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ABSTRACT

Glaucoma is characterized by the progressive loss of
retinal ganglion cells (RGCs), although the
pathogenic mechanism remains largely unknown. To
study the mechanism and assess RGC degradation,
mouse models are often used to simulate human
glaucoma and specific markers are used to label and
quantify RGCs. However, manually counting RGCs
is time-consuming and prone to distortion due to
subjective bias. Furthermore, semi-automated
counting methods can produce significant
differences due to different parameters, thereby
failing objective evaluation. Here, to improve
counting accuracy and efficiency, we developed an
automated algorithm based on the improved
YOLOv5 model, which uses five channels instead of
one, with a squeeze-and-excitation block added. The
complete number of RGCs in an intact mouse retina
was obtained by dividing the retina into small
overlapping areas and counting, and then merging
the divided areas using a non-maximum suppression
algorithm. The automated quantification results
showed very strong correlation (mean Pearson
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correlation coefficient of 0.993) with manual
counting. Importantly, the model achieved an
average precision of 0.981. Furthermore, the
graphics processing unit (GPU) calculation time for
each retina was less than 1 min. The developed
software has been uploaded online as a free and
convenient tool for studies using mouse models of
glaucoma, which should help elucidate disease
pathogenesis and potential therapeutics.
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INTRODUCTION

Glaucoma describes a group of diseases characterized by
optic papillary atrophy and depression, visual field loss, and
hypoplasia (Casson et al., 2012). It is caused by intraocular
pressure (IOP)-associated optic neuropathy with loss of retinal
ganglion cells (RGCs) (Berkelaar et al., 1994). By the time
glaucoma presents with typical visual field defects, such as
blurred or lost vision, the loss of RGCs may already be as high
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as 50%. Thus, apparent changes in the number of RGCs
provide the basis for early glaucoma diagnosis (Balendra et
al., 2015).

To study the mechanisms underpinning glaucoma, various
animal models, especially mouse models, have been
developed to mimic the features of the disease. However, to
determine the progression of retinal glaucoma, it is necessary
to quantify the number of RGCs. A variety of techniques
(Mead & Tomarev, 2016) have been used for RGC labeling
with neuronal markers, such as B lll-tubulin (Jiang et al.,
2015), or immunolabeling with RGC-specific markers, such as
BRN3A (Nadal-Nicolas et al., 2009), RNA-binding protein with
multiple scattering (RBPMS) (Rodriguez et al., 2014), or y-
synuclein.

However, after using the appropriate markers, the total
number of RGCs must be estimated by manual counting. Not
only is this a time-consuming process, but it is also
susceptible to subjective bias. Long hours of work can tire
taggers, resulting in counting errors. To overcome this issue,
several software programs with automatic RGC labeling have
been developed, which have the advantages of fast detection
speed, high detection accuracy, good objectivity, and RGC
degeneration assessment. Geeraerts et al. (2016) developed
a freely available ImageJ-based (Abramoff et al., 2004;
Collins, 2007) script to semi-automatically quantify RGCs in
entire retinal flat-mounts after immunostaining with RGC-
specific transcription factor BRN3A, although the process
requires manual parameter adjustment. Guymer et al. (2020)
developed automated software to count immunolabeled RGCs
accurately and efficiently, with the ability to batch processing
images and perform whole-retinal analysis to generate
isodensity maps. However, this software cannot effectively
detect RGCs with low contrast and brightness.

The key to accurate measurements of the entire RGC
population is efficient processing of RGC-specific
immunolabeled images. Ideally, the image background should
be a single light color, and the RGCs should have high
brightness and distinct edges (Figure 1A). However, image
quality can be affected by various factors, such as operator

Figure 1 Examples of ideal and real images of mouse RGCs

experience and experimental procedures (Figure 1B-E),
giving rise to the following issues:

(1) Small and densely clustered RGCs

As shown in Figure 1B, RGCs are typically very small
(about 15%15 pixels) and are distributed throughout the retina
(distance of <20 pixels between cells). In addition, many
RGCs overlap with each other and are not positioned on the
same horizontal plane, resulting in lower image contrast and
brightness of some RGCs, as shown in Figure 1C.

(2) Complicated retinal background

Other factors may lead to low-quality and noisy images, as
shown in Figure 1D. When images of the entire retina are
captured using confocal microscopy, images from multiple
fields of view need to be stitched into one complete retinal
image, which can result in obviously stitched edges, as shown
in Figure 1E.

(3) Large image pixels

Whole retinal images are more than 8 000x8 000 pixels in
size and contain more than 30 000 RGCs. Thus, both manual
detection and recognition algorithm detection require a great
deal of time.

As one of the most widely used artificial intelligence
technologies, deep learning (Schmidhuber, 2015) allows
computers to automatically learn pattern features and
integrate  feature learning into models to reduce
incompleteness caused by artificially designed features.
Machine learning algorithms use manually designed features
that consider how each feature describes the object or image
to be classified. Therefore, the performance of deep learning
algorithms is more efficient than machine learning.

There are many ways to develop deep learning algorithms
for real-time object detection. There are various popular CNN-
based object detectors, e.g., retinaNet (Lin et al., 2017),
faster-rcnn (Ren et al., 2017), and YOLO (Bochkovskiy et al.,
2020; Jocher et al., 2020; Redmon & Farhadi, 2017, 2018).

To address the RGC recognition problem, we developed a
deep learning model based on YOLOvV5 (Jocher et al., 2020).
The model can effectively identify RGCs with low brightness
and contrast without being affected by background noise. In

A: Ideal RGC image. Scale bar: 30 ym. B: Image with densely distributed RGCs. Scale bar: 50 ym. C: Image with blurred RGCs. Scale bar: 100 pm.
D: Image with high noise. Scale bar: 50 pm. E: Stitched RGC image with obvious stitching lines. Scale bar: 200 pm.
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the case of graphics processing unit (GPU) computing, an
8 000%8 000 pixel image can be detected in less than 1 min.
Furthermore, combined with the proposed deep learning
model, we developed an automatic recognition software tool
for counting BRN3A-labeled RGCs in whole-mount mouse
retinas, which can process images in batches to generate
RGC heat maps (Wilkinson & Friendly, 2009), and export
results in comma-separated value (CSV) format. Our work has
the following innovations:

(1) As RGCs are not at the same level under a biological
microscope, a five-channel rather than a single-channel input
was used to ensure that the RGCs can be collected at
different focal lengths.

(2) A squeeze-and-excitation (SE) block (Hu et al., 2020)
was added to the original network to detect blurred cells and
increase detection accuracy.

(3) The developed software is fully automated and open
source for convenient and cooperative use, which should help
deepen our understanding of glaucoma and drug
development.

MATERIALS AND METHODS

Network architecture

The basic detector (Figure 2) is divided into three parts. The
first part performs feature extraction, and consists of
convolution, batch normalization, activation function (Gulcehre
et al.,, 2016), SE block (Hu et al., 2020) (details in next
section), and cross-stage partial (CSP) structures (Wang et
al., 2020). Convolution is critical for extracting image features
through deep learning. Batch normalization (loffe & Szegedy,
2015) can accelerate model convergence and alleviate
gradient disappearance, to a certain extent, making the
training of deep network models easier and more stable.
Activation function introduces nonlinear changes into the
neural network to strengthen its learning ability. Here, we

Figure 2 lllustration of the network architecture pipeline
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combined convolution, batch normalization, and activation
function (i.e., CBL module) to increase expression ability. The
CSP structure contains the CBL module and multiple
convolutions, which can effectively solve gradient information
repetition in the backbone of the convolutional neural network
and integrate gradient changes into the feature map from
beginning to end, thereby reducing model parameters.

The second part performs feature description, using PANet
to aggregate upsampling, CBL module, and CSP structure
(Wang et al, 2019). As a new feature pyramid network
structure, PANet can enhance the bottom-up path during
feature extraction, thereby enhancing the semantic and
location information of the feature pyramid and effectively
utilizing feature information.

The third part performs detection and consists of three
bounding box priors (i.e., “anchors”) (Redmon & Farhadi,
2017). Each feature point predicts three bounding boxes to
detect regions of interest of different sizes, finally outputting
the prediction boxes and classes.

Squeeze-and-excitation block

In the first part of feature extraction, a SE block (Hu et al.,
2020) was added to the CBL module of the basic model. The
SE block achieved characteristic channel responses by
increasing interdependence between channels. Squeeze
obtained the global compression features of the current
feature map by performing adaptive average pooling on the
feature map layer. The activation function obtained the weight
of each channel in the feature map, with the weighted feature
map then used as the input of the next network layer. This
significantly improved performance at a small computational
cost. The SE block structure is depicted in Figure 3. Unlike the
original description of the SE block, SiLU (Ramachandran
et al., 2018) was used instead of ReLU (Howard et al., 2017)
(Supplementary Figures S1, S2), as ReLU neuronal weights
may not be updated.


www.zoores.ac.cn

Figure 3 Squeeze-and-excitation block (Hu et al., 2020)

Training data pre-processing

We used five-channel rather than single-channel input images
(see Section 3 dataset for detailed description). As the images
were too large to be input into the detection network (Van
Etten, 2018), each image was divided into smaller 512x512
pixel images with 20% overlaps. If no RGC was found in the
small image, it was treated as the background. Adding all
backgrounds to the training set would result in missed
detections, whereas not adding backgrounds would result in
false detections (Supplementary Figure S3). Thus, we added
one-fifth of the background images to the training set in
addition to all small images with RGCs.

Training data augmentation

As RGCs exhibit characteristic rotation invariance, we adopted
the following data augmentations: rotation from [-10°,10°],
translation from [-10, 10] for x and y, random zoom from [0.5,
1.5], and vertical and horizontal flip. In addition, mosaic data
augmentation was used (Bochkovskiy et al., 2020). Four
images were randomly sampled each time from the overall
data, then randomly cropped and spliced to synthesize new
images (Supplementary Figures S4, S5).

Inference

Given the large size of the whole retinal images, we
constructed 512x512 sliding windows (with 20% overlapping
areas) from top to bottom and left to right to detect RGCs in
each window. Efficient non-maximum suppression (NMS)
(Neubeck & Van Gool, 2006) of detection results for each
sliding window was used to eliminate duplicate counts. All
results were merged via the relative position of each sliding
window in the retinal image, with NMS again used to suppress
duplicate counts in the overlapping areas (Figure 4).

Animals

The experimental mice were maintained under 12-h light/12-h
dark cycles in the animal facility of the Sichuan Provincial
People’s Hospital. All handling and care procedures followed
the guidelines of the Association for Research in Vision and
Ophthalmology (ARVO) for the use of animals in research. All
experimental protocols were approved by the Animal Care and
Use Committee of the Sichuan Provincial People’s Hospital
(approval No.: 2016-36).

Whole-mount immunostaining of mouse RGCs

Adult C57B6J mice (3-12 months) were euthanized by
cervical dislocation after anesthesia. The eyeballs were
enucleated and fixed in 4% paraformaldehyde (PFA) and
phosphate-buffered saline (PBS) for 20 min on ice. The sclera
and retinal pigment epithelium (RPE) were peeled from the
retina, which was then cut into four quadrants and fixed for an

Figure 4 Inference for whole retina

additional 12 h. After cryoprotection in 30% sucrose for 2 h,
the retina was permeabilized and blocked with 5% normal
donkey serum containing 0.5% Triton X-100 for 1 h at room
temperature, followed by immunostaining with mouse anti-
BRN3A primary antibodies (Abcam, USA, 1:200 dilution) for
3 d at 4 °C (Figure 5) and Alex488 or 594-conjugated donkey
anti-mouse secondary antibodies (ThermoFisher, USA, 1:300
dilution). Fluorescent signals were acquired using a Zeiss
LSM900 confocal microscope (Zeiss, Germany).

Generation of glaucoma mouse models

The glaucoma mouse model was generated by inducing
ganglion cell death using N-methyl-D-aspartate (NMDA), as
described previously (Lam et al., 1999; Li et al., 1999). Briefly,
1 pL of NMDA (Sigma, USA) in PBS was injected into the
intravitreal space of adult mice with a microsyringe (Hamilton,
USA) through the pars plana, as per previous study (Yang et
al., 2021). NMDA triggers RGC death through excessive
stimulation of glutamate receptors. RGC death is attributed to
NMDA excitotoxicity in several retinal diseases (Evangelho et
al., 2019; Kuehn et al., 2005; Kwon et al., 2009) and

Figure 5 RGC image acquisition process

Mouse eyeballs were removed and fixed in 4% PFA at 4 °C overnight.
Retina was dissected, permeabilized with 0.5% Triton X-100, and
incubated with BRN3A antibody at 4 °C for 3 d. Retina was then
incubated with Alexa 488 or 594-conjugated anti-mouse secondary
antibodies for 4 h at room temperature. Finally, images of each retina
were acquired on a Zeiss LSM 900 confocal microscope.
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progressive loss of RGCs is a characteristic feature of
glaucoma. The mice were sacrificed by cervical dislocation 1,
2, or 3 d after injection with NMDA, representing different
stages of RGC loss.

Data source

RGC images were acquired as described in the Methods
section. As RGCs are not on the same horizontal plane in the
retina, we selected five different image acquisition positions
perpendicular to the Z axis of the microscope platform to
ensure that most RGCs were clearly presented in the five
images.

Our dataset contained 14 complete retinal images, including
10 from healthy mice (termed “normal” or “NOR”) and four
from mice with RGC degeneration (termed “degenerative” or
“DEG”), as summarized in Table 1. The size of each retinal
image was 8 000x8 000 pixels, and all RGCs in each image
were marked by experienced researchers. The manual
marking error between different researchers was within 5%.
Eleven images (eight normal and three degenerative images)
were used as the training and validation dataset and three
images (one degenerative and two normal images) were used
as the test dataset. Following the training data preprocessing
described in Section 2, 11 complete retinal images were
divided into 2 237 small images (512x512 pixels) by manually
labeling RGCs, which were divided into training and validation
sets according to a 9:1 ratio. The other three complete retinas
were used to compare the neural network output and manually
labeled results.

Our algorithm was based on the PyTorch framework, and
the experiment was carried out using the Ubuntu system on a
250 GHz Intel(R) Xeon(R) E5-2678 v3 CPU with a GTX
TITAN XP GPU and 64 Gb RAM. For the neural networks, the
learning rate was 0.0001 and batch size was eight.

Statistical evaluation metrics
We used three statistical evaluation metrics commonly used in
medicine and average precision (AP), which is commonly
used in object detection.

The Pearson correlation coefficient (Puth et al.,, 2014),
defined as the covariance of two variables divided by the

Table 1 Complete retinal data

product of their standard deviations, is used to reflect the
degree of linear correlation between two variables. Usually
expressed as r or p, , the higher the absolute value of r, the
stronger the correlation.

X,Y)  E[(X—= Y-
f=Px,y= CO(:;(OY ) - [( Zi)cgy /JY)] (1)

where, given the variables xandy, cov(x,Y) is the
covariance; oy and o, are the standard deviations of xand vy,
respectively; u, and y, are the means of x and v, respectively;
and E is the expectation.

The statistical measure r-squared (r?) represents the
proportion of variance for a dependent variable explained by
an independent variable or variables in a regression model.
While correlation explains the strength of the relationship
between an independent and dependent variable, r? explains
the extent to which the variance of one variable explains the
variance of a second variable.

Bland-Altman plots (Myles & Cui, 2007) can quantify the
consistency between two quantitative measurements by
establishing consistency limits, which are calculated using the
mean and standard deviation of the difference between two
measurements.

AP metrics

In deep learning, precision refers to the fraction of relevant
instances among retrieved instances, while recall is the
fraction of the total relevant instances retrieved. A precision-
recall (PR) curve is simply a graph with precision values on
the y-axis and recall values on the x-axis. The area enclosed
by the PR curve and x- and y-axes, i.e., AP, is a widely used
evaluation index in object detection. Precision and recall are
calculated as follows:

TP

P = Precision = ——— (2)

R = Recall =

7
TP+ FN (3)
where TP indicates true positives, FP indicates false positives,
and FN indicates false negatives.

Manual marking Pixel size Health status
RGCs-T1 (train) 42 649 9 267x9 268 Normal
RGCs-T2 (train) 36 591 10 188x9 267 Normal
RGCs-T3 (train) 39295 9728x9 728 Normal
RGCs-T4 (train) 44 270 9728x10 188 Normal
RGCs-T5 (train) 28 850 8 807x9 268 Normal
RGCs-T6 (train) 43 809 9 747x9 747 Normal
RGCs-T7 (train) 50 985 8 806x%9 267 Normal
RGCs-T8 (train) 3393 8 807x8 346 Degenerative
RGCs-T9 (train) 5187 8 396x%8 397 Degenerative
RGCs-T10 (train) 3120 7 885x7 885 Degenerative
RGCs-T11 (train) 40 941 8 806x8 345 Normal
RGCs-D1 (test) 4418 7 885x7 885 Degenerative
RGCs-N1 (test) 36 468 9 267x8 346 Normal
RGCs-N2(test) 43 473 8 806x8 346 Normal
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The area under the PR curve, i.e., AP, is calculated as
follows:

AP = / P(R)dR (4)

where the integral is replaced with the sum at every position.
RESULTS

Accuracy and speed of new automatic RGC counting
algorithm

After training, we selected the model weight with the best
verification result to test the network. The whole retinal image
was divided into smaller images (512x512 pixels), with a step
of 400%400 pixels and adjacent small images overlapping by
20%. We synthesized the results as described in Section 2.3.
The whole image could be counted in less than 1 min. We
fused the five-channel input image into an RGB (red, green,
blue model) image to display the result, with red representing
the retina and RGCs and green representing the detection box
(Figure 6). The detection results of two small images
(5612x512 pixels) are shown in Figure 6A, B. As indicated by
the arrow, we did not consider the RGCs if half of the cell
appeared on the boundary, as incomplete RGCs would be
displayed and detected on adjacent small images. The results
for the whole retina and partial enlargement of the retina are
shown in Figure 6C, D, respectively.

Our test contained three complete retinal images, including
two normal images (RGCs-N1 and RGCs-N2, respectively)
and one degenerative image (RGCs-D1). We output the
network detection results of each image.

Compared with the manual detection results, the error of
automatic detection was less than 5% (Table 2), and there
was a significant difference in the number of RGCs between
normal and degenerative mice. Both manual labeling and
automatic detection identified more than 20 000 RGCs in
normal mice, but less than 10 000 RGCs in degenerative
mice, which could serve as a reference in future studies.

For detailed statistical analysis, each retinal image was
divided into multiple smaller images according to spatial area
to compare the accuracy of spatial distribution and density of
cells. Based on image size, the three test retinal images were
divided into 317, 296, and 267 smaller images, respectively.

Linear regression analysis was used to simulate the
relationship between ground truth and automatic RGC counts,
and a Bland-Altman plot was used to investigate the
consistency between these two variables (Table 3). Linear
regression analysis showed good agreement between the
automated counts and ground truth ((y=0.95x—1.82, Pearson
r=0.994, n=317 frames), (y=0.99x+2.84, Pearson r=0.999,
n=296 frames), (y=1.00x+1.75, Pearson r=0.985, n=267
frames) for N1, N2, and D1 retinal images, respectively)
(Figure 7). The Bland-Altman plots of BRN3A-labeled retinal

Figure 6 Curated examples of model on our test set, with confidence threshold of 0.3 used for display
A, B: Detection results of two small images with 512x512 pixels. C: Result of whole retinal image. Inset is enlarged and shown in D. D: Local area
detection result. E: Original retinal image is shown in C. Arrows indicate that parts of the cell bodies on the edges are cut off.

Table 2 Calculation results of test images

Automatic counting Total time (s) Manual marking Error (%)
RGCs-N1 37516 44.9 36 468 2.87
RGCs-N2 43 244 53.4 43 473 0.53
RGCs-D1 4279 6.5 4418 3.14

Zoological Research 43(5): 738—-749,2022 743



Table 3 Statistical evaluation metrics for test images

r r2 95% confidence interval of average error
RGCs-N1 0.994 0.988 [-35, 11]
RGCs-N2 0.999 0.998 [-11, 11]
RGCs-D1 0.985 0.969 [-3.9,7.4]
Mean 0.993 0.985 None

Figure 7 Linear regression analysis and Bland-Altman plots of ground truth (GT) versus automated counts

First and second lines represent results of the two test images, respectively. A, C, E: Comparison of linear relationship between algorithm and real
results. Continuous line is the best-fit line, and adjacent dotted lines represent 95% confidence intervals. B, D, F: Bland-Altman plot. Dotted lines
indicate 1.96 SD region or 95% confidence interval. RGCs-N1, RGCs-N2, and RGCs-D1: Retinal ganglion cells in normal mouse 1, normal mouse

2, and degenerative mouse 1, respectively.

images (given the larger bias [-35, 11], [-11, 11], [-3.9, 7.4])
indicated no difference between automated and manual
counting.

For object detection, we used AP to measure network
performance (Table 4). In our computing environment, mean
frames per second (FPS) was 40.6 and mean AP was 0.981,
demonstrating high network calculation accuracy and speed.

To verify its effectiveness, we compared our method with
other commonly used object-detection algorithms, as shown in

744  www.zoores.ac.cn

Table 5. We tested faster-rcnn (Ren et al., 2017) and
retinaNet (Lin et al., 2017) in the mmdetection (Chen et al,,
2019) framework, and found that they were not suitable for
working with dense images containing more than 200 RGCs.
The YOLOv5 model builds four versions of network model
according to the number of different blocks, i.e., s, m, |, and x,
which were all tested. Although our method was slower than
YOLOV5-| (40.6 FPS vs 41.1 FPS), the AP (0.981) was higher.
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Table 4 Evaluation of object detection for test images

FPS (GPU) AP
RGCs-N1 41.8 0.989
RGCs-N2 39.3 0.985
RGCs-D1 40.8 0.970
Mean 40.6 0.981

Table 5 Comparison of deep learning algorithms

Model FPS (GPU) AP

RetinaNet 22.4 0.630
Faster-rcnn 20.6 0.452
YOLOv5-s 60.9 0.926
YOLOvV5-m 45.0 0.924
YOLOV5-I 411 0.922
YOLOvV5-x 28.2 0.923
Our Work 40.6 0.981

Performance of new algorithm compared to existing
counting methods

We compared our approach with existing RGC counting
methods, including the freely available ImageJ-based script
developed by Cross et al. (2020), the machine learning script
based on CellProfiler open-source software developed by
Dordea et al. (2016), and the automated deep learning
method used to quantify RBPMS-stained RGCs established

Figure 8 Comparison of RGC counting methods

by Masin et al. (2021). As shown in Figure 8, the methods
proposed by Cross et al. (2020) and Masin et al. (2021) were
unable to detect low-contrast RGCs, while the method
proposed by Dordea et al. (2016) failed to separate RGCs in
contact with each other. In contrast, our approach used deep
learning to avoid these problems and achieve high counting
accuracy.

We used the same data and statistical methods for testing.
The number of RGCs obtained by the different methods is
shown in Table 6. Our method achieved the lowest error rate
and highest calculation accuracy (error rates of 2.97%, 0.53%,
and 3.14% for N1, N2, and D1, respectively). We split the
three test images according to image size and performed
linear regression analysis (Table 7). Both our approach and
that of Masin et al. (2021) fit well, although our method
showed better correlation ((y=0.95x-1.82, Pearson r=0.994,
n=317 frames), (y=0.99x+2.84, Pearson r=0.999, n=296
frames), (y=1.00x+1.75, Pearson r=0.985, n=267 frames) for
N1, N2 and D1, respectively).

We designed ablation experiments (Table 8) to demonstrate
the validity of our model. We used YOLOv5-m as the baseline
and added two improvements. Incorporating the SE block in
the CBL module of the basic model increased the AP on the
test set from 0.924 to 0.926, demonstrating that the SE block
was effective. In addition, using five-channel rather than
single-channel input further increased the AP on the test set to
0.981.

A: Counting result using Cross et al. (2020) method. B: Counting result using Dordea et al. (2016) method. C: Counting result using Masin et al.

(2021) method. D: Counting result using our method.

Table 6 Quantitative comparisons of different RGC counting methods for test images

Manual marking Dordea et al.method

Cross et al. method

Masin el al.method Ourmethod

RGCs-N1 36 468 48 934 (34.1%)
RGCs-N2 43473 45 989 (5.79%)
RGCs-D1 4418 7 160 (62.0%)

31321 (14.1%)
30 617 (29.5%)
8 240 (86.5%)

31671 (13.1%)
40 800 (6.15%)
3953 (10.5%)

37 516 (2.97%)
43 244 (0.53%)
4279 (3.14%)

Table 7 Linear regression analysis of test images

Dordea et al. method Cross et al. method Masin el al. method Our method
RGCs-N1 y=0.6x+48.7r=0.994 y=1.56x-69r=0.898 y=1.09x-2.71r=0.991 y=0.95x-1.82r=0.994
RGCs-N2 y=1.01x+7.43r=0.837 y=2.28x-149r=0.927 y=1.00x-0.21r=0.997 y=0.99x+2.84r=0.999
RGCs-D1 y=0.44x+8.84r=0.505 y=0.61x-3.46r=0.597 y=1.04x+0.23r=0.979 y=1.00x+1.75r=0.985

Zoological Research 43(5): 738—749, 2022 745



Table 8 Ablation experiments

YOLOvV5-m CBL_SE 5-channels AP

v 0.924
N \ 0.926
R v v 0.981

User friendly features of the software

To facilitate operation of the algorithm and display, modify,
and analyze the results, we developed an automatic RGC
labeling software based on C++ and Qt5. Our proposed
recognition algorithm was integrated into the software, and the
detection results are shown in Figure 9. Users can zoom in
and out to display the results (Supplementary Figure S6), and
the report can be manually refined. The software can also
process images in batches, display RGC heat maps, and
export results in CSV format. Of the five columns in the report,
the first two columns represent the coordinates of the upper
left corner of each rectangular box in the whole image, the
third and fourth columns list the widths and heights,
respectively, and the fifth column provides the confidence

Figure 9 Automated software for RGC labeling

values of the detection box.

A heat map was generated based on the RGC labeling
results (Figure 9). Figure 9D shows the density distribution of
RGCs in normal mice and Figure 9E shows the distribution of
RGCs in degenerative mice. Differences in quantity and
spatial distribution between normal and degenerative retinas
are easily seen in the heat map.

DISCUSSION

Our newly developed automatic RGC counting algorithm
showed good performance for poor-quality retinal images,
including noisy and low-contrast RGCs in RGCs-N1 and high-
density RGCs in RGCs-N2. To explore the limitations of our
algorithm, we labeled and tested a retina (RGCs-N3) with
obvious stitching lines and a high proportion of low-contrast
RGCs with blurred edges. The image and results are shown in
Figure 10 and Table 9, respectively. The test results showed
that the accuracy of our algorithm depended on the edge
information of the RGCs. If the edge information was weak,
the effect of the algorithm worsened. Blurred RGC edges were
generally caused by inconsistent staining. The better the

A: Import the image. Image can be zoomed in and out with the mouse to view details or outlines. B: Algorithm results. Click “Run” button. After a
short wait, number of calculated RGCs can be seen in the upper right corner of the screen. Positions of each RGC are displayed in a green or red
rectangular box on the image. The cut-off points for each detected RGC can be adjusted in the software to determine results. The cut-off point is 0.6
by default. C: Partial enlargement of entire retinal image. D, E: Heat map, which can visualize density function to represent density of dots in a map,

enabling perception of point density independent of the zoom factor.
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Figure 10 Test results for poor-quality images

A: Retinal image (RGCs-N1) with high noise and low contrast RGCs. B: Retinal image (RGCs-N2) with dense RGCs. C: Retinal image (RGCs-N3)
with obvious stitching lines and large proportion of RGCs with blurred edges and low contrast. Insets in top panels are enlarged and shown in
middle panels, respectively. Test results of middle panels are shown in bottom panels, respectively.

Table 9 Limitation analysis experiments

Manual marking Automatic counting Error (%) AP
RGCs-N1 36 468 37 516 2.87 0.989
RGCs-N2 43 473 43 244 0.53 0.985
RGCs-D2 39 296 37736 3.96 0.945

image quality, the more accurate the algorithm. However, the
algorithm was not effective at detecting RGCs localized within
a large area with high background staining (Figure 11).

Automatic RGC counting still faces many challenges. Due to
their layering, certain RGCs in an image are always blurred,
increasing the difficulty of counting. Other issues, such as
labeling RGCs by different techniques, small and dense
RGCs, or poor image quality caused by manual operation,
require better methods in the future.

To address the time-consuming problem of manual RGC
counting in mouse models, we developed an improved
YOLOvS algorithm  through the analysis of RGC
characteristics. Although we focused on RGC counting, our
proposed method could be used in other fields, e.g., red blood
cell and lymphocyte counting. Replacing manual counting with
automated counting algorithms should greatly reduce the
burden on researchers. This development direction is also the
direction for the expansion of our algorithm and software in the
future.

When studying mouse models of glaucoma, it is important

to determine the progression of RGC loss by counting these
cells throughout the retina. Manual and semi-automatic
methods are susceptible to observer-dependent factors and
can be time-consuming and inaccurate. To solve these
challenges, we adopted a deep learning approach, improved
the YOLOvV5 network, and developed an open-source RGC
recognition software tool. Our automated RGC counting
software demonstrated high accuracy, speed, and objectivity.
RGC degeneration could also be analyzed by combining the
generated RGC heat maps. Our software provides a
convenient tool to accurately assess RGC loss in mouse
models of glaucoma, which has important implications for
exploring the potential mechanisms and treatments of
glaucoma.

SUPPLEMENTARY DATA

Supplementary data to this article can be found online. Our
software  has been uploaded online for free
(https://github.com/MOEMIL/Intelligent-quantifying-RGCs)
along with the publication of this study, and we hope to
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Figure 11 Test result for retinal image with noise and blurred-edge RGCs
A: Retinal image with high noise and blurred-edge RGCs. B: Inset in A is enlarged and shown in upper panel. C: Test results of image shown in B.

D, E: Insets in B, C are enlarged and shown in D, E, respectively.

receive feedback on any potential bugs or issues.
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