.

Possible methods of scanning objects in 3D are pre-

sented in „An approach to computer-aided reconstruc-

tion of museum exhibits” by J. Kęsik, J. Montusiewicz
and R. Kayumov [3]. One of the given techniques is to

use a stationary device where an object can be placed

and scanned. A disadvantage of such technique is the

risk of damaging the exhibit during the transfer process.

On the other hand, there is a safer method available – a

handheld device. Using a mobile device minimizes the

risk of a destruction of the artefact.

In the „Comparison of Unity and Unreal Engine” by
A. Šmíd the author examines title game engines using a

game created especially for this purpose [4]. The game

was deployed in both of the engines, and later examined

on a desktop computer, laptop, Android smartphone and

Virtual Reality system. The author thinks that Unity was

easier game engine to learn, the compilation time was

shorter and the final size of the project was smaller.

Alternatively, the Unreal Engine editor allowed creating

scripts in visual Blueprint system, and had more ad-

vanced tools to create materials or generate terrain and

vegetation. The final conclusion was that Unity is better

solution when creating simpler projects on mobile plat-

forms, and Unreal Engine is better suited for develop-

mailto:kowalski@company.com

Journal of Computer Sciences Institute 20 (2021) 247-253

248

ment of more complex games on desktop computers or

consoles.

A study of optimization methods in Unity game en-

gine is included in the „Metody optymalizacji wyda-

jności silnika Unity 3D w oparciu o grę z widokiem
perspektywy trzeciej osoby” by K. Siarkowski, P.
Sprawka and M. Plechawska-Wójcik [5]. For the re-

search, the application with the third-person perspective

was created. Parameters affecting performance such as

occlusion culling, clip planes, batching and lighting

were examined. Appropriate changes to the mentioned

parameters gave positive results and positively affected

the game performance.

E. Puławski and M. Tokarski within „Wykorzystanie

postprocesingu i jego wpływu na wydajność rendero-

wania w silniku Unreal Engine 4” article examined the

Unreal Engine performance based on parameters such

as lens flare, antialiasing, bloom or depth of field [6].

Researchers used an application created specifically for

this purpose. The outcome showed that antialiasing is

the most aggravating effect and bloom – the least.

2. Selected game engines overview

Game engines chosen as the research subjects in this

work are Unity and Unreal Engine. Unity is an engine

developed by Unity Technologies and Unreal Engine

was created by Epic Games [7][8]. Both of them allow

users to create 2D or 3D cross-platform applications

such as games, visualisations, product configurators,

interactive exhibitions or even virtual museums. Ac-

cording to the survey made in 2020 by Unity Technolo-

gies, Unity was the most popular software used to create

games on mobile devices [9]. A diagram showing sur-

vey results can be seen on Figure 1.

Figure 1: Game engines popularity in 2020 in creating mobile apps

[9].

Based on the Figure 1, the Unity engine was selected

to develop mobile apps 61% of time. Unreal Engine

ranks as the second most popular solution available to

general use, along with GameMaker: Studio and Ap-

pGameKit (each of them scored 5%).

Another research was made in 2019 and used a spe-

cial script [10]. The script investigated games published

on Steam platform for the usage of different game en-

gines. Collected data is valuable but unfortunately it’s
not the most precise. To be involved in the research, the

game must have had a Wikipedia page where an infor-

mation about used game engine had to be filled. The

results can be seen on Figure 2.

Figure 2: Market share of notable Steam games in 2019 [10].

According to this research (as can be seen on Figure

2), the most popular game engines were Unreal Engine

which scored 23% and Unity with the score of 11%.

The popularity aspect had a great importance in the

choice of game engines to be used in our research.

It is worth adding that both of the examined engines

at the moment of writing this paper had a policy which

allowed free use for the non-commercial purposes.

Moreover, Unity and Unreal have extensive documenta-

tion, which make application development easier and

faster.

3. 3D scanned models

Artefacts used in this research originate from the Silk

Road in Central Asia. The 3D models of these exhibits

can be seen on Figure 3.

Figure 3: 3D models of exhibits from the Silk Road.

Journal of Computer Sciences Institute 20 (2021) 247-253

249

From the top left corner, clockwise – a lamp frag-

ment, a camel-shaped jug, a beverage bottle and a per-

fume vessel.

The four scanned and textured artefacts presented on

Figure 3 were used creating the virtual museum. Each

model has a few variations with mesh simplified in a

different degree. A 3D mesh is the structural build of a

3D model. 3D meshes use reference points in X, Y and

Z axes to define shapes. Availability of multiple models

in several quality levels allowed achieving a satisfying

performance.

3.1. Obtaining the models

The models shown in the Figure 3 were created using

Artec Space Spider handheld scanner, made by Artec

3D. The scanner is shown on the Figure 4 [11].

Figure 4: Artec Space Spider scanner [11].

The Space Spider has an ability to capture objects up

to 2000 cm
3
. Its maximum scanning capability is 1 mil-

lion points per second with the 7.5 FPS frame rate.

Moreover, it enables obtaining textures of scanned piec-

es with a 1.3 Mpx resolution [12].

Finished scans of the four exhibits were later pro-

cessed using AutoCAD and Artec Studio software.

It is also possible to use stationary devices to scan

exhibits but it poses a risk of damaging or even destroy-

ing object while moving it [13].

4. The virtual museum

The virtual museum was deployed in both Unity and

Unreal Engine. Efforts were made to make the two

scenes as similar to each other as possible, e.g. using the

same textures, materials and 3D model of a museum or

placing artefacts in an identical arrangement, etc. Alike

settings for the museum were applied as well.

Figure 5: Virtual museum implemented in the Unity game engine.

Figure 6: Virtual museum implemented in the Unreal game engine.

The model of the museum area including lamps,

sconces, pedestals and a front door was created using

Blender software which is free to use [14]. A virtual

visitor can move around in the created space from the

first-person perspective. The user also can interact with

each exhibit by pressing ‘E’ key on a keyboard whilst

standing nearby the chosen artefact. An information

about this function is displayed when appropriate for

convenience.

Figure 7: Exhibit view made in the Unity game engine, allowing

interaction with the model.

Figure 8: Exhibit view made in the Unreal game engine, allowing

interaction with the model.

The purpose of the view presented in Figures 7 and

8, is that the person visiting the museum can rotate the

chosen object and read information about it. An in-

formative note about the object is presented at the bot-

tom of the screen. This gives the user a chance to take a

better look at every exhibit and to discover its origins.

Journal of Computer Sciences Institute 20 (2021) 247-253

250

Scripts responsible for logic of the projects were

created in C# and the Blueprint system for Unity game

engine and Unreal Engine respectively.

The Level Of Detail (LOD) technique was used for

optimization of performance on available hardware. The

LOD is a tool allowing for improvement of the perfor-

mance of a scene by loading a lower quality meshes in

situations where user wouldn’t notice the lack of details
in models. It is based on the distance between the object

and a camera (Unity) or percentage of screen surface

occupied by model (Unreal) [15][16]. Considering very

high complexity of models in the best quality (from

508028 up to 3199707 of mesh triangles), adding the

LOD was necessary to ensure smooth and correct per-

formance of the application. The highest quality model

of an artefact is only displayed when the user is standing

as close as possible to the object or enables the view

presented in Figures 7 and 8.

5. The experiment

The experiment was conducted on two PCs and two

laptops – each of them with different hardware specifi-

cations, listed in the Table 1.

Table 1: Specifications of computers used in experiment

Computer Processor (CPU)
Graphic card

(GPU)
RAM

PC 1
AMD Ryzen 7

3700x, 3.60GHz

AMD Radeon

RX580
32 GB

PC 2
Intel i5-4460,

3.20GHz

AMD Radeon

R9 270x
8 GB

Laptop 1
Intel i5-8250U,

1.60GHz

NVIDIA

GeForce

940MX

8 GB

Laptop 2
Intel i5-7200U,

2.50GHz

NVIDIA

GeForce

940MX

8 GB

In order to carry out the comparative analysis and to

verify the efficiency of both game engines, six main

criteria for examination were established:

 CPU load (measured as percentage),

 GPU load (measured as percentage),

 RAM load (measured as MiB),

 FPS value - Frames Per Second,

 subjective authors opinion on working with exam-

ined game engines and intuitive of their user inter-

faces (measured on 0 to 5 scale),

 final project size (measured as MB).

The experiment duration was 1 minute and it was

repeated 10 times on every computer for each game

engine. Performance data was gathered every second.

To make tests comparable, all runs involved a similar

course and the same order of exhibit examination. An

individual artefact was observed in a view presented in

Figures 7 and 8 for about 15 seconds, and after that, a

virtual visitor proceeded to another exhibit.

Data describing CPU and RAM usage was collected

using Performance Monitor built in the Windows 10

operating system. It allows saving hardware usage in-

formation limited to only one process, which was a

crucial functionality for the experiment. Open Hardware

Monitor software was used to gather information about

GPU load and FPS values were captured with the help

of Fraps programme. What is important, FPS value was

limited to 60 in both instances. The reason behind that is

this FPS value is considered optimal. Images projected

in this frame rate are smooth, and GPU load is often

reduced if the graphic card is powerful enough.

5.1. Results

Data shown on every diagram presented in this subsec-

tion is an average based on averages coming from data

collected in each experiment series and is used for veri-

fication of the performance of both examined engines.

Figure 9 presents a diagram containing average pro-

cessor usage data.

Figure 9: Average CPU usage.

The best performance for both Unity and Unreal en-

gines was carried out by Laptop 1 in the laptops group

and PC 1 in desktop computers group. An interesting

outcome from this graph is the fact that PC 2 configura-

tion has shown a worst performance than Laptop 1,

despite having slightly better hardware specification.

After delving into more specific information about each

of the examined processors, possible explanation of this

phenomenon was discovered. It is possible, that the

number of threads in each unit was a decisive factor.

CPU inside the PC 1 has 8 cores and 16 threads and the

PC 2 has only 4 cores and 4 threads available. The pro-

cessor in Laptop 1 has 4 cores alike PC 2, but 8 threads.

Laptop 2 has only 2 cores and 4 threads. Quantity of

cores can make a difference too, which is clear, when

comparing PC 2 and Laptop 2.

Figure 10 represents collected information about av-

erage graphic card usage.

Figure 10: Average GPU usage

Journal of Computer Sciences Institute 20 (2021) 247-253

251

In most of the cases the Unity game engine achieved

a better result compared to its competitor. The most

significant difference between the two can be observed

on the PC 2 – Unreal is nearly 2 times less efficient. For

both of the laptops, the Unreal engine achieved similar

result which can be rounded to approx. 99% of GPU

usage. Despite the fact that both laptops have the same

graphic card, the Unity engine had slightly better per-

formance in this category on Laptop 1.

Figure 11 presents an average RAM consumption

for each of the examined game engines.

Figure 11: Average RAM consumption.

The difference between the two subjects of study is

significant. Whilst testing Unity, RAM usage value has

never exceeded 250MiB. For the Unreal game engine,

the value fluctuated around 3500MiB.

Diagram of an average frames per second value is

shown on the Figure 12. On the PC 1 both of the exam-

ined engines achieved nearly identical score which is

very high. Most of the time, the scene on PC 1 was

running at approx. 60FPS and that means it was stable

and smooth in both examined cases. PC 2 achieved very

similar score when it comes to the Unity engine. When

running Unreal Engine, PC 2 performed slightly worse,

but still excellent. In regard to laptops, Unity was capa-

ble of generating more FPS than Unreal by about 10 on

both Laptop 1 and Laptop 2. The worst score for Unreal

game engine was registered on Laptop 2 and it was 40

frames per second. It is still satisfactory result, but in

this case, the quality was about ⅓ worse compared to

PC 1 and PC 2.

Figure 12: Average FPS value.

It is worth to compare average FPS diagram with

average GPU usage graph. Unreal game engine in lap-

tops group used about 99% of graphic card resources.

That means generating more FPS than what can be seen

on Figure 12 is not possible without further optimiza-

tion. Alternatively, Unity did not use up all of the GPU

computing power. That means improving achieved FPS

values is still possible.

Figure 13 shows sizes of the final built projects. The

size of the project made in Unity is about 50% smaller

compared to the Unreal Engine.

Figure 13: Final size of the built project.

The intuitiveness of engines User Interface and opin-

ion on working with examined game engines are sub-

jects to subjective evaluation. That is why there’s no

diagram with comparison results included in this cate-

gory. In the opinion of the authors, both interfaces are

similar. They allow the user to personalize the editor by

changing positions of the individual windows in the

workspace. One of the Unreal Engine biggest ad-

vantages is the possibility of programming scripts in

C++ as well as in the Blueprint. The Blueprint is a visu-

al programming system which allows users with no

experience in programming as well as professionals to

write full-fledged scripts. It is worth adding that Unity

allows writing code in C# which is easier to learn than

C++ but the user has more capabilities available using

the Epic Games product. From the hardware perspec-

tive, the Unreal editor is more resource-demanding

compared to Unity. Despite the fact that both of the

examined engines are free to use up to a certain revenue

from sales, the Unreal Engine is targeted more towards

bigger game developing studios, whilst Unity engine is

addressed to independent developers.

In order to compare values measured in different

units (e.g. RAM and FPS), a grade is assigned to the

selected criterion. The grade depends on the average

score obtained during the experiment. All configurations

were taken into consideration. Ratings for the ranges of

results are listed in the Table 2.

Table 2: Rates for the ranges of results

Rating CPU

[%]

GPU

[%]

RAM

[MiB]

FPS Size

[MB]

5 0-5 0-30 - 60-55.01 -

4 5.01-10 30.01-40 - 55-50.01 -

3 10.01-15 40.01-50 - 50-45.01 -

2 15.01-20 50.01-70 500- 45-40.01 600-

1 20.01-25 70.01-90 500+ 40-35.01 600+

0 25.01+ 90.01+ - 35- -

Journal of Computer Sciences Institute 20 (2021) 247-253

252

An average score for Unity engine on all of the

computer specifications in the aspect of CPU usage can

be rounded to 4.79% and for Unreal Engine – 14.41%.

That means according to the Table 2 Unity’s rating is 5
and Unreal’s rating is 3.

In the GPU usage category an average result for

Unity after rounding was 60.23, resulting in a grade 2.

After calculations, Unreal result was 81.63, so it was

rated 1.

The RAM consumption evaluation slightly varies-

from previous criteria. Considering the differences in

amount of RAM available in PC 1, and the fact that

there is a big difference between the two compared

engines in this case, there are only two grades available.

The threshold was established based on the correspond-

ing diagram. For Unity the grade is 2, and Unreal re-

ceived 1.

An average score for FPS values for both of the

game engines was also calculated. In this category Uni-

ty achieved an average of 56.38 FPS which equals rat-

ing 5. Unreal Engine accomplished a similar average

value of FPS, which was 51, resulting in grade 4.

Due to the fact that interface intuitiveness and the

simplicity of use of both of the examined engines is a

subjective value, there are no ranges for the rating in

this category. Based on the described advantages and

disadvantages in the opinion of authors, both engines

score 5 in the 0 to 5 scale.

In the final category, project size, there are only 2

grades available. As the size of project made in Unity

was below 600MB, it receives rating of 2 and given the

fact that the exhibition size made in Unreal Engine was

above 600MB, its rating is 1.

Achieved results and given grades are presented in

Table 3.

Table 3: Results and ratings given to the examined game engines

Criterion
Unity Unreal

Score Rating Score Rating

CPU load 4.79% 5 14.41% 3

GPU load 60.23% 2 81.63% 1

RAM load <500

MiB

2 >500

MiB

1

FPS value 56.38 5 51 4

Overall

experience

- 5 - 5

Final

project size

<600

MB

2 >600

MB

1

Based on all of the information contained in this

subsection, the resulting Table allowing comparative

analysis was created. Listed criteria are the same as the

ones mentioned in chapter 5. Weights of all of the six

criteria add up to the number 1 and – more importantly

– the higher the weight, the criterion had more im-

portance for the whole project and the final rating. Unity

and Unreal columns are meant for ratings of these game

engines, bearing in mind the specific categories. The

evaluation for a specific category and engine is derived

from multiplying weight and rating from Table 3.

Table 4: Resulting table

No. Criterion Weight Unity Unreal

1 CPU load 0.1 0.5 0.3

2 GPU load 0.3 0.6 0.3

3 RAM load 0.2 0.4 0.2

4 FPS value 0.25 1.25 1

5 Overall experience 0.1 0.5 0.5

6 Final project size 0.05 0.1 0.05

Totals: 1 3.35 2.35

As is seen in the Table 4, Unity engine has better fi-

nal score (3.35) than Unreal Engine (2.35) meaning that

Unity is more efficient tool for creating virtual exhibi-

tions of 3D scanned models.

6. Conclusions

The experiment created for this work purposes has

shown that the virtual museum can be made in Unreal

and Unity game engines. However, achieved effects

differ slightly. While both editors are similar in use

from the creator’s point of view and the visual side of

created exhibitions is similar too, the final products

aren’t identical in terms of performance. In the most

cases Unity has advantage over the rival engine. The

biggest difference between the two, to the disadvantage

of the Unreal Engine can be seen in the RAM usage

comparison diagram and final size of the built project.

For Unreal engine it was 3542 MiB and 1310 MB ac-

cordingly and for Unity – 209 MiB and 566 MB. Unity

also wins in the CPU resource consumption – it used

half as much resources as the competitor (appropriately

4.8% and 14.4%). Results in the GPU resource con-

sumption are in favour of the Unity engine as well,

which resource usage oscillated around 57%, being 18

percentage points lower than second game engine under

consideration. When it comes to the amount of generat-

ed FPS, similar results can be seen on desktop comput-

ers – both Unity and Unreal accomplished an average of

59 frames per second, but on both of the laptops Unreal

Engine performs worse - its mean was 43 FPS which

was a score worse than Unity by 10 frames.

Final grades for Unity and Unreal Engine were 3.35

and 2.35 accordingly. These ratings beg the question -

why is Unreal Engine still so popular? From the subjec-

tive point of view the created scene was looking better

in Unreal with less work put into visual aspect of it.

Blueprint system is definitely an advantage of this en-

gine too. The engine also provides more advanced tools,

resulting in greater popularity among professional users

and game developing studios.

Considering high RAM usage compared to Unity, it

is worth further examination. One of the possibilities is

the potential difference between applications created

using Blueprints and C++ and their RAM consumption.

References

[1] F. Antinucci, The virtual museum, Archeologia

e Calcolatori, supplemento, 1 (2007) 79-86,

http://www.archcalc.cnr.it/indice/Suppl_1/6_Antinucci.p

df [02.07.2021].

http://www.archcalc.cnr.it/indice/Suppl_1/6_Antinucci.pdf
http://www.archcalc.cnr.it/indice/Suppl_1/6_Antinucci.pdf

Journal of Computer Sciences Institute 20 (2021) 247-253

253

[2] J. Derwisz, Współczesne technologie multimedialne
w wirtualnej rekonstrukcji oraz prezentacji historycznych

obiektów architektonicznych, Wiadomości
Konserwatorskie, 34 (2013) 82-91,

http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.

baztech-909a5d65-29b1-46fd-bfa5-

3c76fb7efac1/c/Derwisz.pdf [02.07.2021].

[3] J. Kęsik, J. Montusiewicz, R. Kayumov, An approach to

computer-aided reconstruction of museum exhibits,

Advances in Science and Technology. Research Journal,

11 (2017) 87-94,

http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.

baztech-73ba2929-b9ff-4741-978b-

bf780441dd3f/c/kesik.pdf [02.07.2021].

[4] A. Šmíd, Comparison of Unity and Unreal Engine,

Bachelor Thesis, Czech Technical University, Prague,

2017, https://dcgi.fel.cvut.cz/theses/2017/smidanto

[02.07.2021].

[5] K. Siarkowski, P. Sprawka, M. Plechawska-Wójcik,

Metody optymalizacji wydajności silnika Unity 3D
w oparciu o grę z widokiem perspektywy trzeciej osoby,
Journal of Computer Sciences Institute, 3 (2017) 46-53,

https://doi.org/10.35784/jcsi.592 [02.07.2021].

[6] E. Puławski, M. Tokarski, Wykorzystanie postprocesingu

i jego wpływu na wydajność renderowania w silniku
Unreal Engine 4, Journal of Computer Sciences Institute,

10 (2019) 54-61, https://doi.org/10.35784/jcsi.206

[02.07.2021].

[7] J. Haas, A History of the Unity Game Engine, An

Interactive Qualifying Project, Worcester Polytechnic

Institute, Worcester, 2014,

https://digital.wpi.edu/pdfviewer/2f75r821k

[02.07.2021].

[8] A. Szewczyk, Oczekiwania fanów elektronicznej
rozrywki wobec grafiki w grach komputerowych, Studia

Informatica Pomerania, 40 (2016) 71-85,

http://wneiz.pl/nauka_wneiz/studia_inf/40-2016/si-40-

71.pdf [02.07.2021].

[9] 2021 Gaming Report - Unity insights from 2020 and

predicted trends for 2021,

https://images.response.unity3d.com/Web/Unity/%7B464

5ad28-63a3-4348-bc5b-dc09f2811419%7D_Unity_2021-

Gaming-Report.pdf [02.07.2021].

[10] Research of the market share of game engines on Steam,

from over 60,000 Steam games,

https://www.reddit.com/r/gamedev/comments/8s20qp/i_r

esearched_the_market_share_of_game_engines_on/

[02.07.2021].

[11] Artec Space Spider, https://skanery3d.eu/skanery-

3d/artec-spider/ [02.07.2021].

[12] Artec 3D Technical specifications,

https://www.artec3d.com/portable-3d-scanners/artec-

spider-v2#specifications [02.07.2021].

[13] M. J. Wachowiak, B. V. Karas, 3D Scanning and

Replication for Museum and Cultural Heritage

Applications, Journal of the American Institute for

Conservation, 48 (2019) 54-61,

https://www.si.edu/content/MCIImagingStudio/papers/sc

anning_paper.pdf [02.07.2021].

[14] A. Salwierz, T. Szymczyk, Metody wytwarzania

realistycznych pomieszczeń – skanowanie 3D oraz

modelowanie 3D, Journal of Computer Sciences Institute,

14 (2020) 101-108, https://doi.org/10.35784/jcsi.1584

[02.07.2021].

[15] Unity - Level of Detail (LOD) for meshes,

https://docs.unity3d.com/Manual/LevelOfDetail.html

[02.07.2021].

[16] Unreal Engine - Creating and Using LODs,

https://docs.unrealengine.com/4.26/en-

US/WorkingWithContent/Types/StaticMeshes/HowTo/L

ODs/ [02.07.2021].

http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-909a5d65-29b1-46fd-bfa5-3c76fb7efac1/c/Derwisz.pdf
http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-909a5d65-29b1-46fd-bfa5-3c76fb7efac1/c/Derwisz.pdf
http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-909a5d65-29b1-46fd-bfa5-3c76fb7efac1/c/Derwisz.pdf
http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-73ba2929-b9ff-4741-978b-bf780441dd3f/c/kesik.pdf
http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-73ba2929-b9ff-4741-978b-bf780441dd3f/c/kesik.pdf
http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-73ba2929-b9ff-4741-978b-bf780441dd3f/c/kesik.pdf
https://dcgi.fel.cvut.cz/theses/2017/smidanto
https://doi.org/10.35784/jcsi.592
https://doi.org/10.35784/jcsi.206
https://digital.wpi.edu/pdfviewer/2f75r821k
http://wneiz.pl/nauka_wneiz/studia_inf/40-2016/si-40-71.pdf
http://wneiz.pl/nauka_wneiz/studia_inf/40-2016/si-40-71.pdf
https://images.response.unity3d.com/Web/Unity/%7B4645ad28-63a3-4348-bc5b-dc09f2811419%7D_Unity_2021-Gaming-Report.pdf
https://images.response.unity3d.com/Web/Unity/%7B4645ad28-63a3-4348-bc5b-dc09f2811419%7D_Unity_2021-Gaming-Report.pdf
https://images.response.unity3d.com/Web/Unity/%7B4645ad28-63a3-4348-bc5b-dc09f2811419%7D_Unity_2021-Gaming-Report.pdf
https://www.reddit.com/r/gamedev/comments/8s20qp/i_researched_the_market_share_of_game_engines_on/
https://www.reddit.com/r/gamedev/comments/8s20qp/i_researched_the_market_share_of_game_engines_on/
https://skanery3d.eu/skanery-3d/artec-spider/
https://skanery3d.eu/skanery-3d/artec-spider/
https://www.artec3d.com/portable-3d-scanners/artec-spider-v2#specifications
https://www.artec3d.com/portable-3d-scanners/artec-spider-v2#specifications
https://www.si.edu/content/MCIImagingStudio/papers/scanning_paper.pdf
https://www.si.edu/content/MCIImagingStudio/papers/scanning_paper.pdf
https://doi.org/10.35784/jcsi.1584
https://docs.unity3d.com/Manual/LevelOfDetail.html
https://docs.unrealengine.com/4.26/en-US/WorkingWithContent/Types/StaticMeshes/HowTo/LODs/
https://docs.unrealengine.com/4.26/en-US/WorkingWithContent/Types/StaticMeshes/HowTo/LODs/
https://docs.unrealengine.com/4.26/en-US/WorkingWithContent/Types/StaticMeshes/HowTo/LODs/

