Li. Zool. Res. 2022, 43(2): 166-175
https://doi.org/10.24272/j.issn.2095-8137.2021.362

Zoological
Research

Lateral habenula neurocircuits mediate the maternal
disruptive effect of maternal stress: A hypothesis

Ming Li"’

" Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA

ABSTRACT

Up to 20% of women experience stress-related
disorders during the postpartum period; however,
little is known about the specific neural circuitry by
which maternal stress exerts its negative impacts on
mental health and maternal caregiving behavior.
Theoretically, such a circuitry should serve as an
interface between the stress response system and
maternal neural network, transmitting stress signals
to the neural circuitry that mediates maternal
behavior. In this paper, | propose that the lateral
habenula (LHb) serves this interface function.
Evidence shows that the LHb plays a key role in
encoding stress-induced effects and in the
pathophysiology of major depression and stress-
related anxiety, and thus may play a role in maternal
behavior as part of the maternal brain network. |
hypothesize that maternal stress acts upon the LHb
and two of its major downstream targets, i.e., ventral
tegmental area (VTA) and dorsal raphe nucleus
(DRN), compromising the maternal care and
contributing to postpartum mental disorders. This
hypothesis makes three predictions: (1) maternal
stress enhances LHb neuronal activity; (2) activation
of DRN- and VTA-projecting neurons in the LHb
mimics the detrimental effects of maternal stress on
maternal behavior; and (3) suppression of DRN- and
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VTA-projecting neurons in the LHb attenuates the
detrimental effects of maternal stress on maternal
care in stressed mothers. Confirmation of this
hypothesis is expected to enhance our
understanding of the neurocircuit mechanisms
mediating stress effects on maternal behavior.
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INTRODUCTION

Pregnancy, parturition, and lactation induce numerous
changes in a female’s brain, body, and behavior, which are
essential for the survival and health of offspring and necessary
for the female to successfully respond to new demands in her
changing environment (Hillerer et al., 2012). Various adaptive
changes, from the molecular to behavioral level, are well
documented in laboratory animals, including increased chronic
basal hypercorticism, decreased hypothalamic pituitary
adrenal (HPA) axis responsiveness to stressors, decreased
corticotropin-releasing hormone (CRH, a stress hormone)
mRNA and hypothalamic paraventricular nucleus (PVN)
binding, increased oxytocin and receptor mRNA expression in
the PVN, increased adult neuroplasticity (e.g., adult
neurogenesis), reduced sensorimotor gating (an attentional
filtering function) as measured in prepulse inhibition (PPI),
reduced acoustic startle response, increased pup-directed
maternal responses (pup retrieval and nursing), increased
maternal aggression, decreased anxiety, and enhanced
memory function (Byrnes et al., 2007; Hard & Hansen, 1985;
Hillerer et al., 2012; Kask et al., 2008; Kinsley & Lambert,
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2008). Magnetic resonance imaging (MRI) studies on the
brains of human mothers have also documented structural
and functional changes in certain corticolimbic circuits
involved in emotional processing, volitional attention and
executive function, reward and motivation, and sensorimotor
functions (Kim et al., 2010, 2016; Pawluski et al., 2021).
These areas include the prefrontal cortex (PFC), cingulate
cortex, parietal cortex, amygdala, striatum, hypothalamus, and
substantia nigra (SN). These normal adaptations can easily be
disrupted by various individual, environmental, and societal
factors, which contribute to the occurrence of postpartum
mood, anxiety, and memory disorders (Lonstein, 2007). It is
estimated that approximately 5%-12% of mothers display
postpartum anxiety (Andersson et al., 2006), 5%—25%
experience postpartum depression (Beck, 2006), and 0.1%
suffer postpartum psychosis (Jones et al., 2008). Some
individuals also show impairments in prospective memory
(Henry & Rendell, 2007). Of the risk factors identified,
exposure to chronic stress before and/or during pregnancy is
among the most studied for these disorders (Bifulco et al.,
1998). Indeed, exposure to chronic stress during pregnancy or
shortly after giving birth is cited as a preceding factor for
depression (Parker et al., 2003). It also constitutes one of the
most convincing and translational risk factors employed to
develop animal models of postpartum depression (Li & Chou,
2016). Accumulating evidence suggests that maternal stress
(i.e., occurring during pregnancy or after birth) contributes to
postpartum mental disorders by preventing or inhibiting
behavioral, neuroendocrine, and neuronal adaptations specific
to the reproductive status of females (Hillerer et al., 2012).

MATERNAL STRESS ALTERS BEHAVIOR IN MOTHERS
AND NEGATIVELY INFLUENCES OFFSPRING

Human maternal stress is known to have long-term
detrimental impacts on both mothers and their offspring. As a
common risk factor for postpartum mental disorders (e.g.,
depression, anxiety, and psychosis), maternal stress may also
impair the quality of maternal care. Depressed mothers can
exhibit greater hostility, with increased negative and/or
disengaged (withdrawn) parenting and decreased positive
(warmth) parenting (National Research Council et al., 2009 ;
Paris et al., 2009), which can, in turn, adversely affect the
physical, psychosocial, and neurobiological development of
their children. Increasing studies have documented the
maladaptive effects of maternal depression on children (
Goodman et al.,, 2011; National Research Council et al.,
2009), including deficits in affective functioning (e.g.,
increased negative affect and dysregulated aggression), lower
cognitive  functioning (e.g., lower academic/intellectual
performance), poorer interpersonal functioning, and impaired
stress response (neuroendocrine and autonomic) and cortical
activity (O'Hara & McCabe, 2013). Preclinical rodent studies
on the effects of maternal stress, including prenatal and
postpartum stress and stress hormone exposure, generally
support the findings reported in humans (Brummelte & Galea,
2010, 2016; Brummelte et al., 2006; Pawluski et al., 2017).
Notably, maternal stress significantly changes maternal
behavior in rats and recapitulates some of the behavioral

abnormalities observed in human offspring. Deficits in
maternal care include changes in time spent on arched-back
nursing and pup contact, greater time spent away from nest
and pups, longer latency to initiate nursing, and lower
durations of pup grooming/nursing (Haim et al., 2016; Leuner
et al.,, 2014; Nephew & Bridges, 2011; Smith et al., 2004).
Stressed mothers also show increased anxiety, impaired
learning and memory, reduced sensitivity to anxiolytic or
antidepressant treatment, and increased depressive-like
behaviors (e.g., forced swim test and sucrose preference test)
(Boccia et al., 2007; Bowman et al., 2003; Nephew & Bridges,
2011; Rayen et al.,, 2011; Smith et al., 2004). Offspring of
stressed mother rats commonly show elevated anxiety and
deficits in attention, spatial learning and memory, and
executive functions (Maccari et al., 2014; Weinstock, 2001a,
2001b, 2017). Despite the prevalence and high costs of
maternal stress for both the mother and developing child, our
understanding of the neurocircuit mechanisms of stress-
induced postpartum emotional and mood disorders remains
limited (Pawluski et al., 2017). Thus, it is imperative to clarify
how maternal stress induces deficits in maternal care at the
neurocircuitry level, and how it contributes to the
psychopathology of postpartum mental disorders. Such
knowledge is critical for improving the well-being of mothers
and their offspring.

MATERNAL STRESS ALTERS BRAIN STRUCTURE AND
FUNCTION

Maternal stress and stress-related disorders can affect the
brains of mothers. Functional magnetic resonance imaging
(fMRI) of the human brain has shown activity and connectivity
changes in the cortical and subcortical areas of women with
affective symptoms and postpartum depression, especially in
PFC areas, insular cortex, limbic system (e.g., anterior
cingulate cortex, hippocampus, and amygdala), ventral
tegmental area (VTA), SN, and periaqueductal gray (PAG)
(Pawluski et al., 2017). For example, at rest, women with
postpartum depression exhibit disrupted posterior cingulate
cortex-right amygdala connectivity compared to non-
depressed postpartum women (Chase et al., 2014). A recent
study identified an area in the dorsomedial PFC (DMPFC) with
enhanced connectivity to the rest of the default mode network
in depressed mothers and showed significant positive
correlation between depression severity and resting-state
functional connectivity within the DMPFC (Deligiannidis et al.,
2019). When tested with infant and non-infant cues, mothers
with postpartum depression show an overall increased
response in the amygdala compared to non-depressed
mothers. They also show an enhanced response in the right
amygdala to positive infant photos and positive non-infant
photos and decreased bilateral amygdala-right insular cortex
connectivity when viewing infant photos (Wonch et al., 2016).
Although  these  correlational  neuroimaging  studies
undoubtedly identified several brain regions correlated with
postpartum mental disorders, they do not explain how
postpartum mental disorders develop or disclose the cause-
effect relationship between symptoms of postpartum mental
disorders and alterations in brain functions.
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Research using animal models of maternal stress is more
appropriate for studying the neural basis of postpartum stress
disorders. In line with clinical work, animal studies also point to
the central role of maternal stress in postpartum mental
disorders and associated remodeling effects on the brain.
Documented changes include reduced adult neurogenesis in
the hippocampus and alterations in dendritic morphology in
the ventral striatum and medial PFC (Haim et al., 2016;
Leuner et al., 2014; Pawluski et al., 2016). Chronic stress can
impact various maternal adaptations, including basal plasma
hypercorticism, hypothalamic oxytocin mRNA expression, and
anxiolysis (Hillerer et al., 2011). Importantly, none of these
parameters are affected in stressed nulliparous females,
indicating that these stress-induced changes are specific to
the maternal period (Hillerer et al., 2011). However, how these
changes in brain structure and function are involved in the
mediation of stress-induced alterations in maternal behavior is
not known. This may be because changes in the brain due to
stress do not always represent the neural substrates that
mediate stress signals and cause stress-induced maternal
alterations. For example, maternal stress is known to cause
plastic changes in the hippocampus; however, hippocampal
lesions can have minimal effects on maternal behavior
(Kimble et al., 1967; Terlecki & Sainsbury, 1978).
Consequently, identifying broad stress-induced changes in the
brain is not sufficient, making it imperative to pinpoint the
specific neural circuitry that stress acts upon to disrupt
maternal behavior.

HYPOTHESIS: LATERAL HABENULA (LHb)-CENTERED
NEURAL CIRCUITS MEDIATE MATERNAL STRESS
EFFECTS

In the current paper, | propose a novel hypothesis regarding
the neural circuitry by which maternal stress exerts negative
impacts on maternal behavior and postpartum mental
disorders. Theoretically, such neural circuitry should serve as
an interface between the stress response system and
maternal caregiving neural system, thereby transmitting stress
effects to the maternal neural circuitry. After a careful review
of the literature, | propose that the LHb is a likely candidate
serving this interface function. The central idea is that the LHb
and its downstream projections to the VTA and dorsal raphe
nucleus (DRN) mediate the disruptive effects of maternal
stress on maternal behavior (Figure 1). Clinically, maternal
stress-induced dysfunction in the LHb-centered neurocircuits
may eventually contribute to the psychopathology of
postpartum mental disorders (e.g., postpartum depression,
anxiety, and psychosis). This hypothesis is based on the
following observations. First, the LHb plays a critical role in
stress-related behaviors, such as encoding negative-valence
signals and promoting behavioral aversion. Hyperactivity of
the LHb is also implicated in the pathophysiology of major
depression and stress-related anxiety. Second, the LHb is an
essential brain region involved in the mediation of maternal
behavior onset in rats. Lesions of the LHb produce deficits in
all components of rat maternal behavior and the LHb is
interconnected with several brain nuclei implicated in the
mediation of emotional and motivational aspects of maternal
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Figure 1 Hypothesized underlying
stress-induced maternal impairment and postpartum mental
disorders

Central component of the system is the lateral habenula (LHb), which
receives “stress” and “maternal” signals from the brain response stress
system (e.g., LHA, PVN, BNST, mPFC) and maternal response
system (e.g., MPOA, NAc, mPFC, VTA, DRN). LHb interacts with
downstream projection sites (VTA and DRN) to mediate the disruptive
effects of maternal stress on maternal behavior, thereby contributing to
the psychopathology of postpartum mental disorders. BNST: Bed
nucleus of the stria terminalis; DRN: Dorsal raphe nucleus; MPOA:
Medial preoptic area; mPFC: Medial prefrontal cortex; LHA: Lateral
hypothalamic area; LPO: Lateral preoptic area; NAc: Nucleus
accumbens; PVN: Paraventricular nucleus; VTA: Ventral tegmental
area.

behavior (VTA and raphe nuclei). In the following, | present
evidence that the LHb is well positioned for transmitting
stressful signals to alter the function of maternal neural
circuitry.

LHb PLAYS A CRITICAL ROLE IN STRESS-INDUCED
BEHAVIORAL CHANGES

The LHb is a bilateral epithalamic structure connecting the
forebrain (e.g., PFC and nucleus accumbens (NAc)) with
monoaminergic systems in the midbrain and hindbrain (e.g.,
VTA, SN, and raphe nuclei) (Aizawa et al., 2011; Sutherland,
1982; Zahm & Root, 2017). The LHb receives major afferent
inputs from the basal nuclei and limbic forebrain, and it
primarily projects to the rostromedial tegmental nucleus
(RMTg) and midbrain aminergic centers (Figure 2). Forebrain
inputs to the LHb mostly come from the hypothalamic nuclei
(e.g., lateral hypothalamic area (LHA), lateral preoptic area,
(LPO), and PVN) basal forebrain structures (e.g.,
entopeduncular nucleus, NAc, ventral pallidum, lateral and
medial septum, and bed nucleus of the stria terminalis
(BNST)). In addition, the LHb also receives direct cortical
inputs from the medial PFC (mPFC) and reciprocal feedback
inputs from the monoaminergic centers, including the VTA and
raphe nuclei (see recent reviews (Hu et al., 2020; Metzger et
al., 2021)). Interestingly, the LHb receives input from the
medial preoptic nucleus (Yetnikoff et al., 2015), one of the
most critical brain regions for maternal behavior (Stack et al.,
2002). | speculate that this input, together with that from the
NAc, mPFC, VTA, and raphe nuclei, may send “maternal
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Figure 2 Schematic of selected afferent and efferent connections
of the lateral habenula (LHb; shown in purple)
Afferent connections/structures are shown in blue,
connections are shown in red, and bidirectional connections are shown
in green. LHb: Lateral habenula; PAG: Periaqueductal gray; DRN:
Dorsal raphe nucleus; MRN: Median raphe; RMTg: Rostromedial

efferent

tegmental nucleus; VTA: Ventral tegmental area; LPO: Lateral preoptic
area; EPN: Entopeduncular nucleus; mPFC: Medial prefrontal cortex.
Copyright © 2015 Baker, Oh, Kidder and Mizumori (Baker et al., 2015).

signals” to the LHb, as they are all part of the maternal brain
neural network (Li, 2020; Numan, 2007). These afferents to
the LHb may modulate LHb-mediated stress functions and
contribute to the reduced stress response and anxiety often
observed in postpartum females (Agrati & Lonstein, 2016;
Lonstein, 2005, 2014; Ragan & Lonstein, 2014). This
hypothesis merits further exploration in the future.

Through the fasciculus retroflexus, the LHb mainly projects
to the RMTg, which, in turn, projects to the dopaminergic
neurons in the VTA and serotonergic neurons in the DRN to
suppress their activity (Gongalves et al., 2012; Jhou et al.,
2009; Kaufling & Aston-Jones, 2015; Metzger et al., 2021;
Sego et al., 2014). The LHb is now recognized as a key region
in the pathophysiology of depression and stress-related
anxiety, as is critically involved in encoding negative-valence
signals, expectations of punishment, and behavioral aversion
(Matsumoto & Hikosaka, 2007, 2009; Proulx et al., 2014). The
LHb is activated by various stressors and negative emotional
stimuli, such as inescapable foot or tail shock, physical
restraint, lithium chloride-induced iliness, maternal deprivation,
and social defeat (Langlois et al., 2021; Wirtshafter et al.,
1994). The LHb also shows higher metabolic activity in animal
models of depression (Caldecott-Hazard et al., 1988;
Shumake et al.,, 2003; Shumake & Gonzalez-Lima, 2003,
2013). Lesions of the LHb improve depressive-like responses
in depressed rats via increasing the serotonin (5-HT) levels in
the DRN (Yang et al., 2008). Similarly, inhibiting habenular
hyperactivity =~ ameliorates maternal separation-driven
depressive-like symptoms in mice (Tchenio et al., 2017), and
blocks the anxiety-like behaviors produced by inescapable tail
shock in male rats (Dolzani et al., 2016). Suppression of VTA-
projecting habenula neuronal activity can even reduce learned
helplessness behavior in rats (Li et al., 2011). Circuitry-level
analysis suggests that the LHb mediates the aversive effects

of stress by suppressing dopaminergic neurons in the VTA
and 5-HT neurons in the raphe via the LHb-RMTg pathway
(Brown et al., 2017; Brown & Shepard, 2016; Metzger et al.,
2017; Yang et al, 2018), as activation of this pathway
promotes avoidance behaviors and facilitates depressive-like
behaviors in animals. Studies also show that in volunteer
human patients experiencing a profound mood change
following serotonergic challenge, there is an enhanced
modulation of the projections from the habenula to the DRN
(Morris et al., 1999). Overall evidence is consistent with the
concept that the LHb is a critical node in the network of
subcortical nuclei that regulate stress-induced behavioral
changes, such as helplessness, anhedonia, and lack of
motivation (Nair et al., 2013; Yang et al., 2018). Therefore, in
the context of maternal behavior, maternal stress is very likely
to induce a hyperactive habenular state in mothers, which
could, in turn, cause deficits in maternal behavior and
presentation of postpartum stress disorders. Thus, the LHb
may transmit stress into maternal behavior due to its
participation in the maternal caregiving neural system (see
below).

LHb FORMS PART OF THE MATERNAL BRAIN NEURAL
NETWORK THAT MEDIATES MATERNAL BEHAVIOR

Various studies have reported on the core neural circuit that
mediates rat maternal behavior, which includes the medial
preoptic area (MPOA), lateral preoptic area (LPOA), ventral
bed nucleus of the stria terminalis (VBST), and their
downstream projections to the VTA and PAG (Kohl & Dulac,
2018; Kohl et al., 2018; Numan, 2015; Numan & Insel, 2003b).
This circuit is essential for the onset and early expression of
all aspects of maternal behavior (i.e., pup retrieval, licking, and
nursing) and maternal motivation in rodents (Pereira &
Ferreira, 2016). It is also the primary site where parturitional
hormones act to drive maternal behavior via hormonal
receptor-mediated mechanisms, as the MPOA contains
receptors for all hormones involved in the rapid onset of
maternal behavior, including receptors for estradiol, prolactin,
and oxytocin (Numan, 2020). Communication between MPOA
neurons and the mesolimbic dopaminergic (DA) system is
particularly important for maternal motivation, consistent with
the well-documented role of DA in reward processing and
incentive motivation (Berridge, 2007; Berridge & Robinson,
1998). Functional disturbance of the mesolimbic system,
either enhancing or suppressing DA neurotransmission,
disrupts maternal behavior, especially the active components
of maternal behavior, such as pup retrieval and licking, but not
passive ones, such as high-arched-back nursing (Fang et al.,
2018; Hansen, 1994; Li, 2015; Li & Fleming, 2003; Olazabal et
al., 2013; Pereira & Ferreira, 2006; Pereira et al., 2005; Stern
& Keer, 1999; Stolzenberg & Numan, 2011; Zhao & Li, 2009).
Another monoaminergic system that plays an important role
in maternal behavior is the raphe serotonergic system as cell
body-specific DRN serotonergic lesions significantly reduce
pup licking and generate aberrant patterns of nursing behavior
(Holschbach et al., 2018). The DRN projects to the VTA
(McDevitt et al.,, 2014; Watabe-Uchida et al., 2012) and 5-
HT,c receptors have been detected in VTA neurons (Bubar &
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Cunningham, 2007; Bubar et al., 2011). One well-documented
effect of VTA 5-HT,¢ activation is the inhibition of DA cell firing
and consequent DA release into the NAc (Howell &
Cunningham, 2015), which is primarily achieved by activating
local GABA neurons (Bubar et al., 2011; Di Giovanni et al.,
2000; Di Matteo et al., 2002; Howell & Cunningham, 2015).
This supports the idea that activating VTA 5-HT,c receptors
suppresses incentive motivation (Fletcher et al., 2004;
Valencia-Torres et al., 2017), consistent with the finding that
intra-VTA infusion of MK212 (a 5-HT,c receptor agonist)
reduces pup retrieval and pup preference (Gao et al., 2020).
Taken together, within the maternal brain network, the MPOA-
VTA and DRN-VTA pathways appear to be critically involved
in the mediation of maternal motivation.

How is the LHb configured into the maternal brain network?
Anatomically, the LHb has widespread connections with
various components of the network. The LHb receives multiple
projections from brain regions critically involved in the
mediation of maternal behavior, including the MPOA, LPOA,
VTA, raphe, and PAG (Numan & Insel, 2003b; Zahm & Root,
2017). As the LHb exerts powerful inhibitory actions on VTA
DA neurons and DRN 5-HT neurons (Metzger et al., 2021), it
is conceivable that it may transmit diverse stress signals to the
VTA and DRN to suppress maternal motivation. The LHb itself
also plays a critical role in the onset of maternal behavior in
rats (Corodimas et al., 1993; Corodimas et al., 1992;
Matthews-Felton et al., 1995). LHb neurons, but not medial
habenula (MHb) neurons, express estrogen receptors in cell
nuclei and axon terminals (Wagner et al., 1998). Thus,
estrogen may directly act on the LHb to stimulate maternal
behavior by modulating the input and output signals of the
LHb. Electrical or excitotoxic lesions of the LHb produce
deficits in all components of maternal behavior, including pup
retrieval, nest building, and nursing behavior, as demonstrated
in naturally parturient rat mothers as well as in
hysterectomized-ovariectomized pregnant females
(Corodimas et al., 1992, 1993; Matthews-Felton et al., 1995).
Cytotoxic lesions of the LHb also induce significant deficits in
pup retrieval and nest building in pup-sensitized virgin
females, indicating that the LHb is also involved in non-
hormonal-dependent onset of maternal behavior (Felton et al.,
1998). However, the nature of maternal behavior deficits
induced by LHb lesions is not well clarified. As habenula
lesions are known to cause anxiety-like hyperactivity (Lee &
Huang, 1988) and attention deficits (Lecourtier & Kelly, 2005),
it is possible that LHb-lesioned mother rats may become
anxious and inattentive, and thus provide inadequate maternal
care. My speculation is that adverse factors (e.g., stress,
abnormal hormonal changes) cause maternal behavior deficits
by altering LHb functions, resulting in increased anxiety and
decreased attention. This conceptualization of the role of the
LHb in maternal behavior is elaborated in the following
section.

PREDICTIONS BASED ON HYPOTHESIZED ROLE OF LHb
IN MEDIATION OF MATERNAL DISRUPTIVE EFFECTS

My proposed hypothesis is that distinct LHb neurocircuits,
such as the LHb-VTA and LHb-DRN pathways, play critical
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roles in the mediation of maternal stress effects. This
hypothesis leads to three testable predictions in animal
research.

First, maternal stress increases LHb neuronal activity. If the
LHb is involved in stress effects on maternal behavior, it
should exhibit a hyperactive state in stressed dams. This
hyperactive state could be detected using various techniques
(e.g., c-Fos immunohistochemistry and electrophysiological
recording). Concurrently, functional changes induced by
maternal stress should also be found in the two major
downstream targets of the LHb (VTA and raphe), given that
stress activates the LHb, which inhibits VTA DA neurons and
DRN 5-HT neurons to achieve its behavioral effects (Brown &
Shepard, 2016; Brown et al., 2017; Metzger et al., 2017; Yang
et al., 2018), and both regions are implicated in the regulation
of emotional and motivational aspects of maternal behavior
(Barofsky et al., 1983a, 1983b; De Almeida & Lucion, 1997;
Gao et al.,, 2018; Numan & Smith, 1984; Shahrokh et al.,
2010; Zhao & Li, 2012). By extrapolation, LHb hyperactivity
should also be found in animal models of postpartum mental
disorders (Li & Chou, 2016) that encompass a stress
component, such as the estradiol withdrawal model (Galea et
al., 2001), chronic corticosterone treatment model (Brummelte
& Galea, 2010; Brummelte et al., 2006), and repeated
maternal separation model (Boccia et al., 2007). Behaviorally,
| predict that maternal stress impairs behavior by increasing
maternal anxiety and decreasing maternal motivation.
Maternal stress could disrupt maternal behavior via multiple
mechanisms, for example, reducing the rewarding value of
pups, increasing maternal anxiety, causing a depression-like
state, or reducing attention sensitivity to pups. Although
several studies have used standard anxiety and depression
tests (e.g., elevated plus maze (EPM) or forced swim test
(FST)), they were not conducted within the maternal behavior
context (Haim et al.,, 2016; Leuner et al., 2014). Thus, the
direct implications of anxiety and depression on maternal
impairment are at best correlational. To verify this element of
the hypothesis, two maternally dependent tests could be
applied to assess maternal anxiety and motivation. The first is
pup retrieval on an EPM, which can assess maternal anxiety
and maternal motivation while dams are engaged in pup
retrieval (Yang et al., 2015). The second is the pup preference
test, which can examine the relative strength of a mother’s
maternal motivation or affective response towards pups
versus her motivation to seek novelty (a novel object) (Gao et
al., 2019, 2020; Li et al., 2018; Wu et al., 2018).

Second, activation of the LHb and its projections to the VTA
and DRN should mimic the effects of maternal stress on the
maternal brain and behavior. If LHb activation is sufficient to
drive aversion and induce a depressive-like state through
inhibition of VTA DA and DRN 5-HT neurons (Baker et al.,
2016), one would expect that activation of LHb neurons could
cause a depressive-like or anxiety-like state in dams and
mimic the disruptive effects of stress on maternal behavior
(Leuner et al, 2014). LHb neurons can be activated by
pharmacological tools, while the LHb-VTA and LHb-DRN
pathways can be specifically activated using an intersectional
approach with optogenetic or chemogenetic manipulation
(Fenno et al., 2020). For example, we could use dual-viral
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chemogenetics (Designer Receptors Exclusively Activated by
Designer Drugs (DREADDs)) to activate DRN- and/or VTA-
projecting LHb neurons in normal dams and compare their
maternal behavior and stress-like responses with those
receiving a control adeno-associated virus (AAV). In brief, a
retrograde AAV can be injected into the DRN or VTA, while a
Cre-recombinase-dependent  excitatory DREADD AAV
(hM3Dq) can be injected into the LHb to selectively activate
each neurocircuit under clozapine N-oxide (CNO). Maternal
behavior can be tested in the home cage and LHb activation-
induced stress-like effects can be assessed using a battery of
physiological and behavioral assessments (i.e., body
temperature, open field, and EPM), as activation of the LHb
can increase body temperature (emotional hyperthermia) and
cause stress-like behaviors in these tests (Fu et al., 2020;
Jakobs et al., 2019; Ootsuka & Mohammed, 2015). Finding
such evidence would provide strong support for the hypothesis
that the LHb is involved in the mediation of stress effects on
maternal behavior.

Third, inhibition of the LHb and its projections to the VTA
and DRN should reduce the effects of maternal stress on the
maternal brain and behavior. If, as hypothesized, maternal
stress causes a hyperactive state in the LHb, and such a
change mediates the maternal disruptive effects of maternal
stress, limiting hyperactivity of the LHb and its projections to
the VTA and DRN could reverse this effect. In this case,
inhibitory DREADD hM4Di, in combination with retrograde
AAV, could be used to selectively suppress the LHb-VTA
and/or LHb-DRN neurocircuit. This finding would complement
those above in support of the LHb as a critical brain region
involved in maternal stress effects.

CONCLUSIONS

Maternal stress is a known risk factor that negatively
influences maternal caregiving behaviors, and stressed
mothers often respond more negatively to their infants
compared with healthy mothers. Determining the
neurocircuitry basis of maternal stress on the expression of
maternal behavior should enhance our understanding of the
behavioral and neuronal changes caused by stress and how
these changes impact the quality of maternal care. This will, in
turn, improve our understanding of the psychopathology of
postpartum mental disorders and contribute to the
foundational knowledge needed to develop novel strategies
for their treatment.

This paper proposes a brain mechanism mediating stress
effects on maternal care, with a focus on LHb-related
neurocircuits. One limitation with this hypothesis is that the
exact role of the LHb in maternal behavior is not clear.
Evidence supporting its maternal involvement is also
inadequate and sometimes mixed. For example, although
some studies have reported maternal behavior-induced c-Fos
expression in the LHb (Kalinichev et al., 2000; Lonstein et al.,
1998), others have reported negative results (Sheehan et al.,
2000; Stack & Numan, 2000; Stack et al., 2002). It is possible
that those dams that exhibited an increase in c-Fos
expression in the LHb had relatively higher stress levels than
those that did not. As stated by (Numan & Insel, 2003a), the

exact way in which the LHDb fits into the overall neural circuitry
of maternal behavior and its functional role still require careful
examination. Once we decipher the exact role of the LHb in
maternal behavior, we can better understand how it regulates
“maternal’-related signals and stress signals.

However, it should be emphasized that the LHb-related
neurocircuits should not be viewed as the sole system that
mediates maternal stress effects. Other brain systems, such
as those involved in maternal motivation (e.g., striatum),
negative-emotion processing (e.g., amygdala, insula, and
orbitofrontal cortex), and emotion regulation (e.g., dorsolateral
PFC and anterior cingulate cortex) are certainly involved (Kim
et al, 2016). In addition to the DA and 5-HT systems,
norepinephrine and oxytocin also likely play roles in maternal
stress, given their roles in stress response and maternal
behavior (Kim & Strathearn, 2016; Lonstein, 2007; Neumann
et al., 2001; Thomas & Palmiter, 1997).

One promising field of future research is the functional
interactions among various LHb neurocircuits (LHb-VTA, LHb-
DRN, or LHb-median raphe nucleus (MRN)) in the mediation
of maternal stress effects. Additionally, the relative impacts of
the LHb-VTA and LHb-DRN pathways in maternal stress
mediation need to be determined. Both the VTA and DRN are
implicated in the regulation of emotional and motivational
aspects of maternal behavior (Barofsky et al., 1983a, Barofsky
et al., 1983b; De Almeida & Lucion, 1997; Gao et al., 2018;
Numan & Smith, 1984; Shahrokh et al., 2010; Zhao & Li,
2012). The vast majority (98%) of LHb-projecting neurons
target either the VTA or DRN (also MRN) only, with very few
heterogeneously distributed LHb neurons projecting to both
dopaminergic and serotonergic nuclei (Bernard & Veh, 2012).
This suggests that the LHb forms segregated connections with
one of the three major monoaminergic target nuclei (VTA,
DRN, and MRN) and each LHb output may mediate distinct
aspects of maternal stress effects. Future research should
also examine the neurochemical basis of the maternal stress
effects. Thus, the role of dopamine D, receptors and serotonin
5-HT,, and 5-HT,c receptors in these neurocircuits merits
further examination (Gao et al., 2019; Nie et al., 2018).
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