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ABSTRACT

Although great advances in elucidating the molecular
basis and pathogenesis of Alzheimer’s disease (AD)
have been made and multifarious novel therapeutic
approaches have been developed, AD remains an
incurable disease. Evidence shows that AD
neuropathology occurs decades before clinical
presentation. AD is divided into three stages:
preclinical stage, mild cognitive impairment (MCI),
and AD dementia. In the natural world, some
animals, such as non-human primates (NHPs) and
canines, can develop spontaneous AD-like
dementia. However, most animals do not develop
AD. With the development of transgenic techniques,
both invertebrate and vertebrate animals have been
employed to uncover the mechanisms of AD and
study treatment methods. Most AD research focuses
on early-onset familial AD (FAD) because FAD is
associated with specific genetic mutations. However,
there are no well-established late-onset sporadic AD
(SAD) animal models because SAD is not directly
linked to any genetic mutation, and multiple
environmental factors are involved. Moreover, the
widely used animal models are not able to
sufficiently recapitulate the pathological events that
occur in the MCI or preclinical stages. This review
summarizes the common models used to study AD,
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from yeast to NHP models, and discusses the
different applications, evaluation methods, and
challenges related to AD animal models, as well as
prospects for the evolution of future studies.
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INTRODUCTION

As the most common type of dementia in elderly individuals,
Alzheimer’'s disease (AD) is a severe neurodegenerative
disorder associated with progressive cognitive deterioration,
such as memory loss and logical reasoning decline. The
brains of AD patients are characterized by extracellular senile
plaques composed of amyloid B (AB), intracellular tau
aggregates, and neuronal loss (Price et al., 1995). Previous
studies have indicated that AD is typically associated with
cytoskeletal alterations, including the formation of
neurofibrillary tangles (NFTs), neuropil threads, and axonal
pathology (Adalbert et al., 2009; Blazquez-Llorca et al., 2017;
Braak & Braak, 1995; Merino-Serrais et al., 2013; Spires et al.,
2005; Vickers et al., 2009).

Less than 1% of AD patients exhibit cognitive decline and
pathological changes before the age of 60, and usually harbor
genetic mutations in the APP gene or genes encoding
presenilin 1 (PSENT) or presenilin 2 (PSEN2) (Hardy &
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Selkoe, 2002); AD caused by these mutations is called early-
onset familial AD (FAD) (Alzheimer's Association, 2013).
However, most AD patients develop sporadic disease later in
life, called late-onset sporadic AD (SAD). Although SAD is not
directly linked to any genetic mutation and multiple
environmental factors are involved, the accumulation of AB in
the brain resulting from abnormal AB clearance is considered
an important causative factor of the disease (Mawuenyega
etal., 2010).

According to the US National Institute on Aging-Alzheimer’s
Association (NIA-AA), AD progression can be divided into
three successive stages: (1) preclinical AD (no cognitive
impairment based on standard assessment or AD
biomarkers), (2) mild cognitive impairment (MCI) due to AD
(impairment of memory or other cognitive domains based on
standard assessment and evidence of AD biomarkers), and
(3) dementia due to AD (dementia and evidence of AD
biomarkers) (Albert et al., 2011; Jack et al., 2011; McKhann
et al., 2011; Sperling et al., 2011). Progressive neuronal loss
and irreversible cognitive decline typically occur during these
stages.

Increasing study of MCI has been conducted in the last
decade. MCI is considered a prodromal stage of AD, and
extensive research on MCI may contribute to earlier disease
diagnosis and prevention (Kinsella et al., 2009). Compared
with individuals of similar age and educational level, patients
with MCI exhibit abnormal cognitive functions but no changes
in daily social and occupational abilities (Whitehouse &
Brodaty, 2006). Currently, an estimated 22.5 per 1 000
individuals aged 75-79 and 60.1 per 1 000 individuals aged 85
or older have MCI (Gillis et al., 2019).

Recently, subjective cognitive decline (SCD) has attracted
increasing attention as a potential early manifestation of AD
(Rabin et al., 2017). SCD is defined as a perceived cognitive
decline in the absence of objective cognitive impairment
(Jessen et al., 2020). Individuals with SCD have a 4.5-fold and
6.5-fold increased risk of subsequent diagnosis of MCI
(caused by AD) and AD, respectively (Lin et al., 2019).
Reported subjective changes in cognitive performance are
considered core criteria for MCl and prodromal AD (Albert
et al., 2011; Dubois et al., 2007; Petersen, 2004).

As an essential tool for studying the mechanisms of AD,
animal models must recapitulate human pathophysiology. In
recent decades, various AD-related animal models have been
reported. Drummond and Wisniewski (2017) provided a
summary of several AD-model species, clarifying the
pathogenesis of AD as well as the features and limitations of
major experimental models of AD. In the current review, we
discuss different types of AD models and potential
MCl/preclinical AD models and provide a reference for future
construction or selection of AD-related models.

TYPES OF ANIMAL MODELS

According to different pathological and pathophysiological
factors, models can be divided into spontaneous,
interventional, and genetically modified models (Neha et al,,
2014). AB accumulation and tau hyperphosphorylation may
occur spontaneously in non-human primates (NHPs), but only
one of these phenomena appear to occur in a given species

(Braidy et al., 2012). For instance, baboons only show NFT
formation, while macaques display amyloid deposition with no
evidence of tau pathology. However, these NHPs have long
lifespans, and spontaneous AD-like symptoms and
pathological changes are usually only observed in elderly
individuals. Therefore, although NHP models of spontaneous
AD have research value, various factors, such as high
maintenance costs, low reproductive output, manipulation
challenges, and risk of zoonotic transmission, limit the use of
these models in research (lnestrosa et al.,, 2005).
Interventional models utilize chemicals to induce AD-like
symptoms and pathological changes in vivo. Specifically,
models use chemicals to induce neuroinflammation, a key
factor in SAD (Buckwalter & Wyss-Coray, 2004). Advances in
genetic engineering have also opened new avenues for
biological research, with transgenic animals greatly
contributing to the study of human diseases.

VERTEBRATE AD MODELS

NHP models

Although only a few studies using NHP AD models have been
conducted, geriatric monkeys exhibit spontaneous cognitive
impairment and may be regarded as natural AD-like models.
Most NHP species have long lifespans, entering old age after
20 years. These animals can present with many pathological
changes and clinical manifestations associated with AD, which
are highly similar to those seen in human AD.

Rhesus macaques (Macaca mulatta) show cognitive decline
and behavioral deficits at about 20 years of age, presenting
with amyloid plaques in the cerebral cortex and exhibiting
biochemical characteristics similar to those observed in AD
patients (Uno & Walker, 1993; Voytko, 1999). Furthermore, as
the only locus recognized to influence SAD risk, apolipoprotein
E (APOE) is expressed in approximately 20% of senile rhesus
macaques, similar to that found in AD patients (Bu, 2009).
Stump-tailed macaques (M. arctoides) exhibit morphological
and functional changes in the brain similar to those observed
in rhesus monkeys, although behavioral impairment occurs at
a later age (over 24 years) (Toledano et al., 2014). In addition
to a long lifespan (over 35 years), M. fascicularis monkeys
harbor mature plaques in the superior and inferior gyri of the
temporal cortex and the amygdala by age 20 (Nakamura
et al., 1998).

The spontaneous development of AD-like pathology in
NHPs can take several years or even decades, and thus prior
research has employed long-term NHP injection models to
study AD pathology. Previous studies have shown that when
AB oligomers are injected into the lateral ventricle of macaque
monkeys, they diffuse and accumulate in several regions and
exhibit synaptic loss, tau hyperphosphorylation, and glial
activation (Forny-Germano et al., 2014). Similarly, another
group reported a series of AD-like pathologies in middle-aged
rhesus monkeys, including significant intracellular neuronal A
accumulation, cholinergic neuronal atrophy and loss, and glial
activation, after 7 weeks of intracranial injection of AB4.4,
peptides and thiorphan (inhibitor of neprilysin, which is
responsible for AB clearance) (Li et al., 2010). In addition,
Gary et al. (2019) reported long-term learning and memory
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impairments in mouse lemurs (Microcebus murinus) following
intracerebral injections with human AD brain extracts.

In general, the long lifespan of NHPs provides a distinct
advantage for studying human disease. For example,
epidemiological studies of these animals may help identify
biological and environmental factors associated with AD.
Because they present with senile plaques and tau protein
aggregates simultaneously, these animals could be used to
investigate AD pathogenesis and the effects of therapeutic
agents (Heuer et al., 2012). However, there are some
differences in AD pathology between NHPs and humans. In
human AD patients, the main areas in which plaques form are
the hippocampus, amygdala, olfactory cortex, frontal cortex,
temporal lobe, and parietal lobe, whereas, in Macaca mulatta,
plaques tend to be deposited in the marginal cortex and
prefrontal lobe, with substantial inter-individual differences
(Sani et al.,, 2003). Furthermore, there is no evidence that
human-like NFTs are formed in M. mulatta. In M. arctoides,
AD-like neuropathology is observed in animals with marked
cognitive and behavioral dysfunction, but AD-like pathology
has also been found after death in individuals without a
diagnosis of AD (Bennett et al., 2006)

In humans, formaldehyde (FA) concentrations increase with
age, but are higher in AD patients than in healthy controls (He
et al,, 2010; Tong et al., 2013). Therefore, FA is closely
related to the occurrence and development of AD (Tulpule &
Dringen, 2013; Wang et al.,, 2019). FA-induced AD-like
disease in NHP models has been applied in various studies.
For example, Li et al. (2020) measured AB4, AB4p, and FA
levels in the cerebrospinal fluid (CSF) of rhesus monkeys and
found similar results as observed in human aging, i.e.,
decreased AR and increased FA levels in normal aged adults
and AD patients. Yang et al. (2014) found that chronic
administration of 3% methanol in young male rhesus
macaques led to persistent memory decline and consistent
pathological changes in amyloid plaques in the frontal lobe,
parietal lobe, temporal lobe, and hippocampus. Zhai et al.
(2018) also reported that intracerebroventricular injections of
FA or vehicle over a 12-month period led to cognitive decline
and common AD pathological markers in rhesus macaques
(aged 5-8 years).

Canine models
Canine cognitive dysfunction (CCD), also known as canine
cognitive dysfunction syndrome (CDS) or canine dementia, is
a common neurodegenerative disorder in geriatric canines.
The incidence of CCD is 14%-60% in dogs over the age of 8
(Neilson et al., 2001) and approximately 60% in dogs over the
age of 11 (Fast et al., 2013). Cognitive dysfunction in dogs
with CCD is highly similar to that in humans with AD (Braidy
et al., 2015; Chambers et al., 2012; Schiitt et al., 2016). Dogs
have been used to model spontaneous AD because the AB
peptide naturally accumulates in their brains with the same
amino acid sequence as that in humans, and the levels of AB
deposits associated with cognitive impairment in dogs and
humans are similar (Johnstone et al., 1991; Naslund et al.,
2000).

Dementia affects cerebral gyri in both dogs and humans,
resulting in cerebral atrophy and manifesting as sulcus
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widening and ventricle enlargement (Borras et al., 1999;
Toepper, 2017). Pathological changes in dogs with cognitive
dysfunction are similar to those seen in humans with AD.
Cortical atrophy and neuronal loss, including in the cortex,
hippocampus, and limbic system, have been observed in the
brains of dogs with cognitive dysfunction (Siwak-Tapp et al.,
2008; Tapp et al., 2004). The most common clinical symptoms
of CCD are similar to the symptoms of AD in humans and
include disorientation, anxiety, timidity, lack of recognition of
their master, aggression or apathy, difficulty in controlling
bodily secretions, and changes in circadian rhythm (Bain
etal., 2001).

Previous studies have detected AR subspecies (the highly
neurotoxic form pE3AA) in the hippocampi of dogs with CCD,
with a greater abundance of these plaques found in small- and
medium-sized dogs (Schmidt et al., 2015). For example, an in
vitro study reported highly neurotoxic AR species in the CSF of
Samoyed dogs with CCD (Rusbridge et al., 2018). Moreover,
dogs with CCD exhibit astrocyte and microglial cell recruitment
and activation (Rusbridge et al., 2018; Smolek et al., 2016), as
well as astrocyte hypertrophy (Borras et al., 1999). However,
NFTs are not found in dogs with CCD, and the degree of
cognitive dysfunction appears to be less pronounced than in
AD patients (e.g., loss of ability to eat), suggesting that CCD
may be more comparable to early-stage AD (Landsberg et al.,
2012).

Mouse early-onset FAD models
As mentioned above, a small fraction of AD patients exhibit
cognitive decline and pathological alterations before 60 years
of age. These patients usually harbor genetic mutations in the
APP gene or the genes encoding PSEN1 or PSEN2 (Hardy &
Selkoe, 2002), and develop early-onset FAD (Alzheimer's
Association, 2013). Because rodents do not spontaneously
develop AD, FAD-associated human genes must be
introduced to study AD pathology in these animals. Pronuclear
injection and gene-targeted replacement are two widely used
genetic strategies for generating genetically modified animals.
In humans, the APP gene is located on chromosome 21.
The most common isoforms of ABPP (ABPPggs, ABPP;54, and
ABPP,7,) are produced from the alternative splicing of exons 7
and 8 (Figure 1A). According to their distance from the
cleavage site, APP gene mutations can be divided into three
categories: i.e., those located close to the B-secretase site, o-
secretase site (i.e., within the AB region), or y-secretase site
(Figure 1A). The different categories of mutations have
different effects on ABPP processing and the development of
AD (Karran et al., 2011). These mutations are named
according to the geographic origin of the first identified carrier
family and the mutated residue in the longest ABPP isoform
(ABPP70) (Figure 1B). Presenilin 1 (PS1) and presenilin 2
(PS2) act as the catalytic core and play an important role in
the generation of the y-secretase complex. Other proteins,
such as presenilin enhancer 2 (PEN2), nicastrin, and anterior
pharynx-defective 1 protein (APH-1), are responsible for the
maturation and stability of the whole complex (Edbauer et al.,
2003) (Figure 1C). The human APOE gene is located on
chromosome 19, and individuals can harbor the €2, €3, or €4
alleles of this gene. APOE contains two separate N-terminal
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Figure 1 Most common isoforms of and/or mutations in FAD- or AD-associated proteins

A: Three ABPP isoforms, ABPPggs, ABPP754, and ABPP,7o, are generated by alternative splicing of exons 7 (encodes Kunitz protease inhibitor (KPI))
and 8 (encodes OX2 domain (OX2)). B: Most common ABPP mutations and their locations. Numbers refer to longest ABPP isoform (ABPP770). C:
Schematic representation of y-secretase complex and common mutations of catalytic component PS1. D: Differences in sequences among three

apoE isoforms (apoE2, apoE3, and apoE4).

and C-terminal domains joined by a flexible hinge region. The
receptor-binding region is located in the N-terminal domain,
and the lipid-binding region is located in the C-terminal
domain. The only difference between the three alleles is at
positions 112 and/or 158: the common allele apoE3 contains a
cysteine residue at position 112 and arginine residue at
position 158, while apoE2 contains cysteine residues at both
positions, and apoE4 contains arginine residues at both
positions (Hauser et al., 2011) (Figure 1D).

As the main species used to generate transgenic models,
mice have the advantages of a short reproductive cycle,
relatively low maintenance costs, and well-established
research procedures (Braidy et al., 2012). Mice are also
considered an ideal species for studying the mechanisms
underlying learning and memory (Chen et al., 2006; Hickman-
Davis & Davis, 2006; Nolan et al., 2004; Picciotto & Wickman,
1998; Rocha-Martins et al., 2015).

The first transgenic mouse model exhibiting AD-like
pathology (platelet-derived APP (PDAPP) model) was
developed by Games et al. (1995). These mice express the
Indiana mutation at the vy-cleavage site of ABPP and
overexpress all three ABPP isoforms (695, 751, and 770). This
AD model was one of the first to show enhanced amyloid
clearance after immunotherapy (Schenk et al., 1999). PDAPP
mice present with amyloid plaques at 6-9 months of age and
exhibit spatial learning impairment with age (Chen et al.,
2000).

Other AD model mice, i.e., Tg2576 mice (Hsiao, 1996) and
APP23 mice (Sturchler-Pierrat et al., 1997), harbor the
Swedish double mutation at the B-cleavage site. APP23 mice
exhibit amyloid deposition at 6 months of age and memory
impairment at 3 months of age, while Tg2576 mice show
amyloid deposition at 11 months of age and memory
impairment after 10 months of age. Evidence also suggests
that neuronal loss occurs in the CA1 region of the

hippocampus in APP23 mice but not in Tg2576 mice.

AD model mice harboring two ABPP mutations, i.e., TASD
mice (Rockenstein et al., 2001) with Swedish and London
mutations, and J20 (Mucke et al., 2000) and TgCRND8 mice
(Chishti et al., 2001) with Swedish and Indiana mutations,
have also been generated. Compared with single ABPP
mutation mouse models, these double mutation mouse
models, especially TQCRND8 mice, show earlier onset of AD
pathology.

Bi-genic AD mouse models have also been developed to
generate AD-like pathology (such as amyloid plaque
formation) at an earlier age. For example, bi-genic AD mouse
strains, such as ABPPgye*PS1y146. (PSAPP strain) (Holcomb
et al., 1998), ABPPSWEXPS1A246E! ABPPLndeS1A246Er and
ABPPg,eXPS1g9 (Hall & Roberson, 2012), have been
generated by crossing APP and PSENT transgenic mice.
Generally, compared with monogenic mice, these bi-genic
mice show a much earlier onset and more rapid pathological
progression of AD, specifically amyloid accumulation and
cognitive impairment.

Flood et al. (2002) designed a bi-genic AD mouse model,
i.e., 2xKl strain, by gene-targeted insertion of the ABPPgye
and PS1pyge mutations in mice. Interestingly, AD pathology
occurs naturally in these mice as mutant gene expression is
driven by endogenous promoters. Unlike other AD mouse
models, AB deposition tends to increase exponentially
because the mutant genes are overexpressed and under the
control of recombinant promoters, AR deposition increases
linearly with time.

The less extreme triple transgenic AD mouse model (3xTg-
AD) combines human mutations ABPPsye, PS1pm1sv, and
taupsgq.. These 3xTg-AD mice develop both amyloid plaques
and NFTs in the brain. The 3xTg-AD model has become one
of the most widely used AD models for studying the
development of tauopathy and amyloid pathology (Oddo et al.,
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2003).

The 5xFAD model exhibits the most rapid onset of disease.
This AD model combines the Swedish mutation at the B-
cleavage site with the Florida and London mutations at the y-
cleavage site of APP and two additional mutations within the
PSEN1 gene (M146V and L286V). All transgenes can be
effectively expressed under the control of the murine Thy-1
promoter (Oakley et al., 2006). As expected, the 5xFAD model
represents extreme pathology; evidence shows that mice
already express AB42 intracellularly at 1.5 months of age, and
exhibit extracellular AB accumulation, senile plaques, and a
lack of specific neuronal populations at 2 months of age.
Moreover, these mice display cognitive impairment at 4-6
months of age, much earlier than in other AD mouse models.

Mice harboring ApoE gene and FAD-related mutations have
also been produced. Amyloid accumulation has been reported
in mouse models expressing ABPP,,4 and the human APOE
gene (Holtzman et al., 1999). Two transgenic models, one
generated by crossing TgCRND8 mice and APOE4 knockin
mice (Graybeal et al., 2015) and one harboring ABPPs,. and
PS1gg mutations and expressing the APOE €2 or APOE ¢4
allele (Holtzman et al., 1999), have also been reported. More
recently, Wang et al. (2022b) developed neuronal specific
Thy1-ApoE4/C/EBPB double transgenic mice in which
neuronal ApoE4 strongly activates C/EBPB and augments &-
secretase, which increases APP and Tau cleavage and
promotes AD-like pathologies. Notably, these age-dependent
AD-like pathologies cause synaptic dysfunction and cognitive
impairment (Wang et al., 2022b).

Rat early-onset FAD models

Compared with mice, rats are more physiologically and
genetically similar to humans (Jacob & Kwitek, 2002; Rat
Genome Sequencing Project Consortium, 2004). Due to their
larger body and brain size, rats are easier to use for various
experiments, such as intrathecal administration of drugs,
microdialysis, multiple sampling, and in vivo electrophysiology
(Tesson et al., 2005). Moreover, motor coordination in rats can
be studied more accurately than that in mice, and more
dimensions of behavior can be explored. Therefore,
theoretically, rats should be more popular research subjects
than mice. However, the development of transgenic rat
models has been slow due to their lower reproductive
capacity, greater need of housing space, and limited
modulation techniques (do Carmo & Cuello, 2013).

The Tg478/Tg1116 AD transgenic rat model, which
expresses hAPP695 and harbors the Swedish and
Swedish/London mutations, was the first transgenic rat model
found to exhibit amyloid plaques (Flood et al., 2009),
appearing at 17-18 months of age. The similar PSAPP rat
model (also named Tg478/Tg1116/Tg11587), in which
Tg478/Tg1116 rats express a third transgene carrying the
human mutated presenilin gene, shows amyloid plaque
development at 9 months of age (Flood et al., 2009; Liu et al.,
2008). However, the quantity of plaques in the hippocampus is
not substantial, even at 22 months of age, and evidence
suggests that these rats lack neurofibrillary pathology and
neuronal loss (Liu et al., 2008). Moreover, PSAPP rats die
prematurely due to hypertension, kidney disease, and
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immunosuppression, possibly as a result of genetic
disturbance related to the insertion of the three transgenes
(Zahorsky-Reeves et al., 2007).

The single transgenic McGill-R-Thy1-APP rat model, which
expresses hAPP751 and carries the Swedish and Indiana
mutations, is the only model that extensively recapitulates AD-
like amyloid pathology (Leon et al., 2010). APP is specifically
expressed in AD-related areas in this model, making it the
least genetically aggressive AD transgenic model developed
thus far.

The bi-genic TgF344 AD rat model expressing hAPP695
and carrying the Swedish mutation and PS1AE9 displays
strong age-dependent accumulation of AB (Cohen et al.,
2013). Notably, these rats show Gallyas-positive structures at
16 months of age. These structures are similar to NFTs seen
in NHP models of AD and have never been reported in other
transgenic rat or mouse AD models.

Zebrafish models
Zebrafish are not only easy to breed and quick to mature but
also show 95% homology with humans (Kalueff et al., 2014a).
Human dementia-related genes are 84% homologous with
zebrafish genes, including co-orthologs to APP (Appa and
Appb), MAPT (mapta and maptb), PSEN1 (psent), and
PSENZ2 (psen2) (Chen et al., 2009; Groth et al., 2002; Howe et
al., 2013; Leimer et al., 1999; Musa et al., 2001). Furthermore,
zebrafish exhibit easily quantifiable behaviors and contain a
well-conserved and simple nervous system. Therefore, as a
viable animal model, zebrafish can be used to study the
molecular and genetic mechanisms of a wide variety of
behaviors as well as neurodegenerative diseases such as AD
(Blaser & Gerlai, 2006; Gerlai, 2003; Vernier et al., 2012).
Zebrafish models have been widely used in drug screening
to identify possible treatments for disease. For example,
zebrafish have been employed to test the effects of drugs
used to treat AD, including donepezil, memantine, and
methylene blue. Because pharmaceuticals can be added to
tank water and absorbed through the skin for systemic
administration or can be delivered to a specific site, zebrafish
have been widely used with great success (Kalueff et al.,
2014b). Zebrafish exhibit several AD-like cognitive and
behavioral manifestations, such as avoidance and impaired
habituation to startling (Best et al., 2008; Nery et al., 2013).

INVERTEBRATE AD MODELS

Drosophila melanogaster models

Drosophila melanogaster (known as the fruit or vinegar fly) is
a holometabolous insect with a short reproductive cycle
(10-12 days) and lifespan (approximately 30 days) (Nichols,
2006). These flies contain approximately 200 000 neurons and
exhibit various mammalian-like behaviors, such as attention,
olfaction, gustation, feeding, expectancy, aggression, learning
and memory, orientation, courtship, grooming, flight
navigation, sleeping, and circadian rhythm (Chang, 2006;
Greenspan and van Swinderen, 2004; Ueno et al., 2001). As
one of the first organisms to have a completely sequenced
genome, D. melanogaster exhibits behavior through the
expression of some 14 000 genes; thus, the effects of gene
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mutations can be evaluated by studying their behavior.
Drosophila melanogaster is also an important model species
as various genetic manipulations can be performed that
cannot be performed in mammals (Tan & Azzam, 2017).

According to the introduced transgenes, there are generally
three types of D. melanogaster AD models, i.e., y-secretase-
based, tau-based, and APP- or AB-based models. In the y-
secretase-based models, the presenilin (psn) gene encodes a
component of the y-secretase complex, and overexpression of
the FAD-related mutant psn is considered one of the earliest
events in AD pathology (Michno, 2009). In this model, psn
deficiency causes synaptic abnormalities and defects in
associative learning in D. melanogaster larvae (Knight et al.,
2007). Thus, y-secretase-based AD models can help elucidate
the role of psn in both development and degeneration and
verify the involved pathways and molecular mechanisms. In
the tau-based models, studies have shown that D.
melanogaster flies present with AD-like phenotypes after
human tau expression (Jackson et al., 2002; Wittmann, 2001).
Tau can be genetically modified by inducing the expression of
wild-type or mutant human tau in D. melanogaster (Shulman &
Feany, 2003). In addition, AB42 and tau co-expression models
have been used to study the relationship between AB42 and
tau (Folwell et al., 2010). The most common D. melanogaster
AD model is the APP- or AB-based model, which exhibits
some AD-like phenotypes, such as A accumulation and age-
dependent neuronal death (Greeve et al., 2004). To better
study the role of amyloid plaques in AD pathology, D.
melanogaster AD models that directly express AB42 in the
brain have been developed (Casas-Tinto et al., 2011; Finelli
et al., 2004).

Caenorhabditis elegans models
The well-studied neuronal system of C. elegans, a soil
nematode containing 302 neurons, is considered a simplified
model for studying neurons and may improve modeling
accuracy (Cook et al, 2019). Previous studies have
demonstrated that 7 943 C. elegans genes, or 41% of the C.
elegans protein-coding genome, have human orthologs or
paralogs (Kim et al., 2018; Shaye & Greenwald, 2011).
Despite a lack of evolutionary complexity, C. elegans retains
conserved synaptic transmission functions involving
neurotransmitters, receptors, transporters, and ion channels,
and shares many molecular pathways and cellular
mechanisms with mammals (Cook et al., 2019). This
functional conservation allows comparative studies between
C. elegans and humans and suggests that C. elegans has
great potential for modeling human genetic diseases.
Caenorhabditis elegans can distinguish between different
fragrances, foods, and temperatures, and respond accordingly
under the control of various neurotransmitters (Calhoun et al.,
2015). The first C. elegans AD model, based on the amyloid
cascade hypothesis, was generated in 1995 (Levitan &
Greenwald, 1995). In this model, the AB peptide is tagged with
a secretion signaling sequence through the expression of the
unc-54 promoter in the body wall muscles, resulting in a
paralysis phenotype for quantitative analysis. A recent study
reported various transgenic C. elegans models expressing
human APOE alleles, with and without AB1-42 (Griffin et al.,

2019). APOE €2 is associated with a reduced risk of AD, while
APOE €3 has no effect and APOE ¢4 increases the risk of AD
development (Spinney, 2014). In C. elegans models co-
expressing APOE €2 and AP, glutamatergic neurons can
reduce degeneration and restore normal mechanosensory
behavior. As expected, APOE ¢3-expressing C. elegans
displays an intermediate phenotype, while the APOE ¢4-
expressing model does not exhibit protection against AR
neurotoxicity.

Yeast models

Although yeast lacks a nervous system, it contains highly
homologous molecular signaling pathways and proteins and
similar functional conservation as found in humans (Bassett
et al, 1996; Foury, 1997). In addition, yeast possesses
powerful genetic and proteomic advantages, with a well-
defined gene sequence and a well-established library of
overexpression and single-gene deletion mutations (Giaever,
2003; Puig et al., 2001; Suter et al., 2006). Yeast models have
been applied to study AD pathology, leading to noteworthy
findings related to the cellular pathways involved in APP
processing and AB oligomerization in AD. For instance, APP
processing can be modeled in yeast by inducing the
expression of human APP (Le Brocque et al., 1998; Zhang
et al., 1994, 1997); human y- and B-secretases can be
generated in yeast via functional expression of human APP
and engineered y-secretase complexes (Edbauer et al., 2003,
2004; Futai et al., 2009; Yagishita et al., 2008); human B-
secretase expression can also be induced in yeast (Luthi
et al, 2003; Middendorp et al, 2004). In vivo AB
oligomerization can be modeled using a two-hybrid system, in
which A is linked to the LexA DNA-binding domain and 42
transactivation domain (Hughes et al., 1996), inducing the
expression of AB/GFP or AB/Sup35p fusion proteins
(Bagriantsev & Liebman, 2006; von der Haar et al., 2007).

POTENTIAL LATE-ONSET SAD MODELS AND MCI
MODELS

Late-onset SAD is the most common type of AD. SAD is
generally not directly related to any genetic mutation, with
multiple factors involved in its pathogenesis. The discovery of
AD drug therapy relies on the simplistic assumption that AD-
related histopathological changes are a direct reflection of AD
etiology (Castellani & Perry, 2012). Therefore, AD-associated
models aim to recapitulate the pathological features of AD
(Krstic et al., 2012), specifically AR plaques and NFTs, through
the introduction of AD-related mutations, such as APP, PS1,
PS2, and tau mutations (Castellani & Perry, 2012; Duyckaerts
et al., 2008; Epis et al., 2010). Because SAD is not related to
any specific mutation (Epis et al., 2010), the ability to generate
SAD models is limited and the reliability of the results is
reduced. Thus, the gap between human SAD pathology and
the pathology observed in animal models is considerable.
Growing evidence suggests that disease-related
mechanisms in SAD are at play years before AR and tau
pathologies are observed (Krstic et al, 2012). These
mechanisms can be triggered by vascular pathology,
mitochondrial dysfunction, oxidative stress, hypoxia, and
chronic neuroinflammation (Ankarcrona et al., 2010; Castellani
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& Perry, 2012; Krstic & Knuesel, 2013; Zlokovic et al., 2011).
In AD, AB plaques induce an inflammatory response, a key
feature of AD-related neurodegeneration (Buckwalter & Wyss-
Coray, 2004; Krstic & Knuesel, 2013). Notably, mutations in
innate immunity- and phagocytosis-associated genes have
been identified as risk factors for SAD (Naj et al., 2011;
Puglielli et al., 2003). Neuropathological research has also
provided evidence that neuroinflammation occurs early in AD
(Eikelenboom et al., 2010). According to the recently proposed
SAD inflammation hypothesis, various changes occur in
neurons under inflammatory stress, including increased APP
production, tau hyperphosphorylation of tau, and
mislocalization of hypophosphorylated tau (hp-Tau) (Krstic &
Knuesel, 2013).

An ideal animal model should not only recapitulate the
pathological changes and symptoms associated with human
disease but should also exhibit the chronological order of
pathological events similar to that observed in actual disease
(Duyckaerts et al., 2008). According to the AD inflammation
hypothesis, models should exhibit early chronic
neuroinflammation before AB plaque deposition and tau
hyperphosphorylation. In rats, neuroinflammation lasting
longer than 7 days should be considered chronic (Moore et al.,
2009), and rodents aged more than 22 months should be
considered to have entered the senescent stage (Burton &
Johnson, 2012). In this section, several neuroinflammation
models are discussed as potential rodent models of SAD
according to the AD inflammation hypothesis.

Polyriboinosinic-polyribocytidylic acid (Polyl:C)-induced
model

Polyl:C is a synthetic double-stranded RNA that induces
innate immune responses. The Polyl:C-induced
neuroinflammation model has been used to study the effects
of lifelong neuroinflammation on cognitive function. In this
model, endogenous proteins are affected by Polyl:C, such that
the observed pathological changes do not depend on the
overexpression of human proteins in mouse neurons.

Fetuses exposed to Polyl:C by injecting the compound into
pregnant animals exhibit a proinflammatory state (Kimura
et al.,, 1994; Krstic et al., 2012; Meyer et al., 2006). In this
model, increased brain cytokine levels are detectable by 3
weeks of age, and persist throughout life (Krstic et al., 2012).
However, tau hyperphosphorylation is absent before 3 months
of age but significantly higher at 6 and 15 months of age, with
spatial recognition memory impairment also observed at 20
months of age in model animals compared to the wild-type
rodents (Krstic et al., 2012).

In addition, in this model, the chronological order of
pathological events and cognitive impairment is similar to that
proposed by the AD inflammation hypothesis, although APP
deposition and paired helical filament (PHF) formation do not
mimic the pathological lesions observed in the terminal stage
of human AD (Krstic & Knuesel, 2013). The consistent
progression of disease caused by endogenous protein
pathology makes this model suitable for studying the earlier
stages of SAD, such as MCI.

Okadaic acid-induced model
Okadaic acid (OKA) is a major polyether toxin that selectively
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inhibits serine/threonine phosphatases 1 and 2A (Tapia et al.,
1999). Evidence has shown that protein phosphatase 2A
(PP2A) activity is decreased in AD (Sontag & Sontag, 2014),
which is implicated in the hyperphosphorylation of tau (Cohen
et al., 1990). Consistent with this hypothesis, previous studies
have reported that OKA injection can cause memory
impairment in rats (Costa et al., 2012; Kamat et al., 2010),
suggesting that the OKA-induced model is a potential model of
AD. In previous study, intracerebroventricular (ICV) infusion of
OKA (70 ng/day) for 4 months in rat brains led to several AD-
associated pathologies, such as hyperphosphorylation of tau,
as well as apoptotic cell death within 2 weeks of injection and
cortical deposition of nonfibrillar AB within 6 weeks, but no
development of NFTs from hyperphosphorylated tau
aggregates (Arendt et al., 1998).

In a recent study, memory impairment accompanied by AD-
like pathology was observed in rats 15 days after ICV injection
of OKA (200 ng) (Kamat et al., 2012). In the Morris water
maze test, unlike control rats, the OKA-injected rats showed
significantly decreased latency to reach the platform in the
second and third sessions compared with the first session
(Kamat et al., 2012). This memory impairment is thought to be
associated with neuroinflammation induced by OKA injection
(Rajasekar et al., 2013).

Another study reported that 12 days after intrahippocampal
injection of OKA (100 ng), rats developed hippocampal
astrogliosis, manifested by increased GFAP expression, and
oxidative stress, manifested by decreased glutamine
synthetase content, in addition to spatial cognitive impairment
(Costa et al., 2012). However, the chronological order of
pathological events and the specific role of oxidative stress in
this neuroinflammation model require further study.

Colchicine-induced model

Similar to OKA injection, high-dose colchicine injection can
induce AD-associated pathology accompanied by cognitive
impairment and AD-like behavioral alterations (Kumar et al.,
2007). In addition, colchicine can block axoplasmic transport
and cause severe damage to granule cells and mossy fibers in
the hippocampus, resulting in neuronal loss, cognitive
impairment, and spontaneous motor activity in patients (Tilson
et al., 1987). Recent in vitro and in vivo studies of colchicine-
induced models found that neuroinflammation is induced by
COX-mediated apoptotic mechanisms (Ho et al., 1998; Sil
et al., 2014). After intrahippocampal injection of colchicine in
rats, COX-2 mRNA expression in dentate gyrus granule cells
is markedly increased and apoptosis-related morphological
alterations occur (Sil et al., 2014).

Colchicine treatment can also induce microtubule fracture,
similar to AD-associated pathology, but not AD-like tau
pathology (Geddes et al., 1994). In fact, the mechanism
underlying the effects of colchicine is based on tau
dephosphorylation rather  than hyperphosphorylation
(McMartin & Schedlbauer, 1978; Merrick et al.,, 1996).
Furthermore, the chronological order of pathological events
and cognitive impairment in this model has not been studied.
Therefore, it is currently unclear whether the changes in the
colchicine-induced model are consistent with the inflammation
hypothesis of AD.
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p25 transgenic model

Cyclin-dependent kinase 5 (CDK5) activation and aberrant
p25 accumulation have been observed in AD patients (Patrick
et al.,, 1999). Overexpression of human p25, which induces
hyperphosphorylation of tau, can result in AD-like pathology in
mice (Ahlijanian et al., 2000). Two important consequences of
neuroinflammation  are  astrocytosis and  increased
proinflammatory cytokines (such as tumor necrosis factor a
(TNF-a), interleukin 1B (IL-1B), and macrophage inflammatory
protein 1a (MIP-1a)) (Sundaram et al., 2012). In the p25
transgenic model, microglia are activated 4 weeks after p25
overexpression, considered as an AD-like pathological change
(Ahlijanian et al.,, 2000), suggesting that the p25
overexpression model may be a potential AD model (Monaco
Il, 2004).

More specifically, in p25 transgenic mice,
neuroinflammation is the first detectable pathology and occurs
earlier than other AD-associated pathologies (Sundaram et al.,
2012). In addition, there is a clear chronology between
neuroinflammation and other AD-associated pathologies;
although neuroinflammation occurs in the first week,
hyperphosphorylated tau and amyloid deposits are not
detectable until 4 and 8 weeks after induction of p25
expression, respectively (Sundaram et al., 2012). In this
model, cognitive impairment can be detected within 6 weeks
(Fischer et al., 2005). Thus, p25 transgenic mice exhibit AD-
associated pathological changes, such as amyloid deposition,
tau hyperphosphorylation (Sundaram et al, 2012),
neurodegeneration (Muyllaert et al., 2008), and cognitive
impairment (Fischer et al., 2005). This chronological order of
pathological events is in accordance with the inflammation
hypothesis of AD.

Ankyrin G (AnkG) transgenic models
AnkG is a key adaptor protein specifically located in the axon
initial segment (AIS) of neurons. It connects the cytoskeleton
to membrane-located ion channels at the AIS, making it
possible to generate action potentials at this site. AnkG
recruits many other proteins, such as Na* channels and BIV-
spectrin (Bouzidi et al., 2002; Wang et al., 2018), to form a
submembrane network that acts as a selective filter to
regulate axonal transport (Jones et al., 2014). There are three
major isoforms of AnkG; 190 kDa AnkG is distributed in the
cytoplasm, while 270 kDa AnkG and 480 kDa AnkG (the
largest isoform) are located at the AIS and nodes of Ranvier
(Bennett, 1992; Leterrier, 2016). Mutations in AnkG are
associated with cognitive dysfunction and nervous system
disease, such as language disorders, epilepsy, bipolar
disorder, and AD (Lopez et al., 2017; Sun et al., 2014a; Yang
et al., 2019; Zhu et al., 2017). In several classical AD mouse
models, including the APP/PS1, PS1DE9, and PS1-M146V
models, AnkG expression is reduced by up-regulation of miR-
342-5p, leading to impairment of the AIS filtering function (Sun
et al.,, 2014b). In addition, white matter impairment is often
observed in AD, MCI, and the preclinical stage of AD. These
results indicate that there is a relationship between axonal
defects, abnormal AIS function, and AD pathology.

To determine the role of AnkG and its isoforms in AD
pathogenesis, mouse lines specifically expressing 190 kDa,

270 kDa, or 480 kDa AnkG on the AnkG®®° background have
been generated (Jenkins et al., 2013). Using super-resolution
structured illumination microscopy (SIM) of cultured APP/PS1
mouse neurons, a dual spacing (~200 nm and ~370 nm)
pattern is observed between AnkG, Na,1.2, and BIV spectrin,
while a single spacing (~200 nm) pattern is seen in WT mouse
neurons (Wang et al.,, 2021). Cultured neurons from mice
expressing 270 kDa AnkG display a dual spacing pattern
between AnkG and associated components, while transgenic
mice expressing 480 kDa AnkG show a normal molecular
distribution in the AIS and normal cognitive ability (Wang
et al., 2021). High glucose treatment triggers AIS elongation
accompanied by increased neuronal excitability. Neurons from
270 kDa AnkG-expressing mice display reduced AlS plasticity,
while neurons from 480 kDa AnkG-expressing mice exhibit
restoration of AIS plasticity and dual spacing of the AlS lattice
structure after glucose treatment (Wang et al., 2022a).

CHALLENGES AND PROSPECTS

The number of species used in models is very large, spanning
from yeast to NHPs, and there are many experimental animal
models available (Figure 2). However, neurodegenerative AD
is characterized by a long disease course with many
pathological changes in the nervous system, and most AD
cases are sporadic with no clear pathogenesis or cause. In
addition to the duplication of pathological events, it is
necessary to consider the sequence of different pathological
events, as well as behavioral changes, such as cognitive
impairment, when constructing animal models of AD.
Therefore, the requirements for AD models are extremely
strict. Rodent models, especially the commonly used mouse
models, have provided insight into candidate pharmaceutical
treatments for AD and the neurobiological underpinnings of
the disease.

There is another perspective we cannot ignore. Notably,
Saito et al. (2014) investigated p25 expression using single
App knockin mice and showed that p25 expression is an
artifact caused by membrane protein overexpression. They
also showed that p25 does not produce substantial AB42
accumulation without overexpression of APP or presenilin,
whereas p25 is generated with APP/PS overexpression and in
postmortem mouse brains (Saito et al., 2014). Thus, this
suggests there may be a large number of artifacts in
Alzheimer’s model mice that overexpress APP or APP and
presenilin mutants.

In recent years, the Chinese tree shrew (Tupaia belangeri
chinensis) has been considered as a viable AD model, given
their closer genetic affinity to primates relative to rodents and
6-8-year lifespans (Yao, 2017). A previous study analyzed
and compared 131 AD-related genes among humans, tree
shrews, rhesus monkeys, and mice, and found that tree
shrews and humans generally had higher sequence identity in
AD pathway genes than mice (Fan et al., 2018; Ye et al,
2021). In tree shrew brain tissue, the expression patterns of
AB and neurofibrillary tangle formation pathway genes are
similar to humans and exhibit similar age-dependent effects
(Fan et al., 2018). However, although the predicted amino acid
sequence of AB in tree shrews is identical to that in humans,
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Figure 2 Summary of main characteristics of AD-relevant animal models in this review

Vertebrate animal models are in purple and blue sections, invertebrate animal models are in yellow section. Only non-human primate and canine
models can model spontaneous AD. Green dots indicate animal could be used as potential MCI or SAD models.

previous immunohistochemical analysis did not find beta-
amyloid deposits in the neural parenchyma and vasculature of
7-8-year-old tree shrews (Pawlik et al., 1999). Thus, the
formation of amyloid deposition in aged tree shrews may be
affected by numerous factors, which deserves further study.

This review describes various widely accepted rodent
models used in FAD and SAD research. Unfortunately, due to
the complex pathogenesis of the disease, there are no good
models of early-stage AD. Most AD models exhibit rapid
emergence of pathological events and cognitive impairment,
occurring in the middle and late stages of AD. In humans,
however, AD tends to progress slowly over many years, with
most individuals experiencing MCI and SCD before
developing definitive AD. Therefore, as SAD is the most
common type of AD, more animal models of MCI and SCD are
needed to study the early pathological changes associated
with AD and identify possible interventions. Furthermore,
these animal models should not only present pathological
events similar to human AD, but also experience slow
cognitive decline over a relatively long lifespan.
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