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ABSTRACT

Objective: To investigate the effects of ∆9-tetrahydrocannabinol, 
the principal psychoactive compound of Cannabis sativa, and 
cannabinol, a ∆9-tetrahydrocannabinol degradative product, on 
human non-small cell lung cancer cells.
Methods: ∆9-Tetrahydrocannabinol and cannabinol were tested for 
anticancer activity in human non-small cell lung cancer (A549) cells. 
The effects on cell proliferation, apoptosis, and phosphorylation 
profiles were examined. The effects of ∆9-tetrahydrocannabinol and 
cannabinol on tumor growth were also investigated using a xenograft 
nude mouse model. Apoptosis and targeted phosphorylation were 
verified by immunohistochemistry.
Results: ∆9-Tetrahydrocannabinol and cannabinol significantly 
inhibited cell proliferation and increased the number of apoptotic cells 
in a concentration-dependent manner. The ∆9-tetrahydrocannabinol- and 
cannabinol-treated cells had lower levels of phosphorylated protein 
kinase B [AKT (S473)], glycogen synthase kinase 3 alpha/beta, 
and endothelial nitric oxide synthase compared to the controls. The 
study of xenograft mice revealed that tumors treated with 15 mg/kg 
∆9-tetrahydrocannabinol or 40 mg/kg cannabinol were significantly 
smaller than those of the control mice. The tumor progression rates 
in mice treated with 15 mg/kg ∆9-tetrahydrocannabinol or 40 mg/kg 
cannabinol were significantly slower than in the control group.
Conclusions: These findings indicate that ∆9-tetrahydrocannabinol 
and cannabinol inhibit lung cancer cell growth by inhibiting AKT 
and its signaling pathways, which include glycogen synthase kinase 
3 alpha/beta and endothelial nitric oxide synthase.
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1. Introduction

  Lung cancer is common cancer worldwide and a major cause 
of mortality in men and women[1]. The most common type of 
lung cancer is non-small cell lung cancer (NSCLC). Surgery is 

Asian Pacific Journal of Tropical Biomedicine 2022; 12(8): 323-332

Asian Pacific Journal of Tropical Biomedicine

journal homepage: www.apjtb.org

This is an open access journal, and articles are distributed under the terms of the 
Creative Commons Attribution-Non Commercial-ShareAlike 4.0 License, which 
allows others to remix, tweak, and build upon the work non-commercially, as long 
as appropriate credit is given and the new creations are licensed under the identical 
terms.
For reprints contact: reprints@medknow.com

©2022 Asian Pacific Journal of Tropical Biomedicine Produced by Wolters Kluwer- 
Medknow. 

How to cite this article: Leelawat S, Leelawat K, Wannakup T, Saingam W, 
Khamthong N, Madaka F, et al. Anticancer activity of ∆9-tetrahydrocannabinol and 
cannabinol in vitro and in human lung cancer xenograft. Asian Pac J Trop Biomed 
2022; 12(8): 323-332.

Original Article

Article history: Received 1 March 2022; Revision 1 April 2022; Accepted 31 May 2022;      
Available online 23 July 2022

To whom correspondence may be addressed. E-mail: surang.l@rsu.ac.th

Significance

∆9-Tetrahydrocannabinol, the major psychoactive component 
of Cannabis sativa, has been demonstrated to inhibit cancer 
cell proliferation and invasion, as well as to induce apoptosis. 
Cannabinol, an oxidative byproduct of ∆9-tetrahydrocannabinol, 
has a weak psychotropic potency. In the current study, 
∆9-tetrahydrocannabinol and cannabinol inhibited non-small cell 
lung cancer cell proliferation and induced apoptosis by inhibiting 
AKT, glycogen synthase kinase 3 alpha/beta, and endothelial 
nitric oxide synthase, and inhibiting tumor growth in xenograft 
mice by inducing tumor cell apoptosis.
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the treatment of choice for the early stages of NSCLC. However, 
70% of patients present with advanced-stage disease at the time of 
diagnosis[2]. 
  Traditional chemotherapeutic drugs appear to be ineffective for the 
treatment of advanced-stage NSCLC. Targeting epidermal growth 
factor receptor (EGFR) and other signal transduction pathways have 
been identified as a potential therapeutic strategy for advanced-stage 
NSCLC[2]. Previous research has found that the phosphatidylinositol 
3 kinase (PI3K)-protein kinase B (AKT) pathway is activated in 
at least 14.9% of EGFR tyrosine kinase inhibitors (EGFR-TKI)-
resistant patients[3]. The presence of PI3K-related mutations in 
conjunction with EGFR-activating mutations indicates a poor 
prognosis and predicts a shorter progression-free survival period 
with EGFR-TKI treatment[3]. Thus, novel therapeutics for NSCLC 
that target the PI3K-AKT pathway are required.
  To date, the anticancer molecular mechanisms of cannabinoids 
have been demonstrated[4,5]. ∆9-Tetrahydrocannabinol (THC), the 
major psychoactive constituent of Cannabis sativa (marijuana), 
induces cancer cell apoptosis via the CB1 and CB2 receptors. The 
activation of CB1 and CB2 receptors inhibits AKT, which leads to 
the inhibition of mammalian target of rapamycin complex 1 and, 
eventually, cell apoptosis[6].
  Cannabinoids have previously been shown to induce autophagy 
in several cancer cell lines, including glioma, melanoma, and 
hepatic and pancreatic cancer[6]. In addition, our previous report 
demonstrated that THC inhibits cell proliferation, migration, and 
invasion, and induces apoptosis in cholangiocarcinoma cells by 
decreasing actin polymerization and inhibiting the MEK1/2 and 
AKT pathways[7]. Nonetheless, epidemiological studies provide 
sufficient evidence to warrant a public health warning that cannabis 
use, particularly of high potency types, can increase the risk of 
psychotic disorders[8]. Cannabinol (CBN), a byproduct of the non-
enzymatic oxidation of THC, has demonstrated anticonvulsant and 
anti-inflammatory properties. In comparison to THC, CBN has 
fewer psychoactive effects and a lower binding affinity for the CB1 
receptor[9]. While the preclinical evidence for potential anticancer 
of THC is encouraging, the elucidation of underlying molecular 
mechanisms of CBN in preclinical study still has to be fully 
identified. Thus, the purpose of this study is to evaluate the effects of 
THC and CBN in human lung cancer xenograft mouse models and 
to examine the mechanisms of THC and CBN actions in a human 
NSCLC cell line.

2. Materials and methods

2.1. Materials

  Polyclonal antibodies against AKT (phosphorylated at Ser473) 

(cat. no. 9271), glycogen synthase kinase 3 alpha/beta (GSK-3α/
β) (phosphorylated at Ser21/9) (cat. no. 9331), endothelial nitric 
oxide synthase (eNOS) (phosphorylated at Ser1177) (cat. no. 
9571), poly (ADP-ribose) polymerase [PARP (46D11)] (cat. no. 
9532), cleaved PARP (Asp214) (cat. no. 5625), caspase-3, cleaved 
caspase-3 (Asp175) (cat. no. 9661), and β-actin (cat. no. 4967), 
and anti-rabbit immunoglobulin G (IgG) horseradish peroxidase 
(HRP)-linked antibody (cat. no. 7074), LY294002, L-NAME, 
radioimmunoprecipitation assay buffer, and protease inhibitor 
cocktail were purchased from Cell Signaling Technology (Beverly, 
MA, USA). RPMI 1640 medium and fetal bovine serum (FBS) were 
purchased from Gibco (Grand Island, NY, USA). Culture plates and 
flasks were purchased from Falcon (Corning, NY, USA). Matrigel 
basement membrane matrix was purchased from Corning (Corning, 
NY, USA). The Bradford protein assay was purchased from Bio-Rad 
(Hercules, CA, USA). 

2.2. Cell cultures

  The human NSCLC cell line A549 (ATCC® CCL-185™; Manassas, 
VA, USA) was grown in RPMI 1640 medium supplemented with 
10% FBS at 37 曟 in a 5% CO2 humidified atmosphere. 

2.3. Analysis of THC and CBN

  THC and CBN were extracted from dried cannabis samples 
in-house at the College of Pharmacy, Rangsit University. The 
identities of the compounds were verified by comparing their 
1H- and 13C-NMR data to that in the literature and matching their 
mass spectral data to that in the NIST database. High-performance 
liquid chromatography (HPLC) was used to determine the purity 
quantitatively [Prominence UFLC, Shimazu, Japan; mobile phase: 
(ammonium formate: acetonitrile), gradient elution, flow rate 1.0 
mL/min, column: XBridge C18, detection at 228 nm].

2.4. Cell proliferation assay

  A549 cells were seeded in 96-well flat-bottom plates at a 
concentration of 1 × 104 cells/well in 100 μL of culture medium 
containing 10% FBS for 24 h at 37 曟 in an atmosphere of 5% CO2. 
After the incubation period, cells were treated with various amounts 
of THC or CBN (at final concentrations of 10-100 µM), LY294002 
(a selective inhibitor of PI3K, 10-20 µM), L-NAME (a NOS 
inhibitor, 1-10 µM), or vehicle. After incubation for 24 h or 48 h, 50 
µL of 3-(4,5-dimethyl thiazol-2-yl)-2-5-diphenyltetrazolium bromide 
(MTT; Sigma-Aldrich, Germany) at 0.5 mg/mL in phosphate 
buffered saline (PBS) was applied to each well. The reaction was 
measured at 590 nm using a Benchmark Plus microplate reader (Bio-
Rad).
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2.5. Detection of cell apoptosis

  Apoptotic cells were evaluated by flow cytometric analysis using 
an annexin V꞉FITC assay (Bio-Rad). A549 cells were seeded at 1 × 
106 cells per sample. The cells were then treated with vehicle, THC, 
or CBN at 10 µM and 20 µM for 18 h. After the incubation period, 
the cells were collected. The annexin V:FITC assay was performed 
following the protocol specified by the manufacturer. Briefly, the 
treated cells were harvested, washed in PBS, resuspended at 5 × 
105 cells/mL in 200 µL of binding buffer containing 5 µL annexin 
V꞉FITC, and incubated for 10 min in the dark at room temperature. 
Next, the cells were washed in binding buffer, resuspended in 200 
µL of binding buffer containing 10 µL propidium iodide solution, 
and analyzed by flow cytometry (BD FACSVerse Flow Cytometer, 
BD Biosciences, Franklin Lakes, NJ, USA).

2.6. Detection of phosphokinase signaling pathways 

  To analyze the phosphorylation profiles, A549 cells at 1 × 107 were 
starved in a serum-free medium overnight. These cells were then 
treated with vehicle or 20 µM of THC or CBN for 18 h. After the 
incubation period, the cells were analyzed using a Proteome Profiler 
Array Human Phospho-Kinase Array Kit (R&D Systems, Inc., 
Minneapolis, MN, USA) following the manufacturer’s instructions. 
Briefly, the cell lysate was diluted and incubated overnight with the 
Human Phospho-Kinase Array membrane. The array membrane 
was washed to remove unbound proteins and then incubated with 
a cocktail of biotinylated detection antibodies. After washing, 
streptavidin-HRP and chemiluminescent detection reagents were 
applied. A chemiluminescent signal produced at each capture spot 
corresponding to the amount of phosphorylated protein bound 
was captured using UVP ChemStudio (Analytik, Jena, Germany) 
and analyzed using ImageJ digital imaging processing software 
(ImageJ 1.48v, National Institutes of Health, Bethesda, MD, USA). 
The intensity of each signal was calculated relative to the reference 
signal of the array kit. The relative change in phosphorylated kinase 
proteins was examined between control and treatment samples.

2.7. Western blotting analyses 

  A549 cells were seeded at 5 × 105 cells/well in a six-well culture 
plate. The cells were then treated with vehicle, THC, or CBN at 10 
µM or 20 µM for 18 h. Treated cells were trypsinized, washed with 
PBS, and lysed in ice-cold radioimmunoprecipitation assay buffer 
containing a 1% protease inhibitor cocktail, followed by sonication 
for 10 s. The protein concentration of the cell lysate supernatant 
was determined using a Bradford assay. Western blot analyses were 
performed as previously described[7]. The membranes were incubated 
overnight at 4 曟 with primary antibodies against phosphorylated 
AKT, GSK-3α/β, eNOS, PARP (46D11), cleaved PARP, and β-actin 

at the dilution of 1:1 000. Following the manufacturer’s instructions, 
colorimetric detection of the target proteins on the membrane was 
performed using an Opti-4CN Detection Kit (Bio-Rad). 

2.8. Xenograft mice 

  Four-week-old female athymic nude mice (BALB/cAJcl-Nu/
Nu) were obtained from Nomura Siam International Co., Ltd. 
(Bangkok, Thailand) and were housed under specific pathogen-free 
conditions with a 12-hour light/dark cycle, (50±20)% humidity, and 
a temperature of (21±1) 曟. Following acclimatization, A549 cells at 
3 × 106 cells in 100 µL serum-free RPMI 1640 medium and 100 µL 
Matrigel basement membrane matrix were injected subcutaneously 
into the right flank to establish the xenograft tumor model. The 
tumors were allowed to develop until they reached an average 
volume of 150 mm3. Mice were then randomized into treatment 
groups of five animals per group, including an untreated control 
group (1% Tween 80) and three groups treated with cannabinoids 
(15 mg/kg THC, 20 mg/kg CBN, and 40 mg/kg CBN based on our 
pilot study). The mice were given daily subcutaneous injections 
of either 1% Tween 80 or cannabinoids for 20 d. The tumors were 
assessed twice weekly by measuring the length and width with 
standard calipers and calculating the tumor volume using the 
formula (L × W × W)/2, where L is the long diameter of the tumor 
and W is the short diameter of the tumor. The body weight of the 
mice was also measured twice a week. Mice were euthanized by 
carbon dioxide and cervical dislocation at the end of the treatment. 
Tumors were obtained and preserved in 10% buffered formalin for 
histopathological and immunohistochemical analyses.

2.9. Immunohistochemistry 

  The paraffin-embedded specimen sections were deparaffinized 
in xylene and rehydrated in ethanol, followed by water. The 
endogenous peroxidase in the tissue was then blocked using a 
hydrogen peroxide blocking reagent (Abcam, Cambridge, UK). 
After washing, antigen retrieval was performed by heating the 
sections in 10 mM citrate buffer solution (pH 6.0). After storage 
at room temperature, the sections were washed, and a protein 
block solution (Abcam, Cambridge, UK) was applied to reduce 
nonspecific background staining. The sections were then washed and 
incubated with primary antibodies in a humidified chamber. After 
overnight incubation, the antigen-antibody complex was detected 
using a Mouse and Rabbit Specific HRP/DAB (ABC) Detection 
IHC Kit (Abcam, Cambridge, UK) according to the manufacturer’s 
instructions. The sections were counterstained with a hematoxylin 
and eosin solution (Abcam, Cambridge, UK). For negative control, 
the primary antibody was substituted with SignalStain antibody 
diluent (Cell Signaling Technology). The stained sections were 
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examined under a Motic BA210 microscope (Schertz, TX, USA).

2.10. Statistical analysis 

  The studies were all done in triplicate and the data are presented 
as means with standard deviations. One-way analysis of variance 
(ANOVA) was used to compare data between three or more groups, 
followed by Dunnett’s post hoc tests. The rate of xenograft tumor 
progression (assessed by the number of mice with a tumor volume < 
300 mm3) was evaluated using survival curves and compared using 
the log-rank test. Statistical significance was defined as a P-value 
less than 0.05.

2.11. Ethical statement 

  All animal studies followed the protocol approved by the 
Institutional Care and Use Committee of Rangsit University 
(approval number 103/2561) under Ethical Principles and Guidelines 
for the Use of Animals, National Research Council of Thailand.

3. Results

3.1. Characterization of THC and CBN

  THC and CBN were isolated as yellow gum. The GC-MS spectrum 
of THC (Figure 1A) exhibited [M]+, [M-CH3]

+ and [M-C3H7]
+ ions at 

m/z values of 314, 299, and 271, respectively. The GC-MS spectrum 
of CBN (Figure 1B) exhibited [M]+ and [M-CH3]

+ ions at m/z values 
of 310 and 295, respectively. The identity of THC and CBN was 
confirmed by 1H- and 13C-NMR data. Figures 1C and 1D show the 
1H- and 13C-NMR of THC, and Figures 1E and 1F show the 1H- 
and 13C-NMR of CBN. The 1H- and 13C-NMR data of THC and 
CBN were almost identical to those reported in a previous study[10]. 
According to HPLC analyses, the THC purity was 99.31% (Figure 
1G) and the CBN purity was 99.76% (Figure 1H).

3.2. Effects of THC and CBN on cell proliferation

  A cell proliferation assay was performed using human lung cancer 
cells (A549) with CBN and THC applied at 10-100 μM or vehicle. 
THC and CBN decreased cell proliferation in a concentration-
dependent manner (Table 1). CBN showed anti-proliferative effects 

with IC50 values of 19.24 μM at 24 h and 14.96 μM at 48 h. THC 
showed similar anti-proliferative effects with IC50 values of 26.94 μM 
at 24 h and 21.90 μM at 48 h. 

3.3. Effects of THC and CBN on cell apoptosis

  Apoptotic cell death was determined by flow cytometric analysis 
using an annexin V꞉FITC assay. Treating A549 cells with 20 μM of 
CBN significantly increased the number of apoptotic cells (P=0.004 
vs. control cells). Treating A549 cells with 10 μM and 20 μM THC 
also significantly increased the number of apoptotic cells [P=0.002 
for 10 μM and P<0.001 for 20 μM, vs. control cells (Figures 2A and 
B)]. 
  To confirm apoptotic cell death after treatment with cannabinoids, 
detection of the cleaved PARP protein in treated A549 cells was 
performed using Western blotting analysis. Cleaved PARP protein 
was found in A549 cells treated with 20 μM CBN and 10 μM THC 
(Figure 2C).

3.4. Effects of THC and CBN on cancer cell signaling

  Analysis of the phosphorylation profiles of kinases is crucial for 
identifying the responses of cancer cells to environmental changes. 
The Human Phospho-Kinase Array was used to simultaneously 
detect the relative phosphorylation levels of 43 kinase 
phosphorylation sites and two related total proteins. The results 
showed that CBN- and THC-treated cells expressed less of some 
target proteins (Figure 3A). 
  Phosphorylated AKT (S473), GSK-3α/β, and eNOS were 
selected for Western blot analysis to verify the signals involved 
in cell proliferation and apoptosis. Western blot analysis showed 
that the phosphorylation of AKT (S473), GSK-3α/β, and eNOS 
was substantially decreased in CBN- and THC-treated cells at 
concentrations of 10 μM and 20 μM (Figure 3B). These results 
suggest that the AKT and eNOS pathways are inhibited in CBN- and 
THC-treated cells.
  In addition, specific inhibitors of AKT (LY294002) or eNOS 
(L-NAME) were applied and a proliferation assay was used to 
investigate whether the AKT or eNOS pathways are associated with 
cell viability. The results indicated that LY294002 significantly 
decreased the viability of A549 cells at 10 μM and 20 μM at 24 h 
(P=0.030 for 10 μM and P=0.002 for 20 μM) and 48 h compared 
to the control cells (P=0.036 for 10 μM and P=0.001 for 20 μM). 

Table 1. Effects of ∆9-tetrahydrocannabinol and cannabinol on A549 lung cancer cell proliferation (%). 	
Time (h) Cannabinol  (μM) ∆9-Tetrahydrocannabinol (μM)

10 20 40 100 10 20 40 100
24 88.93±9.63 35.96±6.09 8.12±1.22 1.56±1.24 78.26±10.98 75.72±3.51 22.36±7.63 9.55±5.10
P-value 0.143 <0.001 <0.001 <0.001 0.022 0.002 <0.001 <0.001
48 76.15±15.98 29.4±6.86 5.23±1.56 1.25±0.75 65.9±18.95 58.78±13.02 4.33±2.04 2.37±1.16
P-value 0.041 <0.001 <0.001 <0.001 0.017 0.002 <0.001 <0.001
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Figure 1. GC-MS spectra, 1H- and 13C-NMR spectra, and HPLC chromatograms for ∆9-tetrahydrocannabinol (THC) and cannabinol (CBN). (A) GC-MS 
spectrum for THC. (B) GC-MS spectrum for CBN. (C) 1H NMR spectrum (500 MHz, CDCl3) for THC. (D) 13C NMR spectrum (125 MHz, CDCl3) for THC. 
(E) 1H NMR spectrum (500 MHz, CDCl3) for CBN. (F) 13C NMR spectrum (125 MHz, CDCl3) for CBN. (G) HPLC chromatogram for THC. (H) HPLC 
chromatogram for CBN.
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L-NAME also significantly diminished the viability of A549 cells 
at concentrations of 1, 5, and 10 μM at 24 h (P=0.005 for 1 μM, 
P=0.007 for 5 μM, and P<0.001 for 10 μM) and 48 h compared to 
the control cells (P=0.010 for 1 μM, P=0.001 for 5 μM and P<0.001 
for 10 μM; Figure 4).

3.5. Effects of THC and CBN on tumor growth in xenograft 
mice

  We subsequently evaluated the effects of CBN and THC in vivo 
after the in vitro study showed antiproliferative and apoptotic 
activity. The daily treatment was applied to the circumference of 

Figure 2. THC and CBN induce apoptosis in A549 lung cancer cells. (A) Flow cytometry data shows the percentage of live, apoptotic, and necrotic A549 cells 
after 18 h incubation with the vehicle, or THC or CBN at 10 μM or 20 μM. (B) Flow cytometry analysis demonstrated that THC at 10 μM and 20 μM, and 
CBN at 20 μM, significantly increase apoptotic cells compared to the control (ANOVA, *P<0.05). In addition, 20 μM THC significantly increases the number 
of apoptotic A549 cells compared to 10 μM THC (ANOVA, ##P<0.001). (C) Cleaved PARP in A549 lung cancer cells following 10 μM and 20 μM THC or 
CBN treatment for 18 h was determined by Western blot analysis. PARP was used as a loading control.
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the tumor for 20 d (Figure 5A). During treatment, all mice showed 
normal behavior, and no significant changes were observed in the 
average body weights of each group (Figure 5B).
  On day 20 of the tumor growth curve (Figures 5C and D), 
the percent tumor changes in mice treated with 15 mg/kg THC 
(250.63%) or 40 mg/kg CBN (266.00%) were significantly lower 
than those of the control mice (716.48%; P=0.036 for 15 mg/kg 
THC and P=0.042 for 40 mg/kg CBN). However, the percentage 
of tumor changes in xenograft mice treated with 20 mg/kg CBN 
(344.72%) was lower than the control mice but did not reach 
statistical significance on day 20.
  All mice in the control group had tumor volumes greater than 300 
mm3 on day 20. The mice treated with 15 mg/kg THC and 40 mg/kg 
CBN showed significantly slower tumor progression (assessed by the 
number of mice with a tumor volume less than 300 mm3) than the 

control group (P=0.012 for 15 mg/kg THC and P=0.042 for 40 mg/
kg CBN; Figure 5E). However, no differences were observed in the 
rate of tumor progression between mice treated with 20 mg/kg CBN 
and the control mice (P=0.252).
 

Figure 4. LY294002 and L-NAME significantly suppress A549 cell 
proliferation at 24 and 48 h (ANOVA, *P<0.05, **P<0.001, compared to the 
control).
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Figure 5. Effects of THC and CBN on tumor growth in A549 xenograft mice. (A) Experimental timeline schematic for the animal experiment. (B) The average 
body weights of nude mice after tumor induction. (C) Tumors of xenograft mice after treatment with (1) control, (2) 20 mg/kg CBN, (3) 40 mg/kg CBN, 
and (4) 15 mg/kg THC for 20 d. (D) Tumor growth curves for control, 20 mg/kg CBN-, 40 mg/kg CBN- and 15 mg/kg THC-treated mice. The tumors from 
A549 xenograft mice treated with 15 mg/kg THC and 40 mg/kg CBN were significantly decreased compared with those of control mice on day 20 (ANOVA, 
*P=0.036 for 15 mg/kg THC and **P=0.042 for 40 mg/kg CBN). (E) Tumor progression curve indicating the percentage of mice with tumor volumes less than 
300 mm3. THC at 15 mg/kg and CBN at 40 mg/kg significantly inhibit tumor growth in A549 xenograft mice compared to the control mice (log-rank test, 
*P=0.012 for 15 mg/kg THC and **P=0.042 for 40 mg/kg CBN).
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 3.6. Pathological study of tumor specimens

  Hematoxylin and eosin staining of a tumor specimen from a 
xenograft mouse revealed a multilobulated mass composed of 
epithelial cell tumors arranged in an acinar pattern. Tumor cells had 
cuboidal shapes, round nuclei, and prominent nucleoli. Some tumor 
cells had vacuolate cytoplasm. The tumor cells showed a moderate 
degree of pleomorphism (Figure 6A).
  Immunohistochemical staining of cleaved caspase-3 and cleaved 
PARP was used to detect apoptosis in the tumor specimens. The tumor 
specimens from 40 mg/kg CBN-treated mice and 15 mg/kg THC-

treated mice showed high levels of cleaved caspase-3 and cleaved 
PARP, whereas the tumor specimens from control mice showed low 
levels of cleaved caspase-3 and cleaved PARP. 
  THC and CBN were found to reduce AKT phosphorylation in cell 
culture studies. Thus, immunohistochemistry was used to detect 
AKT phosphorylation in the tumor specimens. The results showed 
that tumor samples from the control mice had high levels of AKT 
phosphorylation, while tumor specimens from mice treated with 
40 mg/kg CBN or 15 mg/kg THC showed low levels of AKT 
phosphorylation (Figure 6B).

Figure 6. Pathological study of tumor specimens from A549 xenograft mice. (A) Hematoxylin and eosin staining of the xenograft tumor. The specimens were 
composed of epithelial cell tumors arranged in an acinar pattern. Magnification, × 400; scale bars, 10 μm. (B) Immunohistochemical staining of xenograft 
mouse specimens treated as indicated. Cleaved PARP and cleaved caspase-3 signaling were strongly detected in the specimens from xenograft mice treated 
with 15 mg/kg THC or 40 mg/kg CBN. Phosphorylated AKT was barely expressed in the specimens from xenograft mice treated with 15 mg/kg THC or 40 
mg/kg CBN compared to the specimens from the control mice. Magnification ×400; scale bars, 20 μm.
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4. Discussion

  Cannabinoids from Cannabis sativa can inhibit proliferation, 
metastasis, and angiogenesis in various cancer models[4-6]. The 
effects of THC, the major psychoactive component of Cannabis 
sativa, in the central nervous system are mediated by the CB1 
receptor. Despite the psychoactive effects of THC, many studies 
have demonstrated the anticancer potential of THC in various cancer 
cells[11]. CBN is a mildly psychoactive cannabinoid that is derived 
from THC and is mostly found in aged and stored Cannabis sativa. A 
previous study demonstrated that CBN has a higher affinity for the 
CB2 receptor[9]. Previous research has also shown that CB1 and CB2 
receptors are expressed in NSCLC cells[12]. This study investigated 
the effects of CBN in human lung cancer cells. Anticancer effects of 
CBN were observed in both in vitro and in vivo studies.
  According to our findings from the proliferation assay, THC 
inhibited lung cancer cell proliferation, which is consistent with 
previous research[12]. CBN also inhibited A549 cell proliferation in a 
concentration-dependent manner. In addition, flow cytometry using 
annexin V showed that THC and CBN induced apoptosis in A549 
cells, and THC induced more apoptosis than CBN at 10 μM and 20 
μM. Western blot analysis also demonstrated an increase in cleaved 
PARP in THC- and CBN-treated human lung cancer cells. Taken 
together, these results indicate that both THC and CBN induce 
apoptosis in human lung cancer cells.
  It was also found that treatment with THC or CBN decreased the 
phosphorylation of AKT both in vitro and in vivo. Treatment with 
these compounds also decreased the phosphorylation of GSK-3α/
β in A549 cells. GSK-3β is a serine/threonine-protein kinase that 
is involved in glucose metabolism. Many studies have shown that 
GSK-3β has different roles in the cellular processes of human cancer, 
including cell proliferation and death, and the regulation of gene 
transcription and protein expression. In its activated state, GSK-3β 
inhibits β-catenin, which inhibits cell proliferation[13].
  In contrast to most other kinases, phosphorylation of GSK-
3β is the inactive state and is mainly regulated by AKT, thereby 
promoting cell proliferation[14-16]. Previous research has shown that 
GSK3 inhibits mTOR activity, which reduces cell proliferation[17]. 
AKT phosphorylates GSK3, which is then inactivated by targeted 
proteasome degradation. As a result of GSK3 inactivation, mTOR 
is activated, which leads to increased cell proliferation[18]. We 
hypothesize that the apoptosis of A549 cells treated with THC 
or CBN is caused by decreased phosphorylation of AKT, which 
results in decreased phosphorylation of GSK-3α/β. Indeed, this has 
been confirmed by a previous study where it was found that THC 
decreased the level of phosphorylated GSK-3β[19].
  Nitric oxide (NO) plays a role in cancer initiation and progression. 
NOS creates NO from L-arginine, NADPH, and oxygen[20]. eNOS, 
a key isoform of NOS, is involved in the development of cancer[21]. 
PI3K/AKT acts as an upstream regulatory signal for eNOS[22]. 

Previous research has found that PI3K-AKT signaling leads to eNOS 
phosphorylation at S1177, which stimulates Ras family members 
and increases cancer cell growth[21]. In the current study, THC and 
CBN treatment of A549 cells resulted in lower phosphorylation of 
eNOS and AKT compared to controls. Furthermore, we found that 
L-NAME, an eNOS-specific inhibitor, could inhibit the proliferation 
of A549 cells.
  THC and CBN inhibited lung cancer cell growth by inhibiting AKT 
and its signaling pathways, which include GSK-3α/β and eNOS. 
THC and CBN also significantly inhibited tumor growth in an 
animal model. In addition, immunohistochemistry detected cleaved 
caspase-3 and cleaved PARP in tumor specimens. These data 
provide evidence that THC and CBN induce lung tumor apoptosis 
in xenograft mice. The phosphorylation of AKT was significantly 
decreased in tumor specimens from xenograft mice treated with 
THC or CBN. This finding is supported by a previous study that 
showed that THC reduces the growth of breast tumors in xenograft 
mice[23].
  The study limitation is that using only one cell line may be 
inaccurate. Further research employing a variety of cell lines or 
primary cancer cells is required.
  In summary, these findings show that THC and CBN can inhibit 
lung cancer cell growth by inhibiting AKT, GSK-3α/β, and eNOS. 
More research should be conducted on the efficacy of THC and CBN 
when combined with EGFR-TKIs in NSCLC patients with PI3K-
related mutations.
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