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First reference genome assembly of the Indochinese
silvered langur (Trachypithecus germaini)

DEAR EDITOR,

Of the seven genera recognized in Asian colobines,
Trachypithecus is the only genus that contains species
groups. Compared with the species groups characterized by
calcium tolerance (T. francoisi species group), multi-male,
multi-female society (T. obscurus species group), and
impressive hybridization (T. pileatus species group), the T.
cristatus species group is distinguished by its southernmost
distribution and silvery appearance. Hence, Trachypithecus is
an excellent model for investigating evolutionary radiation and
behavioral adaptation in Asian primates. However,
comprehensive comparison of species groups remains difficult
due to the lack of a reference genome for the T. cristatus
species group. In the current study, based on Nanopore
sequencing, we produced a high-quality de novo assembly of
the Indochinese silvered langur (Trachypithecus germaini)
genome as a representative of the T. cristatus species group.
The assembled genome was 2.91 Gb in size, with a contig
N50 of 55.90 Mb. The genome was predicted to contain
20 332 protein-coding genes, and genome synteny analysis
between T. germaini and T. francoisi indicated a good
collinear relationship. Demographic history analysis indicated
that the T. germaini population declined during glacial periods,
possibly due to climate change and human activity. The high-
quality genome of the Indochinese silvered langur should
provide a valuable resource for a deeper understanding of the
natural history and social evolution of Trachypithecus spp., as
well as adaptive radiation in primates.

The Indochinese silvered langur (T. germaini), also known
as the Indochinese Lutung, is distributed in Thailand, Burma,
Cambodia, Laos, and Vietnam (Figure 1A). As a colobine
primate, this species lives in typical one-male, multi-female
units, and displays territory defense against other groups
(Rowe & Myers, 2016). Like other colobines, T. germaini
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langurs are well-adapted to their high-fiber folivorous diet, with
developed bilophodont molars (Wright & Willis, 2012) and
enlarged, sacculated ruminant-like stomachs containing
bacteria for cellulose fermentation (Davies & Oates, 1994).

The Trachypithecus genus is comprised of four species
groups (Roos et al., 2020). The T. francoisi species group is
restricted to karst habitats in Laos, Vietnam, and southwestern
China (Figure 1A). Individuals live in one-male, multi-female
units and have adapted to high calcium ion concentrations in
their blood (Liu et al., 2020). The T. obscurus species group is
mainly distributed in the mountainous forests of southwestern
China and the Indochinese Peninsula (Figure 1A). Different
from all other Trachypithecus spp., those in the T. obscurus
group (e.g., T. crepusculus) are organized in multi-male, multi-
female social units (Xiong et al., 2017). The T. pileatus
species group is distributed in northeastern India, Bhutan,
eastern and central Bangladesh, northwestern Myanmar, and
southwestern China, showing mixed distribution with
Semnopithecus. Thus, members in the T. pileatus species
group exhibit morphological characteristics of both
Trachypithecus and Semnopithecus (Figure 1A) (Osterholz et
al., 2008; Wang et al., 2015), suggesting incomplete lineage
sorting or hybridization events during speciation. In contrast,
members of the T. cristatus species group can be
distinguished based on their southernmost distribution,
restricted to the rainforests of Peninsular Malaysia, and their
unique gray and silver pelage (Rowe & Myers, 2016)
(Figure 1A).

As the only genus to contain species groups in the
subfamily Colobinae, species within Trachypithecus have
evolved distinct morphological, physiological, social, and
behavioral traits. Thus, this genus represents an excellent
model for studying theories of primate evolution and the
underlying genetic mechanisms related to diversification,
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Figure 1 Geographical distribution and genomic analysis of T. germaini
A: Distribution of T. germaini and Trachypithecus; B: lllustration of T. germaini; C: Genome synteny between T. germaini and T. francoisi; D:
Demographic history of T. germaini and T. francoisi. lllustration copyright 2013 Stephen D. Nash/IUCN SSC Primate Specialist Group and Ning Xu,

used with permission.

speciation, hybridization, introgression, adaptive evolution,
and social differentiation. Therefore, it is necessary to obtain a
set of genomes covering all four species groups. Currently,
only the T. francoisi species group reference genome has
been reported (Liu et al., 2020), with the T. obscurus and T.
pileatus species group genomes completed and in the process
of being published. However, a T. cristatus species group
reference genome is still lacking.

To establish a reference genome for T. germaini
(Figure 1B), we collected blood from a male T. germaini langur
in Nanning Zoo (Nanning, Guangxi Province, China). Genomic
DNA was extracted using a QIAGEN Blood & Cell Culture
DNA Mini Kit (QIAGEN, Germany). A short-insert-size library
was constructed and sequenced using the MGISEQ-2000
platform (BGI, China). Nanopore libraries were prepared using
the BluePippin system (Sage Science, USA) and sequenced
using the PromethlON platform (Oxford, UK).

After checking quality, 208.05 Gb of clean short reads were
acquired and used to estimate genome size by K-mer analysis
(Supplementary Tables S1, S2). The estimated genome size
was ~3.05 Gb, with a heterozygosity ratio of 0.21%
(Supplementary Figure S1 and Table S2). The 349.10 Gb of
Nanopore reads were used to perform de novo assembly. The
initial genome was generated using NextDenovo v2.31 and
polished by NextPolish v1.3.1, with both short and long reads.
To further improve genome assembly, two rounds of polishing

were executed with Pilon v1.23 using short reads. The final
assembled genome was 2.91 Gb, with a contig N50 of 55.90
Mb (Supplementary Table S3).

The clean short reads and Benchmarking Universal Single-
Copy Orthologs (BUSCOs) were used to evaluate genome
assembly and completeness in gene regions, respectively. All
clean short reads were mapped to the assembled genome
using Burrows-Wheeler aligner (BWA) v0.7.15 with default
settings (Supplementary Table S4). To assess completeness,
we used the 4 104 BUSCOs from the mammalia_odb9 dataset
to align the assembly using BUSCO v3.0.2. Results showed
94.7% complete BUSCOs (Supplementary Table S5), which is
superior to that in T. francoisi (Liu et al., 2020). In addition,
whole-genome synteny was performed between the T.
germaini and T. francoisi genomes using LASTZ v1.04.03.
Results showed that T. germaini had a high conserved
synteny with T. francoisi (Figure 1C). Overall, the assembled
genome demonstrated high integrity and continuity.

De novo and homology-based approaches were applied to
predict the repeated sequences of transposable elements
(TEs) and tandem repeats in the T. germaini genome. Novel
TEs were identified and classified using RepeatModeler.
Known TEs at the DNA and protein level were detected using
a homology-based approach in RepeatMasker and
RepeatProteinMask. Tandem Repeat Finder was used to
identify tandem repeats. In total, 1.44 Gb of repeat sequences
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were identified, accounting for 49.43% of the assembled
genome, which is comparable to that of other primates
(Supplementary Tables S3, S6). In total, 1.38 Gb of TEs were
predicted, accounting for 47.58% of the assembled genome.
Among TEs, long interspersed nuclear elements (LINEs) were
most abundant (22.99% of the assembled genome), followed
by short interspersed nuclear elements (SINEs; 13.74%) and
long terminal repeat (LTR) retrotransposons (7.68%)
(Supplementary Table S7).

Both homology- and de novo-based prediction methods
were used to predict gene models of the repeat-masked
genome using EvidenceModeler (EVM). For homology-based
prediction, protein sequences of T. francoisi, Rhinopithecus
roxellana, Macaca mulatta, and Homo sapiens were aligned
against the T. germaini genome using TBLASTN (E-value=1e-
5). Solar software was used to conjoin BLAST hits and
GeneWise was applied to predict gene structures. For de
novo-based prediction, AUGUSTUS and GENSCAN were
used to predict coding genes. A non-redundant gene set was
generated based on gene models from EVM, which predicted
20332 protein-coding genes in the T. germaini genome
(Supplementary Table S8). To evaluate the quality of the
predicted genes, we compared gene features, including
distribution of MRNA length, CDS length, and exon length, in
T. germaini with other primates, which indicated a similar
distribution pattern (Supplementary Figure S2). Completeness
of the annotated genes was assessed using BUSCO v3.0.2
with default parameters, which detected 93.9% complete
BUSCOs (Supplementary Table S9). These findings indicated
the presence of high-confidence gene models.

Functional annotation of the predicted genes was performed
by alignment to the SwissProt, TrEMBL, and NR databases
using BLASTP. For the prediction of structural domains and
motifs, the predicted genes were searched against the
SMART, ProDom, Pfam, PRINTS, PROSITE, and PANTHER
databases using InterProScan v5.25. In total, 16 756 protein-
coding genes were functionally annotated, accounting for
82.41% of the predicted genes (Supplementary Table S10).

Non-coding RNA genes include highly abundant and
functionally important RNAs such as transfer RNAs (tRNAs),
ribosomal RNAs (rRNAs), small nuclear RNAs (snRNAs), and
microRNAs (miRNAs). Here, the tRNA genes were searched
using tRNAscan-SE. The rRNA genes were predicted by
alignment to the Vertebrate rRNA Database using BLASTN
(E-value=1e-5). The snRNA and miRNA genes were predicted
using INFERNAL against the Rfam database with default
parameters. In total, 547 miRNAs, 365 tRNAs, 237 rRNAs,
and 2095 snRNAs were identified (Supplementary Table
S11).

The demographic history of T. germaini was inferred using
the Pairwise Sequentially Markovian Coalescent (PSMC)
approach based on single nucleotide polymorphisms (SNPs).
Candidate SNPs were identified using SAMtools and BCFtools
v1.9. The candidate SNPs were then filtered if their depth of
coverage less than a third or greater than twice the average
depth. The PSMC analysis was performed to infer effective
population size. Results indicated that population decrease in
T. germaini was consistent with the Xixiabangma Glaciation
(XG, 1 170-800 thousand years ago (ka)) and Last Glacial
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Maximum (LGM, 70-10 ka), similar to that reported for T.
francoisi (Liu et al., 2020) (Figure 1D). The climatic shifts
during the glacial and interglacial periods and the emergence
of Homo sapiens in the Late Pleistocene may be associated
with the decline in the T. germaini population.

In this study, we sequenced and assembled a high-quality
reference genome of T. germaini. As the first reference
genome of the T. cristatus species group, this study has
important implications for further studies of the natural history,
social evolution, adaptation radiation, and species
conservation of Trachypithecus and Asian colobines.
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