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ABSTRACT

Behavioral analysis of macaques provides important
experimental evidence in the field of neuroscience.
In recent years, video-based automatic animal
behavior analysis has received widespread attention.
However, methods capable of extracting and
analyzing daily movement trajectories of macaques
in their daily living cages remain underdeveloped,
with previous approaches usually requiring specific
environments to reduce interference from occlusion
or environmental change. Here, we introduce a novel
method, called MonkeyTrail, which satisfies the
above requirements by frequently generating virtual
empty backgrounds and using background
subtraction to accurately obtain the foreground of
moving animals. The empty background is generated
by combining the frame difference method (FDM)
and deep learning-based model (YOLOVS). The
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entire setup can be operated with low-cost hardware
and can be applied to the daily living environments of
individually caged macaques. To test MonkeyTrail
performance, we labeled a dataset containing >8 000
video frames with the bounding boxes of macaques
under various conditions as ground-truth. Results
showed that the tracking accuracy and stability of
MonkeyTrail exceeded that of two deep learning-
based methods (YOLOv5 and Single-Shot MultiBox
Detector), traditional frame difference method, and
naive background subtraction method. Using
MonkeyTrail to analyze long-term surveillance video
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recordings, we successfully assessed changes in
animal behavior in terms of movement amount and
spatial preference. Thus, these findings demonstrate
that MonkeyTrail enables low-cost, large-scale daily
behavioral analysis of macaques.

Keywords: Movement trajectory tracking; Video-
based behavioral analyses; Background
subtraction; Virtual empty background; Occlusion

INTRODUCTION

Due to their similarity to humans in terms of genetics,
physiology, behaviors, and structural/functional characteristics
of the brain (Gibbs et al., 2007), macaques are widely used as
an effective animal model to study human brain disorders,
such as Parkinson’s disease (Bezard et al., 2001), Alzheimer’s
disease (Beckman & Morrison, 2021), autism spectrum
disorders (Liu et al., 2016b), and Rett syndrome (Chen et al.,
2017). In these studies, behavioral analyses provide important
information for validating models and developing effective
treatments (Krakauer et al., 2017; Lehner, 1987; Nice, 1954).
However, traditional behavioral analyses conducted by human
experimenters are both time-consuming and susceptible to
subjective biases (Bateson & Martin, 2021). More importantly,
behavioral parameters that can be analyzed manually are very
limited. Thus, automatic methods for behavioral analysis have
attracted increasing attention in recent years. Among them,
video-based methods built on rapid technological
developments in computer vision have become promising
approaches (Mathis et al., 2020).

Video-based automatic analysis of macaque behavior
usually involves measurement of movement amount
(quantifying overall movement intensity) (Caiola et al., 2019;
Hashimoto et al., 1999; Togasaki et al., 2005; Yabumoto et al.,
2019), movement trajectory (measuring trajectory of body
during movements) (Bala et al., 2020; Francisco et al., 2019;
Graving et al., 2019; Lind et al., 2005; Mathis et al., 2018;
Ueno et al., 2019; Walton et al., 2006; Yabumoto et al., 2019;
Yao et al., 2019), and behavioral categorization (categorizing
different types of activities) (Ballesta et al., 2014; Hu et al.,
2020a, 2020b; Wiltschko et al., 2015). Movement trajectory
can provide vital information for various purposes. Movement
trajectory length not only reflects overall activity level, but also
records important spatial information about movement
(Yabumoto et al., 2019), which can be used to categorize
different behaviors for quantifying movement characteristics
specific to Parkinson’s disease, drunkenness, and aging
(Caiola et al., 2019; Liu et al., 2016b; Pandya et al., 2015;
Togasaki et al., 2005; Walton et al., 2006; Yabumoto et al.,
2019). Due to its wide applications, video-based trajectory
tracking has been actively developed in recent years and can
be divided into methods based on traditional image processing
(Lind et al., 2005; Walton et al., 2006; Yabumoto et al., 2019)
and on deep learning (Bala et al., 2020; Francisco et al., 2019;
Graving et al., 2019; Mathis et al., 2018; Ueno et al., 2019;
Yao et al., 2019).

Background subtraction is an essential technique used in
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traditional video-based trajectory tracking (Lind et al., 2005;
Walton et al., 2006; Yabumoto et al., 2019), which considers
the animal as the foreground and assumes the background is
stable. Thus, subtracting the background from individual
frames can highlight the animal. If the contrast between the
selected background and animal is high, background
subtraction can achieve accurate tracking (Walton et al.,
2006). Compared with deep learning-based methods,
background subtraction does not need to learn features of the
animal, and thus needs no model training (Bala et al., 2020;
Yao et al.,, 2019). However, background subtraction is very
sensitive to environmental changes in the video. Many
background subtraction-based tracking methods require
specific environments (Walton et al., 2006; Yabumoto et al.,
2019) to provide a clean and stable background, e.g., using
specialized cages made of transparent material (Ueno et al.,
2019). These special requirements have prevented the wide
use of automatic tracking of animals in daily living
environments.

Deep learning-based trajectory tracking methods have
capitalized on the rapid development in deep neural networks.
Powerful tracking applications (Graving et al., 2019; Mathis et
al., 2018) have been introduced in the field of animal motion
tracking in recent years. Most tracking key points (Bala et al.,
2020; Graving et al., 2019; Mathis et al., 2018; Yao et al.,
2019) are based on pose estimation or track the whole animal
(Francisco et al., 2019; Ueno et al.,, 2019) using object
detection models. High-dimensional motion information can be
obtained by recording the trajectory of key points (Johansson,
1973). However, pose estimation is sensitive to occlusion.
Although object detection models, such as YOLOv5 (Jocher,
2021; Redmon et al., 2016) and Single-Shot MultiBox Detector
(SSD) (Liu et al., 2016a), can alleviate the problem of
occlusion, they fail under severely occluded conditions, e.g.,
when macaques are behind dense mesh. The daily living
cages of macaques contain bars, mesh, and other objects
(e.g., water bottle, food box), which creates many occlusions
for cameras outside the cage. To solve this issue, specific
environments with less occlusion are also needed for deep
learning-based methods (Bala et al., 2020; Caiola et al., 2019;
Graving et al., 2019; Yao et al., 2019), thus creating the same
problems as traditional methods. In addition, deep learning-
based methods require a large amount of labeled data to train
the model (Mathis et al., 2020), which is difficult to obtain for
individual applications (Mathis et al., 2018), especially for
animals with complex gestures such as macaques (Bala et al.,
2020).

Despite significant progress in video-based animal trajectory
tracking, important challenges still exist. A low-cost tracking
method that can be efficiently applied to normal living
environments is highly desirable. Here, we developed an
effective method, MonkeyTrail, for tracking macaque body
trajectory. The system only requires normal surveillance
cameras mounted outside the cage. Furthermore, it needs no
special environment and only requires a small amount of data
for training. This method provides a low-cost, scalable solution
to accurately track body movements of macaques in their daily
living cages.
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MATERIALS AND METHODS

Animals and recording environment

This study was conducted according to the international
standards of non-human primate care and use and was
approved by the Institutional Review Board/Ethics Committee
of Capital Medical University (AEEI-2019-077). The monkeys
were housed in animal rooms under a temperature of 18—
26 °C and humidity of 40%-70%. Video data of three adult
macaques in their daily living cages were used to develop and
validate the tracking method. The macaques were provided
with water, certified primate biscuits, vegetables and fruit daily.
The animals were individually housed in cages adjacent to
each other. The room was maintained on two light/dark cycles:
12 h light/dark or 11.5 h light/12.5 h dark. A regular high-
definition (HD) surveillance camera (1 920x%1 080 pixels, 25 Hz
refresh rate, 4 mm focal length) was mounted on the other
side of the room above the height of the cages. This setup
ensured minimal disturbance to the normal living environment.
However, it introduced technical challenges for automatic
video tracking, including occlusion due to the metal bars and
mesh of the cage and variable background due to movable
objects, e.g., toys and pull-out plates, which needed to be
overcome in this study. The overall recording environment and
camera setup are shown in Figure 1.

Overall workflow of MonkeyTrail

We devised a Python-based program called MonkeyTrail,
which uses background subtraction supplemented with
YOLOvVS to record the trajectory of individually caged
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Figure 1 Overall recording environment and camera setup

A: One frame of recorded video, showing arrangement of monkey
cages. For each recording, two cages in upper and middle positions
with better visibility (marked by vyellow box) were analyzed by
proposed method. Position of camera in A is marked by red box. B:
Diagram showing setup of recording cameras mounted on the other
side of the room above cage height. Yellow and red boxes in B
correspond to A.

macaques in their daily living environment. The major steps
involved in the procedure are briefly described below.

In MonkeyTrail, video preprocessing first establishes
parameters for the algorithm, automatically crops the video
size, and sets the frame rate for video data. Next, a virtual
empty background is generated by combining the frame
difference method (FDM) and YOLOv5. The bounding boxes
are then located using background subtraction with the
generated empty backgrounds and simple image processing
techniques. Finally, the centers of the bounding boxes in
individual frames are connected to each other, producing a
moving trajectory. The length of the trajectory is used to
calculate the total amount of movements. The MonkeyTrail
workflow is shown in Figure 2.

The source code of MonkeyTrail
https://github.com/Xingheliu/MonkeyTrail.

is available at

Video preprocessing

First, the region of interest in the first video frame is manually
selected, which includes a single cage housing a macaque,
and then the frames per second (fps) are set for further
analyses. After all parameters are obtained, MonkeyTrail will
automatically crop the video size and set the fps. This step
eliminates irrelevant pixels from the videos to facilitate
downstream processing and avoid interference from other
animals. According to the first frame of each video, the initial
tracking frame of the macaque and the center point of the
cage are manually selected. The following steps are
automatic.

Empty background generation

A key step in MonkeyTrail is to automatically update the empty
background so that the background subtraction method (BSM)
can be used for the cages. The generation of an empty
background can be divided into two steps: (1) screening
frames with high movements in the video sequence into two
sets (L and R, representing frames with animal located in the
left and right half of the cage, respectively); and (2) selecting
the closest pair of L and R frames in a time sequence, and
stitching together each empty area without macaques to form
a complete empty background.

In the first step, FDM is used to initially obtain the L and R
sets, with YOLOV5 then used to obtain reliable L and R sets.
Specifically, there are three sub-steps: (1) The frame pixel
difference is obtained using FDM. The amount of pixel
difference can provide rough estimations of animal movement.
At the same time, the position of pixel differences can provide
the approximate position of the bounding box for the animal.
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Figure 2 MonkeyTrail workflow
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(2) As the tracking position obtained by FDM will be more
reliable when the animal is actively moving, a high-movement
threshold (i.e., pixel difference threshold) is used to select
frames in the video sequence and classify the frames into L
and R sets based on the position of the bounding box.
(3) YOLOVS is then used to detect the L and R sets obtained
in the previous step, and only preserve frames with a high-
confidence bounding box.

In the second step, two suitable frames in the L and R sets
are used to generate an empty background. This process
involves two sub-steps: (1) To improve empty background
quality, two frames are selected in the L and R sets with a
high degree of location discrimination between tracking boxes.
The latter criterion ensures that in these frames, the animal is
on one side of the cage and the other side represents a half-
empty background. (2) The L and R half-empty backgrounds
are then spliced to provide a complete empty background.
After successfully splicing multiple pairs of L and R frames, a
series of automatically generated empty backgrounds are
obtained.

Background subtraction in daily living cages

With frequently updated empty backgrounds, background
subtraction combined with proper image processing will
provide accurate bounding boxes of the macaques for
tracking. Specifically, the original RGB-color frames are
converted into gray scale, with the foreground then obtained
by background subtraction. The extracted foreground is then
subjected to standard image processing, including spatial
median filtering, binarizing, eroding, and dilating (Gonzalez &
Woods, 2002). The bounding box is formed by finding the
minimal rectangular area that covers the foreground.

The parameters used for image processing in our program
were optimized according to the experimental environment
used. If applied to other environments, they can be adjusted
appropriately to obtain the best results. In addition, to avoid
over-processing the image under severe occlusion, which can
result in excessive elimination of foreground results, previous
FDM results are used to judge the size of the tracking frame.
For example, if the foreground is too small and in a high-
density occlusion area, and if the FDM result is also in this
area, then a bounding box with the same size as the
immediate previous frame will be tracked.

Trajectory extraction and movement amount estimation
MonkeyTrail extracts trajectory by connecting the center point
of the bounding boxes in consecutive frames, which can be
used to reflect the center location of the macaque’s body. To
reduce disturbance of the tracking point caused by subtle
movements of the limbs or head, movements smaller than a
preset threshold are discarded. In other words, when the
Euclidean distance of the tracking point compared to the
previous time point does not exceed this threshold, the
change in the tracking point is filtered out. The distance of the
trajectory represents the amount of movement.

Manually annotated test dataset

We created a test dataset to quantify the performance of
MonkeyTrail in comparison to other methods. To test its
reliability in various macaque movement states, the selected
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data included continuous movement, continuous stillness, and
transition between movement and stillness. To test
MonkeyTrail with different levels of occlusion, we selected
data that included cases of macaques occluded by metal bars,
mesh grids, and parts of their own body. Furthermore, the
three monkeys used in the test dataset have different
appearances, including size and fur coloring. None of the
animals in the test dataset were present in the training set.
Finally, to test MonkeyTrail performance across different
lighting conditions, the dataset included both day and night
video data.

The entire test dataset contained 55 min of video,
composed of 13 consecutive clips of varying lengths to cover
all conditions mentioned above. To reduce the workload of
manual labeling, the frame rate was decreased to 2 or 5 fps,
resulting in a total frame number of 8130. We manually
selected the bounding box containing the entire animal as
ground-truth using the labeling platform Labellmg (Tzutalin,
2015).

RESULTS

Updating empty background to detect monkeys in cages
using background subtraction
Many methods using background subtraction to locate
macaques in videos require a physically created empty
background obtained by removing the animal from the
monitoring environment. These empty backgrounds cannot be
frequently updated. However, due to changes in the
environment over time (e.g., cage movement, changes in
lighting conditions, and introduction of new objects in the
frame), the empty background obtained in advance will not
match the true background over long periods of recording.
Typical changes in the background of a randomly chosen
daily video recording (~2 h) are shown in Figure 3. The three
sequentially generated (~1 h intervals) empty backgrounds of
the same cage (Figure 3C-E) (see methods for details)
showed that the background changed in brightness and
detailed appearance. To highlight these changes, we used a
video frame with the monkey in cage (Figure 3B) to perform
background subtraction with frames showing in Figure 3C-E,
in which Figure 3E is most close to the moment of Figure 3B.
The background subtraction results are illustrated by the white
pixels in Figure 3F-H. As seen in Figure 3H, background
subtraction successfully highlighted the macaque, but using
empty backgrounds obtained 1 or 2 h earlier resulted in low-
quality outcomes (Figure 3F, G). Thus, the longer the time
elapsed since obtaining the empty background, the poorer the
subtraction results, making it more difficult to locate the
foreground using image processing techniques. The above
example illustrates the importance of frequently updating
empty backgrounds to detect caged monkeys using
background subtraction.

Application of YOLOvV5 to generate empty background
and visualize tracking results

To achieve better background subtraction, we introduced a
method in MonkeyTrail to frequently update the empty
background with minimal animal disturbance. Simply, we
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detected the frames in which the animal was on one side of
the cage, thus providing a half-empty background, and then
spliced the left and right half-empty backgrounds adjacent to
each other in time to generate a virtual empty background.

As seen in Figure 4, the L and R frame sets (Figure 4A)
showed animals in the left and right halves of the cage,
respectively. The L and R frames were first detected using
FDM to roughly locate the animal in the frame, followed by the
deep learning-based model of YOLOVS5 to select frames with a
high-confidence bounding box. Two frames (Figure 4B) from
the L and R set close in time were then paired. Finally, the
areas where there were no macaques in the two frames were
stitched together to generate a virtual empty background

Figure 3 Influence of environmental changes on efficacy of
background subtraction

A: Relationships among B-H. (C, F), (D, G), (E, H) are empty
backgrounds at certain times and corresponding background
subtraction results. Empty backgrounds of C, D, and E were obtained
at 1 h intervals. Real-time frame B subtracted from C-E is a video
frame near time of E.

Figure 4 Method to frequently update empty background

(Figure 4C). For more details, see section "Empty background
generation" in Materials and Methods.

With the frequently updated empty background, background
subtraction showed good performance in highlighting
foreground objects (cf. Figure 5A—C) using simple image
processing techniques (see methods for details).

Thus, based on the extracted foreground containing the
animal, the bounding box and movement trajectory can be
easily obtained. Furthermore, MonkeyTrail can provide
bounding boxes reasonably fit to the trunk of the monkey
under various occlusion and lighting conditions (day and night)
(Figure 6; Supplementary Videos S1, S2).

Accuracy of MonkeyTrail in generating bounding boxes
MonkeyTrail capitalizes on the combined strengths of BSM,
FDM, and YOLOvV5. Thus, we next quantitatively analyzed the
improvements in MonkeyTrail over these three methods and
the deep learning model SSD. We prepared a manually
annotated dataset to obtain the ground-truth (see Materials
and Methods for details), and then compared the MonkeyTrail,
BSM, FDM, YOLOv5, and SSD results. To provide a
comprehensive comparison, the testing dataset contained 13
video clips from three animals, covering various movement
modes, occlusions, and lighting conditions (day and night). To
facilitate fair comparison, the FDM, BSM, YOLOv5, and SSD
processes were the same as the corresponding functions in
MonkeyTrail. For example, image processing in BSM without
an updated background is the same as MonkeyTrail, and the
YOLOvV5 model for object detection is the same as that used
by MonkeyTrail. Tracking accuracy was determined by loU,
which measures the degree of overlap between the bounding
box generated by individual methods (r;) and that of the
ground-truth (r,), and is defined as:

_ |rtnro|

loU (1)

|rt U rol

To visualize the tracking results of different methods, we
displayed the loU value for each frame in the test dataset with
a continuous time axis, as shown in Figure 7A-E. To better
understand how animal activity and occlusions can affect the
different methods, we plotted the estimated amount of total
activity, as well as the period in which the animals were
severely occluded, as shown in Figure 7F.

Figure 5 Background subtraction process with generated empty
background

A: One video frame showing typical situation in daily living cage. B:
Background subtraction between A and virtual empty background
generated temporally close to A, thus highlighting foreground
containing animal. C: Image processing result of B, after spatial
median filtering, binarizing, eroding, and dilating. A and B are redrawn
from Figure 3B and H, respectively.
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Figure 6 Representative tracking results for macaque during daytime and nighttime

Green box and blue line represent bounding box and trajectory, respectively. Sequence of frames is from left to right, then top to bottom. Time

interval between each frame is >10 s. These examples include different motions and various levels of occlusion.

Among the methods, MonkeyTrail provided the most
accurate and stable tracking results, reflected by overall larger
loU values and smaller variability (Figure 7A). In comparison,
both SSD and YOLOvV5 showed highly fluctuating performance
(Figure 7B, C), with reasonable tracking results interrupted by
periods of zero loU, indicating failure to detect the animal at all
(Figure 7B, C). Importantly, these failures usually occurred
when the animals were occluded (cf. Figure 7F), suggesting
that SSD and YOLOvV5 are highly sensitive to occlusion.
Without frequently updating the empty background, traditional
BSM exhibited noisy results. Thus, it was difficult to obtain
accurate macaque foreground areas by standard image
processing, leading to inaccurate tracking results (Figure 7D).
In addition, FDM provided relatively accurate tracking results,
but only when the animals were actively moving (Figure 7E, cf.
Figure 7E). These analyses provide insights into the
advantages and disadvantages of different methods and
illustrate how MonkeyTrail can combine their strengths to
achieve accurate and stable tracking.

To provide a more comprehensive and quantitative
comparison, we compared tracking success rates with a
systematically varying overlap threshold, which is often used
for gauging the performance of object tracking methods (Wu
et al.,, 2013). The results are shown in Figure 8. When the
“overlap threshold” of a certain frame was greater than the set
threshold, the frame was regarded as a success, and the
percentage of total successful frames in all frames was
defined as the “success rate”. Compared with SSD, BSM, and
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FDM, the success rate of MonkeyTrail was consistently higher
over the entire overlap threshold range. Although YOLOvV5
seemed to be more accurate in a small proportion of frames, it
failed to detect monkeys completely in ~15% of frames; in
contrast, MonkeyTrail exhibited more stable tracking results,
yielding more favorable overall performance.

Application of MonkeyTrail to extract movement patterns
in daily living cages

To demonstrate the practical value of our method in analyzing
the behaviors of macaques, we used the trajectories recorded
by MonkeyTrail to calculate the amount of movement and
spatial preference of two macaques over two time periods
separated by one year, each containing recordings of five
consecutive days. Movement amount and spatial preference
are useful indicators of behavioral changes induced by factors
such as drug injection, surgery, and changes in external
conditions (Caiola et al., 2019; Togasaki et al., 2005;
Yabumoto et al., 2019). Daily monitoring of these parameters
can reveal their acute and chronic effects on behavior.

Total activity is shown in Figure 9. In addition to the obvious
results that sleep-awake cycles affect activity patterns,
monkeys in the 2019 recordings showed a bimodal pattern of
active movement during the daytime in the cages, which may
be the combined result of physiological (i.e., napping) and
housekeeping (i.e., feeding, lighting) factors. In 2020, both the
lighting schedule and housekeeping activity pattern changed.
As a result, total amount of activity of animals changed to a


www.zoores.ac.cn

E
AcM
2 Sos
5
B s 2000 2500 3000
o) AT (S [ T
7] | Jg Bl
@ [ W
2000 2500 3000
Co . VTR TRV TR T
o N I
> 1 | 1
D : 2000 2500 3000
P e T st | 1o RN VR I Y T T et [ 1 17| T T (] Tt
o ©0.5F___ NANNMINNLILNY oM A B me | N ow il TP AR
o2
E ‘1’:8 0 500 1000 1500 2000 2500 3000
§ ____________________________________________________________________________________________________________
Z Qos
I = |ecceasubitt SULE_ L L1 R R RN A BUEE ] L R L D T SRS IR L
P 500 1000 1500 2000 2500 3000
Fg<"® [ ] . i
25 \ ‘
s ¢ '
0
é’ < 0 500 1000 1500 2000 2500 3000
Time (s)
MonkeyTrail SSD YOLO BSM FDM
loU value per frame (] Moment animal occluded )
loU value average - - - - Movement amount =

Figure 7 Visualization of performance in generating bounding boxes by different methods

Results of several trajectory tracking methods were compared with results of manual annotation to calculate accuracy. loU, which measures
accuracy of bounding box, was plotted for individual frames concatenated in time. A-E: Results of MonkeyTrail, SSD, YOLOv5, BSM, and FDM,
with loU shown in different colors. Green dashed line indicates mean value of loU for MonkeyTrail, and red dashed lines represent mean values of
loU for corresponding methods. F: Amount of motion (calculated by length of trajectory movement) was plotted with the same time frame as in A-E.
Gray box represents time when macaque is occluded by parts of cage. Data were from three monkeys, including 8 130 frames.
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trimodal pattern. These results illustrate the value of tracking
total activity amount to capture behavioral changes in
monkeys in daily living cages. Such changes not only reflect

>

== 2020

W  Movement amount

Movement amount

0 4 8

12 T R—
Time (h)
Figure 9 Daily total activity patterns of two monkeys (A and B)
captured with MonkeyTrail

Blue and red columns represent results obtained in 2019 and 2020,
respectively. Average activity counts in each hourly time segment were
obtained from 5-day recordings.
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the influence of unintentional external factors, as above, but
also provide valuable information for validating intentional
treatments, such as drug administration or surgical operations.
The spatial preferences are shown in Figure 10. We first
divided the two-dimensional (2D) projection of the cage into 16
areas. We then counted the number of times the macaque’s
trajectory passed through each area (normalized by the
maximum number found in one area) to determine its spatial
preferences. Similar to total activity amount, we analyzed the
average spatial preferences of the macaques from 1100h to
1200h for five consecutive days in both 2019 and 2020. In
2019, monkey A showed a preference for hanging at the top of
the cage (Figure 10A), while monkey B preferred to sit at the
bottom of the cage (Figure 10C). A year later, monkey B still
showed a preference for sitting on the base of the cage
(Figure 10D), but monkey A had changed its behavioral
preference, more often sitting than hanging (Figure 10B). As
shown in Figures 9, 10, tracking animal behavior in their daily
living cages can provide useful information regarding
movement patterns in both temporal and spatial domains.

DISCUSSION

In this study, we introduced a simple method named
MonkeyTrail to track the movement trajectories of macaques.
MonkeyTrail is based on frequently updating the empty
background to apply background subtraction effectively and
accurately for analyzing videos recorded outside animal
cages. To the best of our knowledge, due to its minimal
recording environment and hardware requirements,
MonkeyTrail is the first method that can be deployed in
parallel to monitor many monkeys in their daily living cages.

Several limitations are worth noting. Firstly, this method
does not include steps to eliminate image distortion due to
different viewing angles, therefore we recommend that the
camera be mounted directly opposite the cage of interest.
Secondly, if an animal remains at one side of the cage for a
prolonged period, it can be difficult to generate a virtual empty
background, which may impact tracking accuracy. However,
our empirical data showed that, on average, updating the
background once every 40 min showed reasonably good
results, thus providing an ample time window to generate
multiple virtual empty backgrounds. Thirdly, our method is
primarily designed for individually caged animals. Although it
can be used to track multiple macaques in the same cage as
long as they are spatially separated, the method cannot be
readily extended to situations in which multiple animals
interact with each other.

Movement trajectories extracted by MonkeyTrail can be
used to analyze spatial preference and movement amount.
Compared with motion recorded by pixel differences (Caiola et
al.,, 2019; Hashimoto et al., 1999), motion calculated by the
distance of trajectory, although not suited to detect subtle
movements of small body parts, can provide more accurate
results at the whole-body movement level, especially under
conditions with severe occlusion. Trajectory also provides
spatial information, which is missing in pixel differences.
Although posture estimation can be used to analyze more
detailed movement patterns, overall movement trajectory of
animals can still provide important information. For example,
Pandya et al. (2015) verified the relationship between
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Figure 10 Spatial preference of macaques extracted by
MonkeyTrail

A, B/C, D, results of monkeys A/B obtained in 2019 and 2020,
respectively. Horizontal and vertical axes of heat map represent X and
Y coordinates of cage, respectively. Each heat map region represents
number of times macaque’s trajectory passed through this space,
normalized by maximum number found in one region (color-coded).

Each heat map was obtained by averaging trajectory data of five days.

mitochondrial aging and age-dependent motor function loss by
analyzing changes in distance and speed of movement of
different-aged macaques, which directly supported the
mitochondrial aging theory. Yabumoto et al. (2019) analyzed
changes in spatial patterns of movement trajectory in
macaques before and after alcohol injection, thus revealing
the effects of alcohol in movement control. Liu et al. (2016b)
recorded the locomotion trajectory of monkeys in cages and
found anxiety-associated behaviors, e.g., repetitive, circular
locomotion, in animals with MeCP2 overexpression, mimicking
autism spectrum disorders in humans.

In addition to extracting movement trajectories, MonkeyTrail
can also provide outlines of animals for individual frames, with
either bounding boxes or body masks, which may be
instrumental for future algorithms aimed at pose detection. In
addition, the bounding boxes and their contents provided by
MonkeyTrail can serve as training samples to train or fine-tune
other deep learning-based methods for more sophisticated
detection and recognition.

MonkeyTrail uses long-term video recordings of macaques
in their daily living cages using ordinary HD cameras mounted
outside the cage. This low-cost setup is scalable to
automatically track many animals, thus allowing large-scale
applications. In addition to behavioral tracking in future
experiments, our method can also be used to analyze stored
data retrospectively for animal rooms equipped with video
recording devices. Furthermore, this method can be readily
extended to three-dimensional (3D) tracking with depth
cameras (Yabumoto et al., 2019), thus providing more
comprehensive information regarding the movement patterns
of animals.

SUPPLEMENTARY DATA

Supplementary data to this article can be found online
(Supplementary Video S1, S2).
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