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Chromosome-level genome assembly of the freshwater
snail Bellamya purificata (Caenogastropoda)

DEAR EDITOR,

Bellamya  purificata  (Gastropoda: Caenogastropoda;
Architaenioglossa; Viviparidae: Bellamyinae; Sinotaia), a
homotypic synonym of S. purificata, is widely distributed in
freshwater habitats in Asia. It is an economically important
edible snail and plays a vital function in freshwater wetland
ecology. However, genomic resources for this snail are lacking
and no reference genome has been released. In this study, we
constructed the first chromosome-level genome of B.
purificata using PacBio long-read sequencing and high-
throughput chromosome conformation capture (Hi-C)
technology. In total, 33.64 Gb of circular consensus
sequencing reads were generated. The preliminary genome
assembly was 1.01 Gb in size, with a contig N50 of 45.14 Mb.
Using Hi-C data, the assembled sequences were anchored to
eight pseudochromosomes. After Hi-C correction, the final
genome was 984.33 Mb, with a contig N50 of 37.21 Mb and
scaffold N50 of 141.97 Mb. The chromosome anchoring rate
was 99.28%. A total of 22 125 protein-coding genes were
predicted. Phylogenetic analyses indicated that B. purificata
diverged from Pomacea canaliculata approximately 288
million years ago (Ma). We identified 34 expanded and 26
contracted gene families in B. purificata compared with its
most recent common ancestor. Four protein-coding genes
under positive selection in B. purificata were identified (false
discovery rate (FDR)<0.05). These genomic data provide a
valuable resource for ecological and evolutionary studies of
the family Viviparidae, and for genetic improvement of B.
purificata.

Bellamya purificata is the largest snail species in
Bellamyinae, Viviparidae, Caenogastropoda, and is widely
distributed in freshwater habitats across Asia. It feeds on
microalgae and organic detritus, serving as an important
consumer in wetland ecosystems (Zhao et al., 2014). During
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gill respiration, B. purificata can capture Microcystis particles
in water to form mucus-encapsulated Microcystis clusters.
This behavior decreases Microcystis biomass suspended in
water for a short period and temporarily reduces bloom states
(Qu et al., 2010). In addition, B. purificata can scrape and
consume suspended particles adsorbed on submerged plants
(Li et al., 2007), thereby reducing total nitrogen and ammonia
nitrogen levels in water (Zhao et al., 2014).

Bellamya purificata is also an economically important edible
snail in Asia (Lydeard & Cummings, 2019). Over the past
several years, “snail rice noodle” dishes (i.e., rice noodles with
snails) have become a “net red food” (i.e., popular online) in
China, creating more than 10 billion yuan in economic benefits
each year. The annual demand for freshwater Viviparidae
snails in China is about 1.5 million tons (Jin et al., 2022).
However, according to the 2021 China Fishery Statistical
Yearbook, annual yield of cultured Viviparidae snails in China
is only 90 640 tons, indicating a huge gap between supply and
demand. To date, most cultured freshwater snails are sourced
from slow-growing wild populations. Therefore, to promote the
development of snail aquaculture, freshwater snail breeding
programs, especially for B. purificata, have become a priority.

Currently, genomic resources for B. purificata are lacking,
with only a single transcriptome and proteome analysis
performed to screen for shell color-related genes (Huang et
al., 2021). However, a detailed reference genome of B.
purificata is required for ecological and evolutionary research
and genetic improvement. Third-generation sequencing
technologies can expand sequencing reads and provide
superior platforms to produce complete and high-quality
genomes. In this study, PacBio long-read sequencing and
high-throughput chromosome conformation capture (Hi-C)
technology were wused to assemble a high-quality
chromosome-level genome of B. purificata. Comparative
genomic analysis of B. purificata with eight other mollusk
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species was performed to explore B. purificata evolution in
Asia.

To estimate the genome size of B. purificata, we performed
k-mer (k=17) frequency distribution analysis using 181.6 Gb of
clean data (Figure 1A). In this process, 17 bp k-mers (17-mer)
were extracted from the sequencing data and 17-mer
frequency was calculated. Here, 17-mer analysis conformed to
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PacBio sequencing data were obtained from the PacBio
Sequel Il platform (Supplementary Table S1). Data were
assembled using Hifiasm (v0.16.1), then polished.
Redundancies and haplotigs were removed, producing an
assembly with a genome size of 1 006 Mb. Genome length
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Figure 1 Characterization of chromosome-level genome of Bellamya purificata

A: Frequency distribution of k-mer depth and k-mer species. B: Genome characteristics of B. purificata. From outer to inner circle, (a) GC content of
genome, (b) gene distribution, (c) short read depth, (d) long tandem repeats (LTRs), (e) long read depth, and (f) DNA transposable element (TE).
Bar height is proportional to number of items mapped to each genomic position. C: Genome-wide Hi-C heatmap of B. purificata. Blocks represent
eight pseudochromosomes. Color bar represents contact density from white (low) to red (high). D: Estimates of species divergence times. E:
Number of expanded and contracted gene families in B. purificata. F: GO enrichment analysis of positively selected genes. G: KEGG enrichment
analysis of positively selected genes.
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was consistent with that estimated by k-mer analysis. The total
number of contigs was 265, with N50 reaching 45.14 Mb. The
genome sizes of three other gastropod species (Biomphalaria
glabrata, Achatina fulica, and Lottia gigantea) range from 359
Mb to 2.12 Gb (Adema et al., 2017; Guo et al., 2019; Simakov
et al., 2013). In total, 100 786 genomic fragments (based on a
step length of 1 kb) were randomly selected and mapped to
the Non-Redundant (NT) database, with more than 80% of
these fragments aligned to mollusk genomes. Based on
Benchmarking Universal Single-Copy Orthologs (BUSCO)
analysis, 100% (954/954) of complete BUSCO genes were
found in the assembly (Supplementary Table S2), including
94.9% complete and single-copy BUSCOs and 1.9% complete
and duplicated BUSCOs. The Circos plot is shown in
Figure 1B. Overall, the above results indicated that the
genome assembly of B. purificata was of high quality.

The genome contigs were further anchored and oriented to
chromosomes by Hi-C scaffolding. The Hi-C library generated
124.37 Gb of clean data, with 88.25% validly paired. Using
LACHESIS software (v0.1.19), 99.28% of the assembled
sequences were anchored to eight pseudochromosomes. The
eight pseudochromosomes were clearly distinguished from
the Hi-C heatmap and interactions within the
pseudochromosomes were strong (Figure 1C), indicating high-
quality anchoring. The final assembly yielded a high-quality
genome of 984.33 Mb, with contig N50 of 37.21 Mb and
scaffold N50 of 141.97 Mb (Supplementary Table S3).

A total of 482.49 Mb of repeat sequences were annotated,
accounting for 47.93% of the total genome (Supplementary
Table S4). This percentage is approximately the same as that
of the genome survey. The major repetitive elements were
DNA (20.97%), long terminal repeats (LTRs; 8.48%), and long
interspersed nuclear elements (LINEs; 5.38%)
(Supplementary Table S5). De novo and homology-based
methods predicted 22 125 protein-coding genes. Average
gene length, average CDS length, average exon length,
average intron length, and average exon number per gene
were 23 810 bp, 1 547 bp, 400.32 bp, 2 739 bp, and 8.46,
respectively (Supplementary Table S6). BUSCO evaluation of
the predicted genes revealed 923 orthologous genes,
including 905 complete single-copy BUSCOs and 18 complete
duplicated BUSCOs (Supplementary Table S2). A total of
18 958 genes, accounting for 85.69% of all predicted genes,
were annotated using public databases (Supplementary Table
S7). For non-coding RNA predictions, we successfully
annotated 39 microRNAs (miRNAs), 202 transfer RNAs
(tRNAs), 77 ribosomal RNAs (rRNAs), and 145 small non-
coding RNAs (snRNAs), with average lengths of 82, 76, 333,
and 142 bp, respectively (Supplementary Table S8).

Comparison of the B. purificata genome with that of eight
other mollusk species (Pomacea canaliculata, Gastropoda;
Biomphalaria glabrata, Gastropoda; A. fulica, Gastropoda;
Crassostrea gigas, Bivalvia; Lingula anatina, Lingulata; Lottia
gigantea, Gastropoda; Mytilus galloprovincialis, Bivalvia;
Patinopecten yessoensis, Bivalvia) revealed 8 943 gene
families and 990 single-copy genes. The B. purificata genome
contained a total of 22 125 genes clustered into 17 659 gene
families, including 1 857 unique families. Average gene
number per family ranged from 1.385 (B. purificata) to 4.048

(M. galloprovincialis) for the nine species (Supplementary
Table S9).

Based on the protein sequences of the single-copy genes,
we constructed a phylogenetic tree, which showed that the
divergence time between B. purificata and other shellfish
species was about 465.0 (288.0-619.3) Ma (Figure 1D),
consistent with previous studies (Sun et al., 2020). In addition,
we identified 34 expanded gene families (339 genes) and 26
contracted gene families (72 genes) by comparing the
genome of B. purificata with its most recent common ancestor
(Figure 1E). Four protein-coding genes under positive
selection were identified in B. purificata (FDR<0.05,
Supplementary Table S10). Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis of the
positively selected genes showed enrichment in G protein-
coupled protein receptor activity, acetylcholine receptor
activity, and taste transduction function (Figure 1F, G).

In summary, we assembled the first chromosome-level
genome of B. purificata by integrating PacBio long reads and
Hi-C data. The assembled genome was 984.33 Mb, similar to
the estimated size. Due to the intrinsic long length of PacBio
sequencing, contig N50 of the assembled genome was 37.21
Mb and scaffold N50 was 141.97 Mb. This genome assembly
and analysis provide important data for further study of
Viviparidae species, laying a solid foundation for a range of
breeding, conservation, and phylogenetic studies of Bellamya
in the future.
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