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ABSTRACT

Objective: To investigate the effect of Moringa oleifera leaf extract 
on angiogenesis and inflammatory process in a rat model of 
streptozotocin-induced diabetic nephropathy.
Methods: Four weeks after a single injection of 50 mg/kg 
streptozotocin, rats were treated with 100 or 200 mg/kg/day Moringa 
oleifera leaf extract, 1 mg/kg/day dapagliflozin, or a combination 
of Moringa oleifera leaf extract and dapagliflozin for further eight 
weeks. Renal function, kidney histology, and gene expression were 
evaluated at the end of the experiment.
Results: Renal function of diabetic rats was significantly impaired 
as evidenced by increased blood urea nitrogen, albuminuria, 
24-h proteinuria, and high creatinine clearance which indicated 
glomerular hyperfiltration. In addition, diabetic rats showed an 
increase in gene expressions of vascular endothelial growth factor-A 
(VEGF-A), angiopoietin-2 (Ang2), the Ang2/Ang1 ratio, tumor 
necrosis factor-α, interleukin-1β and monocyte chemoattractant 
protein-1. Immunohistochemical staining demonstrated a significant 
increase in the density of glycoprotein CD34. Moringa oleifera 
leaf extract markedly improved all renal dysfunction markers and 
modulated the upregulated expression of angiogenic factors and 
inflammatory genes. 
Conclusions: Moringa oleifera leaf extract could suppress 
abnormal angiogenesis and inflammatory processes possibly 
by downregulating gene expression of angiogenesis factors and 
proinflammatory cytokines. 

KEYWORDS: Moringa oleifera leaf extract; Diabetic nephropathy; 
Angiogenesis; Angiopoietin; VEGF-A; Inflammation

1. Introduction

  Globally, 783 million people are expected to suffer from diabetes 
by 2045[1]. Diabetic nephropathy (DN) is one of the major diabetic 
microvascular complications that affects approximately 30%-40% of 
types 1 and 2 diabetic patients[2]. Based on recent experimental and 
clinical studies, angiogenesis and inflammation seem to play major 
roles in both early development and progression of DN[3].
  Angiogenesis is the process of forming a new blood vessel from 
preexisting ones[4]. Abnormal angiogenesis is associated with an 
increased glomerular filtration surface area, glomerular hypertrophy, 
and hyperfiltration in the early stage of DN[5]. Abnormal angiogenesis 
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Significance

Our previous study reported that Moringa oleifera leaf extract 
could attenuate the early stage of diabetic nephropathy in 
streptozotocin-induced diabetic rats via decreasing glomerular 
basement membrane fibrosis. This study provides additional 
evidence for the ameliorate effect of Moringa oleifera leaf 
extract on diabetic nephropathy. Moringa oleifera leaf extract 
can alleviate diabetic nephropathy via decreasing abnormal 
angiogenesis and inflammation of glomeruli. 
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at this stage contributes to the progression of disease. Interestingly, 
several studies have revealed the beneficial effect of anti-angiogenic 
agents to ameliorate glomerular hypertrophy, glomerular hyperfiltration, 
and albuminuria in early stages of DN[6-8].
  Vascular growth factors play an important role in maintaining 
the integrity of the glomerular filtration barrier. The processes of 
neovascularization involve interactions between several angiogenic 
growth factors and cytokines, such as vascular endothelial 
growth factor-A (VEGF-A), angiopoietin-1 and -2 (Ang1, Ang2), 
interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α) and 
monocyte chemoattractant protein-1 (MCP-1)[7]. A new abnormal 
blood vessel formed in DN is characterized by a thin wall at the 
basement membrane, while endothelial cells are swollen. Therefore, 
the new blood vessels are structurally immature, which leads to an 
increase in capillary permeability and enhanced leakage of albumin 
into the urine[4]. In patients with diabetic kidney disease, such 
abnormal vessels may occupy 1%-5% of glomerular capillary area[4].
  VEGF-A, one of the growth factors for endothelial cells, is a crucial 
angiogenesis mediator which stimulates endothelial cell proliferation, 
migration, and tube formation[9]. Hyperglycemia stimulates both 
synthesis and secretion of VEGF-A. Increases in VEGF-A and 
its receptor have been reported in experimental models of DN[10]. 
A correlation between VEGF-A gene expression and glomerular 
neovascularization has been observed in DN patients[11]. Three 
types of angiopoietins, the other potential angiogenic mediators, 
have been identified: Ang1, Ang2, and Ang4. Ang1 and Ang4 are 
agonistic whereas Ang2 acts as a competitive antagonist for the 
Tie2-receptor (receptor tyrosine kinases). Ang1 is a physiological 
ligand that maintains the permeability of the mature vasculature[12] 

and promotes the formation of blood vessels. Ang2 has the opposing 
action to Ang1, inducing vasculature destabilization. In diabetic 
glomerulopathy, kidney Ang1 mRNA levels and protein levels do 
not change or diminish while those of Ang2 are elevated, resulting in 
an increase of Ang2/Ang1 ratio[6,13].
  Activation of the immune system and chronic inflammation are 
involved in the pathogenesis of diabetes and also its complication, 
DN. Several stimulants from the diabetic pathological condition 
such as high blood glucose, increased renin angiotensin activity and 
oxidative stress all can activate the inflammatory process in kidney 
tissue leading to infiltration of monocytes and lymphocytes, which 
continue to produce inflammatory cytokines[14]. Recent studies 
have shown that the levels of inflammatory cytokines such as MCP-
1, TNF-α, and IL-1β are increased in DN experimental models 
and also in DN patients[15-17]. In addition, inflammatory cytokines 
can enhance the upregulation of VEGF-A, which is involved in 
angiogenesis in DN and in several other chronic inflammatory 
diseases such as cardiovascular disease, rheumatoid arthritis and 
diabetic retinopathy[18]. 
  Moringa oleifera (M. oleifera), a medicinal plant belonging to 
the Moringaceae family, is a native of Asia[19]. Leaf extract of 
M. oleifera contains numerous bioactive components including 

flavonoids, phenolic acids, alkaloids, carotenoids, isothiocyanates, 
glucosinolates, tannins, saponins, oxalates, and phytates[20]. An 
oil extracted from M. oleifera seed has been reported to have 
nephroprotective effects on gentamicin-induced nephrotoxicity 
in rats, possibly via anti-inflammatory pathways[21]. Recent 
studies have revealed anti-angiogenic activity of M. oleifera leaf 
extract via inhibiting VEGF-A in streptozotocin (STZ)-induced 
diabetic retinopathy and breast cancer, in both in vitro and in vivo 
models[22,23]. However, the effect of aqueous extracts of M. oleifera 
leaves on angiogenesis and inflammatory processes in DN is still 
unclear and requires elucidation. Our preliminary experiment 
showed that M. oleifera leaf extract could reduce high blood 
glucose, suppress renal oxidative stress, and diminish fibrosis in 
the early stage of DN induced by STZ in rats. Therefore, for further 
understanding the mechanism of action of M. oleifera leaf extract 
in alleviation of DN, this study aimed to evaluate the effect of M. 
oleifera leaf extract on angiogenesis and inflammatory processes 
in rats with STZ-induced DN, with an emphasis on the molecular 
mechanism involved.

2. Materials and methods   

2.1. Reagents and drug

  STZ and 3,3’-diaminobenzidine (D5637) were purchased from 
Sigma-Aldrich (MO, USA). Blood urea nitrogen test kit and 
creatinine test kit were purchased from Erba® reagent (Mannheim, 
UK). Dapagliflozin was obtained from AstraZeneca Pharmaceuticals 
(Indiana, USA). Rabbit monoclonal IgG antibody CD34 
(Abcam81289) and biotinylated goat anti-rabbit IgG (Abcam64256) 
were purchased from Abcam (Cambridge, MA, UK). TRIzol® 
reagent was obtained from Invitrogen (OR, USA). iScript Reverse 
Transcription Supermix was obtained from BIO-RAD (CA, 
USA). SYBR-Green/Fluorescein qPCR kit was purchased from 
biotechrabbit CAPITAL™ (Berlin, Germany). 

2.2. M. oleifera leaf extraction 

  Fresh M. oleifera leaves were collected in May 2019 from Khon 
Kaen Province, Thailand, and were taxonomically identified by 
Assoc. Prof. Dr. Prathan Luecha. A representative specimen of 
this plant (PSKKU-PL-015) was deposited at the herbarium of 
the Department of Pharmacognosy and Toxicology, Faculty of 
Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 
Thailand. The leaves were air-dried for 2 d and powdered. This 
powder (300 g) was boiled twice in 5 L distilled water for 40 min 
and filtered through cotton and gauze. The filtered solution was 
evaporated using a rotary evaporator and a freeze-drying machine to 
obtain a powder (M. oleifera leaf extract). About 22.3 g of M. oleifera 
leaf extract was obtained from 300 g of leaves. 
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  Some of the phenolic components in the extraction of M. oleifera 
leaf were analyzed using an HPLC-DAD-based assay. M. oleifera 
leaf extract consisted of isoquercetin (2 672 mg/kg of dry extract), 
rutin (1 182 mg/kg of dry extract), tannic acid (1 127 mg/kg of dry 
extract), quercetin (1 034 mg/kg of dry extract), gallic acid (1 032 
mg/kg of dry extract), apigenin (307.66 mg/kg of dry extract), and 
catechin (166.37 mg/kg of dry extract).

2.3. Experimental animals and induction of DN 

  Male Sprague-Dawley rats (250-300 g) were provided from 
Nomura Siam International Co., Ltd. Bangkok, Thailand. All rats 
were housed under controlled temperature [(22 ± 2) 曟] with a 12 
h day/night cycle and had free access to food and water. After a 
week of acclimation, the rats fasted for 16 h, and after that, rats 
were injected intraperitoneally with a single dose of 50 mg/kg STZ 
dissolved in 0.1 M sodium citrate buffer at pH 4.5. Four weeks 
after STZ injection, fasting blood glucose (FBG) was measured 
using Accu-Chek Active (Roche Diagnostic, Germany). Rats with 
FBG equivalent to or greater than 200 mg/dL were included in the 
experiment. 

2.4. Experimental design

  The experimental groups were divided into 6 groups with 6 rats in 
each group as follows: Group 1: normal rats receiving distilled water 
(normal control rats, NC); Group 2: DN rats receiving distilled water 
(DN control); Group 3: DN rats receiving 100 mg/kg/day M. oleifera 
leaf extract (DN+100 mg/kg M. oleifera leaf extract)[24]; Group 4: 
DN rats receiving 200 mg/kg/day M. oleifera leaf extract (DN+200 
mg/kg M. oleifera leaf extract)[24]; Group 5: DN rats receiving 1 
mg/kg/day dapagliflozin (DN+Dapa); Group 6: DN rats receiving 
100 mg/kg/day M. oleifera leaf extract+1 mg/kg/day Dapa (DN+M. 
oleifera leaf extract+Dapa).
  M. oleifera leaf extract and dapagliflozin were dissolved in 
distilled water. All the treatments were given by gavage daily for 
eight weeks. At the end of treatment period, animals were placed 
in metabolic cages to collect 24-h urine samples for determination 
of urinary metabolites. Afterward, rats were euthanized with an 
intraperitoneal injection of a combination of tiletamine (25 mg/kg) 
and zolazepam (25 mg/kg) together with xylazine (5 mg/kg). Blood 
was collected from the abdominal aorta, centrifuged at 4 500 rpm 
for 20 min, and the serum was stored at −80 曟 for further analysis. 
Kidneys were quickly excised and weighted. The left kidney tissue 
was fixed in 10% neutral-buffered formalin for histopathological and 
immunohistochemical analysis. The right kidney was washed with 
ice-cold normal saline solution and stored at −80 曟 for molecular 
analysis. 

2.5. Kidney organ coefficient calculation

  Kidney organ coefficient, which is an indicator of kidney 

hypertrophy, was calculated as a ratio of the wet weight of the kidney 
to the body weight. Kidney organ coefficient = [kidney weight (g)/
body weight (g)] × 100.

2.6. Urine and blood sample analysis

  After centrifugation at 3 000 rpm for 10 min, the 24-h urine sample 
was taken to measure the levels of creatinine (Erba Mannheim, UK), 
urinary albumin (ab235642 reagent, Abcam, UK), and total urinary 
protein (Bio-Rad reagent, Protein assay dry, USA). Serum was taken 
to examine the amount of blood urea nitrogen (BUN) and creatinine 
using diagnostic kits (Erba Mannheim, UK). 
  Creatinine clearance (CCr) was calculated on the basis of urinary 
creatinine, urine volume and serum creatinine. CCr (mL/min) 
= [urine creatinine (mg/dL) × 24 h urine volume (mL)]/[serum 
creatinine (mg/dL) × 1 440].

2.7. Renal histopathological examination 

  The kidneys of rats were fixed in a 10% neutral phosphate-
buffered formalin solution. Fixed samples were processed through 
the conventional paraffin embedding technique. Transverse sections 
of 4 μm thickness were cut and stained with hematoxylin and 
eosin (H&E). Histological changes were examined under the light 
microscope and photographed using a Nikon microscope (Nikon, 
ECLIPSE Ni-U Melville, NY, USA).

2.8. Immunohistochemical analysis of glycoprotein CD34 

  CD34 is a surface marker of a variety of vascular endothelial beds 
and is used in investigation of neovascularization[25,26]. Kidney 
tissue sections of 5 μm thickness were incubated at 60 曟 for 30 
min for deparaffinization, then rehydrated through an ethanol 
concentration series (100%, 95%, 90%, 80%, 70%, and 50%) for 
1 min at each concentration. To retrieve antigens, kidney tissue 
sections were boiled in Tris-EDTA plus 0.05% tween 20, pH 9 for 
10 min, then quenched with 0.3% hydrogen peroxide solution for 10 
min and washed twice for 5 min in Tris-buffered saline (TBS) plus 
0.025% Triton X-100. After that, sections were blocked using 10% 
normal goat serum in TBS plus 0.025% Triton X-100 for 2 h. Rabbit 
monoclonal-IgG antibody against CD34 (Abcam81289, Cambridge, 
UK) was applied to slides and incubated overnight at 4 曟 (dilution 
1:2 500). Later, slides were washed twice with TBS plus 0.025% 
Triton X-100 and further incubated with biotinylated goat anti-rabbit 
IgG secondary antibody for 1 h (Abcam64256, Cambridge, MA, 
USA), and sites of the antigen-antibody reaction were visualized 
using the ABC kit (Vector Laboratories, Burlingame, CA, USA). 
Finally, immunostaining was visualized using 3,3’-diaminobenzidine 
(D5637, Sigma-Aldrich®, MO, USA). Photographs of thirty 
glomeruli from each kidney section were randomly captured using a 
light microscope at a magnification of 400× (Nikon ECLIPSE Ni-U 
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Melville, NY, USA). The presence and extent of positive signal 
(brown color) was analyzed using a quantitative image-analysis 
system (Image-Pro Plus).

2.9. Real-time polymerase chain reaction (RT-PCR) 
analysis

  Expression levels of VEGF-A, Ang1, Ang2, TNF-α , MCP-
1, and IL-1β  genes were evaluated using real-time RT-PCR. 
Total mRNA was extracted from frozen kidneys using TRIzol® 
reagent (Invitrogen, Carlsbad, CA) following the manufacturer’s 
introduction. Complementary DNA (cDNA) was synthesized from 
1 μg of total mRNA using the iScript reverse transcription Supermix 
(Bio-Rad, USA) at 25 曟 for 5 min, 42 曟 for 30 min, and 85 曟 
for 5 min in a C1000 Thermal Cycler (BioRAD, Hercules, CA, 
USA). Then, the real-time RT-PCR was performed in an Applied 
Biosystems™ QuantStudio 6 Flex using an SYBR-Green/Fluorescein 
qPCR kit (biotechrabbit CAPITAL™, Berlin, Germany) detection 
system. Thermal cycling conditions included pre-incubation at 95 曟 
for 3 min followed by 40 cycles of amplification at 95 曟 for 15 s 
and 60 曟 for 31 s, finally a melting curve at 95 曟 for 3 s, 72 曟 for 
5 min, and 97 曟 for 15 s. The specific primers are listed in Table 1. 
Relative mRNA expression of genes was calculated based on the 2−ΔΔCt 
method. ΔCt represents the differences in the cycle threshold number 
between the target gene and β-actin. ΔΔCt represents the relative 
change in the differences between the control and treatment groups.

2.10. Statistical analysis

  Statistical analysis was performed using SigmaPlot 12.00 (Systat 
Software Inc.). For multiple comparisons, one-way ANOVA was 
followed by Student-Newman-Keuls post-hoc tests. The results were 
presented as mean ± standard error of mean (SEM), and P<0.05 was 
considered to be statistically significant.

2.11. Ethical statement

  All procedures were approved by the Institutional Animal Care and 
Use Committee of Khon Kaen University (IACUC-KKU-NELAC 
4/63).

3. Results 

3.1. M. oleifera leaf extract lowered FBG and decreased renal 
hypertrophy in rats with STZ-induced DN

  At the end of the experiment, the DN control group showed a 
marked increase in FBG when compared with normal control rats 
(P<0.05) (Figure 1A). However, DN rats treated with 100 and 200 
mg/kg M. oleifera leaf extract had significantly lower FBG levels 
(P<0.05) (Figure 1A). As well, treatment with 1 mg/kg dapagliflozin 
or a combination of M. oleifera leaf extract and dapagliflozin 

Figure 1. Effects of Moringa oleifera leaf extract (MOE) in rats with streptozotocin (STZ)-induced diabetic nephropathy. Fasting blood glucose (A), body 
weight (B), and kidney organ coefficient (C). Data are shown as mean ± SEM (n=6). *P<0.05 vs. NC, #P<0.05 vs. DN, using one-way ANOVA with Student-
Newman-Keuls post-hoc tests. NC: normal controls; DN: diabetic nephropathy controls; MOE 100 or 200: Moringa oleifera leaf extract 100 or 200 mg/kg; 
Dapa: 1 mg/kg dapagliflozin.
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                           Table 1. Primer sequences.	
Primer Forward sequence Reverse sequence Product size (bp)
VEGF-A GCTGCAATGATGAAGCCCTG GCTGGCTTTGGTGAGGTTTG   90
Ang1 CCACGCTGAACGGTTACAC ACTGCTTGTTTGACGCTCTC 200
Ang2 GCACCGCTAACCAACCAAAG AATGCATGCTGTCCCTGTGA   97
TNF-α GTAGCCCACGTCGTAGCAAAC ACCACCAGTTGGTTGTCTTTGA 113
MCP-1 TGTCTCAGCCAGATGCAGTTAAT CCGACTCATTGGGATCATCTT   77
IL-1β AGGCTGACAGACCCCAAAAG CTCCACGGGCAAGACATAGG 178
β-actin GGAGATTACTGCCCTGGCTCCTA GACTCATCGTACTCCTGCTTGCTG 150
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produced a significant decrease in FBG (P<0.05). 
  The final body weight of DN control rats was significantly lower 
(P<0.01) than that of normal control rats (Figure 1B). However, the 
kidney coefficient of DN control rats was significantly increased, 
suggesting development of renal hypertrophy in DN rats (Figure 
1C). Body weight was not significantly changed in any treatment 
group relative to the DN control group. Interestingly, treatment with 
100 and 200 mg/kg M. oleifera leaf extract or a combination of M. 
oleifera leaf extract and dapagliflozin significantly decreased the 
kidney organ coefficient value in DN rats (P<0.05).

3.2. M. oleifera leaf extract improved renal functions in rats 
with STZ-induced DN

  DN control rats showed increased levels of BUN, CCr, albuminuria, 
and proteinuria (P<0.05), indicating renal dysfunction (Figure 
2). After eight weeks of treatment, the high dose of M. oleifera 
and a combination of M. oleifera and dapagliflozin significantly 
reduced CCr. Moreover, either dose of M. oleifera leaf extract or a 
combination of M. oleifera leaf extract and dapagliflozin significantly 
decreased albuminuria and proteinuria (P<0.05).
  However, only the high dose of M. oleifera leaf extract and the 
combination treatment significantly reduced the increased BUN 
(P<0.05). These data suggested that M. oleifera leaf extract could 
improve renal function in DN rats. 

3.3. M. oleifera leaf extract attenuated the histological 
changes in kidneys of rats with STZ-induced DN

  The histological extent of kidney injury was examined in sections 
stained with H&E. Diabetic rats developed the pathological 
characteristics of DN including noticeable enlargement of the 
glomerulus, desquamation of tubular epithelial cells, and vacuolar 
degeneration of tubular epithelium (Figure 3B). After treatment with 
M. oleifera leaf extract or dapagliflozin, or with the combination 
of both, all these lesions were reduced (Figures 3C-F). Moreover, 
the DN control group showed a significant increase in glomerular 
area (P<0.05), indicating that DN rats developed hypertrophy of 
the glomerular tuft (Figure 3G). Treatment with M. oleifera leaf 
extract or dapagliflozin or with the combination remarkably lessened 
glomerular area (P<0.05), which indicated a reduction of glomerular 
hypertrophy (Figure 3G).

3.4. M. oleifera leaf extract reduced the expression of CD34 
in glomerulus

  The expression of CD34 in endothelial cells was detected using 
immunohistochemical staining to evaluate the angiogenesis of 
glomerular capillaries. The results showed that the normal control 
rats had a low density of CD34 in glomerular capillaries (Figure 

4A), while DN control rats had a high density of CD34 which 
indicated some angiogenesis (Figure 4B). Treatment with 100 and 
200 mg/kg M. oleifera leaf extract decreased the expression of CD34 
(Figure 4C-D). DN rats treated with dapagliflozin or a combination 
of M. oleifera leaf extract and dapagliflozin also showed significantly 
reduced expression of CD34 (Figure 4E-F). Quantitative results 
are shown in Figure 4G. The result of this investigation indicated 
that M. oleifera leaf extract could inhibit angiogenesis of glomerular 
capillaries in DN rats.

3.5. M. oleifera leaf extract downregulated the mRNA 
expression levels of angiogenesis-associated genes in rats 
with STZ-induced DN

  The effect of M. oleifera leaf extract on the expression of mRNA of 
angiogenesis-associated genes including VEGF-A, Ang1, and Ang2 
was determined by real-time qPCR. The mRNA expression of Ang1 
was significantly reduced in DN control rats (P<0.05). In contrast, 
M. oleifera leaf extract at both doses caused a significant upregulation 
of Ang1 gene expression compared with DN control rats (P<0.05) 
(Figure 5A). 
  Moreover, mRNA expression levels of VEGF-A and Ang2 (acting 
as an Ang1-antagonist contributing a vascular-disrupting property) 
were markedly increased in DN control rats as compared to normal 
control, which was significantly downregulated by administration of 
M. oleifera leaf extract (P<0.05) (Figure 5B and C). In addition, the 
ratio of Ang2/Ang1 expression was increased in DN rats compared 
with normal rats (Figure 5D). However, treatment with 100 and 
200 mg/kg of M. oleifera leaf extract significantly decreased the 
Ang2/Ang1 ratio (P<0.05). These results indicated that M. oleifera 
leaf extract administration downregulated the expression of genes 
involved in abnormal angiogenesis in kidney tissue. Dapagliflozin 
and the combination treatment also reversed the DN-induced 
changes in these gene expressions.

3.6. M. oleifera leaf extract downregulated the mRNA 
expression levels of inflammatory mediator genes in rats with 
STZ-induced DN 

  As shown in Figure 6, compared with normal rats, the mRNA 
expression levels of TNF-α, MCP-1, and IL-1β were significantly 
increased in DN control rats (P<0.05). Treatment with 100 or 200 
mg/kg M. oleifera leaf extract showed significant suppression of 
TNF-α, MCP-1, and IL-1β expression (P<0.05). Dapagliflozin, 
or a combination of M. oleifera leaf extract and dapagliflozin, also 
decreased the mRNA expression of inflammatory mediators. These 
results demonstrated that M. oleifera leaf extract could ameliorate 
the inflammatory process in the kidney during the chronic diabetic 
condition.
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Figure 3. Effects of MOE on histological changes in kidneys of rats with STZ-induced diabetic nephropathy. H&E staining of the kidney sections from each 
group of rats (400× magnification). Normal control rats (NC) (A); Diabetic nephropathy control rats (DN) showing desquamation of tubular epithelial cells 
(arrowhead) and vacuolar degeneration of tubular epithelium (arrow) (B); DN treated with 100 mg/kg MOE (C); 200 mg/kg MOE (D); 1 mg/kg dapagliflozin 
(E) and MOE+dapagliflozin (F). Quantitative analysis of glomerular area of each group (G). Data are shown as mean ± SEM (n=6). *P<0.05 vs. NC, #P<0.05 
vs. DN, using one-way ANOVA with Student-Newman-Keuls post-hoc tests. 
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4. Discussion

  In this study, an STZ-induced diabetic nephropathy model 
was used to evaluate the nephroprotective effect of M. oleifera 
leaf extract. We found that M. oleifera leaf extract significantly 
reduced FBG and improved renal function parameters including 
BUN, CCr, albuminuria, and proteinuria. M. oleifera leaf extract 
treatment could reverse the enlargement of glomeruli. Moreover, 
an immunohistochemical assay showed that CD34 was obviously 
decreased in angiogenesis of glomerular capillaries. Interestingly, 
M. oleifera leaf extract suppressed the expression of key molecules 
related to abnormal angiogenesis: VEGF-A, Ang2 and also lowered 
the Ang2/Ang1 ratio. Our study also showed that M. oleifera leaf 
extract inhibited the inflammatory processes via downregulation of 
the expression of inflammatory mediators: TNF-α, MCP-1, and IL-
1β. 
  Abnormal angiogenesis is associated with an increased 
glomerular filtration surface leading to glomerular hypertrophy 
and hyperfiltration in the early stage of DN. Multiple steps are 
required for the formation of a new blood vessel including 1) the 
degradation of the vascular basement membrane matrix by protease, 
2) migration and proliferation of endothelial cells, 3) endothelial 
tube formation, 4) recruitment and attachment of mesenchymal cells 
to the tube, and 5) maturation of blood vessel[27]. Morphological 
changes of capillaries in abnormal angiogenesis, such as elongation 
and increased number, contribute to glomerular hypertrophy and 
are recognized in the early stage of DN[4]. The involvement of pro-
angiogenic factors including VEGF-A, Ang1, and Ang2 in the 
development of neovascularization in DN has been reported[7,28]. 
The upregulation of VEGF-A and its receptor in the kidney have 
been observed in the early stage of DN[10]. In the kidneys of DN 
patients, the degree of neovascularization is significantly increased 
and correlated with the expression of VEGF-A mRNA[11]. Excess 
angiogenesis would contribute to structural immaturity and 
high permeability leading to plasma-protein extravasation[4,29].  
Moreover, an increased glomerular filtration surface is associated 
with elevation of CCr which may lead to further severe glomerular 
dysfunction, such as a rapid progression of the decline of glomerular 
filtration and increased albuminuria. In our study, an increase of 
CD34 in the glomerular endothelial area and an upregulation of 
VEGF-A gene expression were found in the kidney tissue of DN 
rats, which is consistent with previous studies[7,8]. Interestingly, 
M. oleifera leaf extract could decrease the formation of CD34 in 
glomerular endothelial cells and the expression of VEGF-A gene in 
DN rats, which indicates the suppressive effect of M. oleifera leaf 
extract on the formation of angiogenesis in glomeruli of DN animals. 
Previously, an ethanolic extract of M. oleifera leaves and seeds has 
also been reported to reduce the expression of VEGF-A in xenograft 
breast-tumor mice[22]. 
  Ang1 and Ang2 that are other angiogenesis-associated factors 

bind to the same receptor, the TEK tyrosine-kinase (Tie-2) receptor, 
which is expressed in endothelial cells, but they exert opposing 
actions. An imbalance of Ang1 and Ang2 could contribute to the 
abnormal angiogenesis in DN[30].  Ang1 is a major physiological 
ligand and is important in maintaining the permeability of mature 
vasculature[31]. Ang2, the natural antagonist of Ang1, promotes 
angiogenesis and induces destabilization of blood-vessel walls, 
resulting in enhancement of vascular permeability[32]. Ang2 can be 
upregulated by VEGF and Ang2 can enhance VEGF-A-mediated 
angiogenesis[33,34]. In the early stage of DN, the expression level 
of Ang1 in the kidney is diminished or not changed while that of 
Ang2 is increased in rats with STZ-induced DN[13,35]. The findings 
of the present study are consistent with those of the previous studies. 
Thus, M. oleifera leaf extract has significant ameliorative effects 
on abnormal angiogenesis. Moreover, we further examined CD34 
(a marker protein in endothelial cells) to confirm the increased 
abnormal angiogenesis in DN rats using immunohistochemical 
staining and found an increase of CD34 in the glomerular endothelial 
area in DN rats, which was suppressed by treatment with M. oleifera 
leaf extract. This result further confirms that M. oleifera leaf extract 
alleviated abnormal angiogenesis.
  Activation of the immune system and chronic inflammation are 
involved in the pathogenesis of diabetes and DN. Therefore, we 
evaluated the effect of M. oleifera leaf extract on production of 
inflammatory cytokines in DN rats. Consistent with other reports[36], 
our results showed that mRNA expression levels of TNF-α, MCP-
1, and IL-1β were elevated in the kidneys of DN rats. All of these 
cytokines are well-known to recruit macrophages to the sites of 
inflammation, and to have an important role in the development 
and progression of DN[37]. It is proposed that the persistence of 
hyperglycemia, renin angiotensin system, oxidative stress, and 
NF-κB signaling may induce the expression of the inflammatory 
chemokine MCP-1 in kidney cells[38]. The elevation of MCP-
1 level may upregulate cytokine production such as IL-1, IL-6, 
and TNF-α via the recruitment of macrophages and monocytes to 
the site of inflammation[38]. TNF-α directly causes cytotoxicity 
to renal cells, triggering renal cell injury, apoptosis, and necrotic 
cell death. Previous studies revealed that the expression of TNF-α 
was increased both in urine and renal tissue in STZ-induced 
diabetic rats[39]. In DN patients, an elevation of serum TNF-α is 
implicated in the initiation and progression of microalbuminuria[40]. 
Additionally, high levels of IL-1β have been found in serum and 
urine of experimental models and DN patients, which has been 
related to increased albuminuria[41,42]. Interestingly, in the present 
study, we found that M. oleifera leaf extract could suppress the 
mRNA expression of MCP-1, TNF-α, and IL-1β in rats with STZ-
induced DN. These findings indicate that M. oleifera leaf extract may 
ameliorate the chronic inflammatory process which is involved in 
the pathogenesis of DN. 
  Dapagliflozin, a sodium-glucose co-transporter 2 inhibitor, has an 
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impact on improving renal hemodynamics and protecting against 
DN. Several preclinical studies have demonstrated that a sodium-
glucose co-transporter 2 inhibitor attenuates etiological factors 
responsible for the development of diabetic kidney disease including 
oxidative stress[43], inflammation, and fibrosis[44]. In a clinical trial, 
dapagliflozin treatment reduced albuminuria in diabetic patients[45]. 
In our study, treatment of DN rats with dapagliflozin also improved 
renal function. Additionally, the gene expressions of angiogenesis-
associated factors as well as inflammatory cytokines were suppressed 
by administration of dapagliflozin. However, the combination treatment 
(100 mg/kg M. oleifera leaf extract and 1 mg/kg dapagliflozin) did 
not enhance the DN-ameliorative activity of M. oleifera leaf extract or 
dapagliflozin alone. 
  The limitation of this study is that the angiogenesis in the early 
stages of DN in type 1 diabetes was established in an animal model 
using STZ-induced hyperglycemia in which morphological changes 
in the kidney of this animal model might not represent the changes 
in humans with type 2 diabetes. Moreover, the efficacy of this plant 
extract needs to be further verified in future investigations.
  In conclusion, M. oleifera leaf extract may ameliorate DN in rats 
with STZ-induced diabetes by decreasing FBG, improving renal 
function, and suppressing the mRNA expressions of angiogenesis-
associated factors and inflammatory cytokines (Figure 7). M. oleifera 
leaf extract may have therapeutic effects against the early stage of 
DN. 
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