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ABSTRACT

Objective: To investigate the effect and its underlying molecular 
mechanisms of essential oil from Saussurea costus in esophageal 
cancer cell line Eca109.
Methods: The chemical composition of essential oil from Saussurea 
costus was investigated by gas chromatography-mass spectrometry 
(GC-MS). The anti-proliferative, anti-migrative, and apoptotic 
effects of essential oil from Saussurea costus against Eca109 cells 
were analyzed. Moreover, the expression of proteins associated with 
cell cycle, metastasis, and apoptosis was determined.
Results: GC-MS analysis showed that essential oil from 
Saussurea costus was predominantly comprised of sesquiterpenes. 
Saussurea costus essential oil inhibited the viability of Eca109 
cells in a dose-and time-dependent manner with IC50 values of 
(24.29±1.49), (19.16±2.27) and (6.97±0.86) μg/mL at 12, 24, and 
48 h, respectively. The expression levels of target proteins in the 
cell cycle (phase G1/S), including cyclin D1, p21, and p53, were 
affected by Saussurea costus essential oil. The essential oil also 
downregulated the expression of metastasis-related proteins MMP-
9 and MMP-2. Moreover, it induced apoptosis of Eca109 cells 
through the mitochondrial pathway, as well as inhibition of STAT3 
phosphorylation.
Conclusions: The essential oil from Saussurea costus exhibited anti-
proliferative, anti-migrative, and apoptotic effects on Eca109 cells, 
and could be further explored as a potential anti-esophageal cancer 
agent.

KEYWORDS: Saussurea costus; Essential oil; Gas chromatography-
mass spectrometry; Apoptosis; Mitochondrial pathway; STAT3; 
Esophageal cancer; Anti-proliferation; Anti-migration; Eca109

1. Introduction

  Esophageal cancer is the eighth most common cancer in the 
world, with an estimated 572 000 newly diagnosed cases and 
over 509 000 deaths each year[1]. Surgical resection combined 
with chemoradiotherapy is a generally recommended strategy for 
the treatment of esophageal cancer[2]. The 5-year survival rate of 
patients with esophageal cancer is 15%-20% worldwide[3]. The 
exploration of the pathogenesis of esophageal cancer is important for 
improving its treatment and prognosis.
  Traditional Chinese medicine is a potential source of anti-
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Significance

It has been reported that essential oil from Saussurea costus has 
several pharmacological activities, such as immunomodulatory 
and anti-inflammatory activities. However, the anti-esophageal 
cancer effect of essential oil from Saussurea costus has not been 
clarified. Our study found that essential oil from Saussurea 
costus can induce the apoptosis of Eca109 cells. The underlying 
mechanism may be related to mitochondrial apoptosis and 
STAT3 signaling pathway.
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esophageal cancer therapies, which has been used by various 
researchers to search for novel anticancer drugs[4-6]. For example, 
vinca alkaloids and taxanes isolated from traditional Chinese 
medicines have been developed as clinical anticancer drugs[7,8]. 
  Saussurea costus (S. costus), a well-known species belonging to the 
family Asteraceae, is a medicinal and aromatic plant[9]. S. costus has 
been used to treat various ailments including stomach ulcers, asthma, 
and bronchitis[10,11]. As S. costus has a variety of pharmacological 
effects, it has attracted great attention from researchers. The 
main chemical components of S. costus are monoterpenes and 
sesquiterpenes. It has been reported that the essential oils with 
costunolide and dehydrocostone as the main components have 
the most significant inhibitory effect on the proliferation of cancer 
cells[12,13]. However, the effects of S. costus essential oil on Eca109 
cells have been rarely reported. Therefore, the purpose of the 
present study was to investigate the anti-esophageal cancer effects of 
essential oil from S. costus and its underlying molecular mechanisms.

2. Materials and methods

2.1. Preparation of essential oil from S. costus 

  S. costus (Falc.) Lipech (Family Compositae) roots were collected in 
Wufeng County, Hubei Province, China in July 2015 and identified 
by Prof. Dingrong Wan (School of Pharmacy, South Central 
University for Nationalities, Wuhan, China). A voucher specimen 
(no. SC0187) was deposited in School of Pharmacy, South Central 
University for Nationalities. The air-dried S. costus roots (4.5 kg) 
were mechanically ground and then extracted by hydrodistillation 
using the Clevenger-type device (material-to-water ratio, 2:11). After 
12 h of distillation, the essential oil from S. costus (18.5 mL) was 
collected, dried over anhydrous sodium sulfate, and stored at −80 曟 
for further analysis.

2.2. GC-MS analysis of essential oil from S. costus

  The volatile components in essential oil from S. costus were 
analyzed using an Agilent 7890A gas chromatograph (Agilent 
Technologies, Inc.) with an HP-5MS 5% phenylmethyl siloxane 
capillary column (30.00 m × 0.25 mm, 0.25 μm film thickness) 
coupled to an Agilent 5975C mass selective detector. Twenty μL 
of essential oil from S. costus was dissolved in 1.0 mL hexane, 
and then the solution was dried over anhydrous sodium sulfate. 
The supernatant was filtered and stocked at 4 曟 until use. 
Samples (0.1 μL) were injected in split mode (60:1 ratio). Helium 
(99.999%) was used as carrier gas with a flow rate of 2 mL/min. 
The oven temperature was initially held at 60 曟 for 3 min and then 
increased to 260 曟 at a rate of 4 曟/min. The injector and detector 
temperatures were set to 250 曟 and 280 曟, respectively. Quantitative 
data was obtained using percent peak area. The working parameters 

of EI-MS were: ionization voltage, 70 eV; ion source temperature, 
200 曟. The collected mass spectra (from chromatographic peaks) were 
compared with reference spectra from the NIST08 database to identify 
oil components. 

2.3. Cell culture 

  Eca109 cells were obtained from the American Type Culture 
Collection. Cells were cultured in Dulbecco’s Modified Eagle 
Medium (HyClone; Cytiva) with 10% fetal bovine serum 
(Tianhang), 100 U/mL penicillin, and 100 μg/mL streptomycin in 
a humidified incubator with 5% CO2 at 37 曟. The medium was 
changed every 2 d. Experiments were performed using log-phase 
cells. 

2.4. MTT assay

  MTT assays were used to detect the effect of essential oil from S. 
costus on the viability of Eca109 cells. Eca109 cells were inoculated 
in 96-well plates (1×105 cells/well). Stock solutions were obtained 
by dissolving essential oil from S. costus in dimethyl sulfoxide 
before use. Eca109 cells were treated with essential oil from S. 
costus at different concentrations (0, 5, 10, 15, 20, 25 and 30 μg/mL) 
for 12, 24, and 48 h. The formazan was solubilized using dimethyl 
sulfoxide, and then the optical density (OD) was read at 562 nm by a 
microplate reader (Bio-Rad Laboratories, Inc.).
  The inhibition rate was calculated according to the following 
formula: Inhibition rate (%) = [1 − (ODsample − ODblank)/(ODcontrol − 
ODblank)] × 100[14,15], where ODsample is OD value of Eca109 cells 
after adding essential oil from S. costus; ODblank is OD value without 
adding both essential oil from S. costus and Eca109 cells; ODcontrol is 
OD value of Eca109 cells without adding essential oil from S. costus. 
The IC50 value of essential oil from S. costus was calculated using 
GraphPad Prism software version 7.0 (GraphPad Software, Inc.).

2.5. Wound healing assay

  Eca109 cells (1×105 cells/well) were inoculated in 6-well plates 
with different concentrations of essential oil from S. costus. Then, a 
scratch-wound healing assay was performed. Linear scratch wounds 
were made in the cell monolayers with a 10-μL pipette tip, and the 
images of scratch wounds were captured using a phase-contrast 
microscope (magnification: ×20; Leica Microsystems GmbH) in 
the same area at 0, 6, and 12 h after incubation with serum-free 
Dulbecco’s Modified Eagle Medium. The wound surface area was 
calculated using ImageJ software (Version 5.0; National Institutes of 
Health).

2.6. Observation of morphological changes 

  Eca109 cells (1×105 cells/well) were cultured in 6-well plates and 
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incubated for 24 h at 37 曟 with essential oil from S. costus (0, 7.5, 
15, or 22.5 μg/mL) or cisplatin (10 μg/mL; Sinopharm Chemical 
Reagent Co., Ltd.). After incubation, the cellular morphological 
changes of Eca109 cells were observed and photographed at a 
magnification of ×20 under a phase-contrast microscope (Leica 
Microsystems GmbH). The Eca109 cells were subsequently 
immobilized with cell fixative (Acetic acid: methanol =1:3) at 
room temperature for 3-5 min and stained for 5 min with Hoechst 
33258 (10 μg/mL) at room temperature in the dark. Subsequently, 
the cellular morphological changes of the nuclei were observed 
and photographed at a magnification of ×40 under a phase-contrast 
microscope (Leica Microsystems GmbH).

2.7. Flow cytometry analysis

  The effect of the essential oil from S. costus on apoptosis of Eca109 
cells was determined using the annexin V-FITC kit (Beyotime 
Institute of Biotechnology). After incubation with essential oils 
from S. costus (7.5, 15, or 22.5 μg/mL) for 24 h, Eca109 cells 
were collected and resuspended in a binding buffer. Then, annexin 
V-FITC and propidium iodide (PI) were added and incubated in the 
dark at room temperature for 15 min before being analyzed by flow 
cytometry (BD Biosciences).

2.8. Annexin V-FITC apoptosis detection assay

  The cells were collected after apoptosis induction and then centrifuged 
at 1 000 ×g for 5 min followed by resuspension in 195 µL of annexin 
V-FITC binding solution. Subsequently, 5 µL of annexin V-FITC 
and 10 µL of PI staining solution were added, mixed gently, and 
incubated for 10-20 min at room temperature in darkness. Cells were 
then observed under a fluorescence microscope (magnification: ×40; 
OLYMPUS FV1000, FV10-ASW 4.1).

2.9. Western blotting assay

  Eca109 cells were incubated with different concentrations of the 
essential oil from S. costus (0, 7.5, 15, 22.5 μg/mL) for 24 h. Cells 
were then collected and lysed with a lysis buffer supplemented 
with protease inhibitors (Beyotime Institute of Biotechnology). The 
protein concentrations were determined with a BCA kit. Cell lysates 
were denatured in boiling water, separated (15 μg per lane) via 7.5%-
12.5% SDS-PAGE, and electrotransferred on PVDF membranes. 
After the transfer, 5% skim milk was used to block membranes for 
1 h at room temperature, and then the membranes were incubated 
with the following primary antibodies (Cell Signaling Technology, 
Inc.; 1:1 000) at 4 曟 for 12 h: Bax (cat. no. #5023), Bcl-2 (cat. no. 
#15071), cleaved caspase-3 (cat. no. #9661), cleaved caspase-9 
(cat. no. #9508), PARP (cat. no. #9542), MMP-2 (cat. no. #40994), 
MMP-9 (cat. no. #13667), STAT3 (cat. no. #12640), phosphorylated 
(p)-STAT3 (Tyr705) (cat. no. #9131), cyclin D1 (cat. no. #2978), 

p53 (cat. no. #2524), p21 Waf1/Cip1 (cat. no. 2947) and β-actin 
(cat. no. 3700; 1:2 000). The membranes were further incubated with 
HRP-conjugated goat anti-mouse IgG3 (cat. no. #75952; 1:4 000) and 
HRP-mouse anti-rabbit (cat. no. #3678; 1:2 000) secondary antibodies 
(Cell Signaling Technology, Inc.) at room temperature for 1 h. 
After incubation, the membranes were washed three times with 
TBS-Tween 20 (0.1%), and the protein expression was determined 
with an enhanced BCA Protein Assay Kit (Beyotime Institute of 
Biotechnology). Quantity One and Image Lab Version 4.0 (Bio-RAD 
Laboratories, Inc.) softwares were used for density determination.

2.10. Statistical analysis

  All experimental data were expressed as mean ± SD of at least three 
independent experiments. GraphPad Prism 6.0 software was used 
for statistical analysis. Statistical comparisons were performed using 
one-way analysis of variance and Dunnett’s post hoc test. P<0.05 was 
considered statistically significant.
 

3. Results

3.1. Chemical analysis of essential oil from S. costus 

  The essential oil of S. costus had a yield of 0.35% (w/w) based 
on its dry weight. Thirteen different compounds including seven 
sesquiterpenes were identified from the essential oil from S. costus 
by GC-MS analysis, representing 95.84% of the total oil. Their 
relative abundance and retention times are presented in Figure 1 and 
Supplementary Table 1. The essential oil from S. costus was mainly 
comprised of 1,8-cyclopentadecadiyne (41.60%), 3a,5,6,7,8,8a,9,9a-
octahydro-4,8a-dimethyl-6-(1-methylethenyl)-naphtho[2,3-d]-1,3-
dioxol-2-one (16.70%) and oxabicyclo[4.1.0]heptane (13.80%), 
followed by β-guaiene (5.06%), 3-ethyl-3-hydroxy-androstan-17-
one (5.02%), cis-4,7,10,13,16,19-docosahexaenoic acid (4.03%), 
2,4a,5,6,9,9a-hexahydro-3,5,5,9-tetramethyl-1H-benzocycloheptene 
(3.40%), oxacyclotetradeca-4-11-diyne (2.61%), 1,11-hexadecadiyne 
(0.91%), γ-ionone (0.85%), elemene (0.83%), sativene (0.52%) and 
isolongifolene (0.51%).
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Figure 1. Gas chromatography-mass spectrometry analysis of essential oil 
from Saussurea costus. 
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3.2. Effect of essential oils from S. costus on Eca109 cell 
viability

  To study the effect of essential oil from S. costus on the viability of 
Eca109 cells, Eca109 cells were incubated with different concentrations 
of essential oil from S. costus for 12, 24, and 48 h. As presented 
in Figure 2A, the essential oil from S. costus inhibited Eca109 cell 
viability in a dose- and time-dependent manner. The IC50 values of 
Eca109 cells at 12, 24, and 48 h were (24.29±1.49), (19.16±2.27), and 
(6.97±0.86) μg/mL, respectively. Western blotting analysis showed that 
the expression levels of typical anti-proliferation proteins p53 and p21 
Waf1/Cip1 were significantly increased (P<0.05), while the expression 
of cyclin D1 was significantly decreased (P<0.05) in Eca109 cells after 
incubation with essential oil from S. costus (15 μg/mL) for 24 h (Figure 
2B and C). These results suggested that essential oil from S. costus 
inhibited the proliferation of Eca109 cells by regulating key proteins in 
cell cycle. 

3.3. Effect of essential oil from S. costus on migration of 
Eca109 cells

  Wound healing assay was used to examine the effect of essential 
oil from S. costus on migration of Eca109 cells. In preliminary 
experiments, we observed that essential oil from S. costus (at high 
concentration levels over 10 μg/mL) strongly induced apoptosis, and 
inhibited cell migration. Therefore, 10 μg/mL of S. costus essential 
oil was a suitable choice to verify migration ability of Eca109 cells 
in further experiment. As shown in Figure 3A, the migration of 
Eca109 cells was significantly inhibited by treatment with essential 
oil from S. costus. In Western blotting assay, the expression of both 
MMP-2 and MMP-9 was markedly decreased in Eca109 cells treated 
with essential oil from S. costus (P<0.05) (Figure 3B). Therefore, 
essential oil from S. costus can inhibit the migration of Eca109 cells.
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Figure 2. Effect of Saussurea costus essential oil (SCEO) on Eca109 cell viability. (A) Time- and dose-dependent effects of SCEO on Eca109 cells. (B) Effects 
of SCEO on the expression of p53, p21, and cyclin D1 protein by Western blotting assay. (C) Quantification of proliferation-associated protein expression. Data 
are presented as mean ± SD of at least three independent experiments. *P<0.05, **P<0.01 vs. control. 
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Figure 3. SCEO inhibits the migration of Eca109 cells. (A) Wound healing assay was performed. After the cells were treated with SCEO (10 μg/mL) for 0, 6, 
and 12 h, photographs were captured under a microscope. (B) Western blotting analysis of MMP-9 and MMP-2 in Eca109 cells treated with SCEO. Data are 
presented as mean ± SD of at least three independent experiments. *P<0.05, **P<0.01 vs. control. 
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3.4. Effect of essential oil from S. costus on Eca109 cell 
apoptosis

  Morphological changes of Eca109 cells treated with essential oil 
from S. costus and cisplatin were observed. As presented in Figure 4, 

after treatment with essential oil from S. costus, Eca109 cells showed 
some typical apoptotic morphological characteristics including 
apoptotic corpuscles, cell shrinkage, and floating, while the cells 
in the control group showed no significant changes. After Hoechst 
33258 staining, Eca109 cells in the control group were uniformly 
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Figure 5. SCEO activates mitochondrial apoptotic pathways and inhibits STAT3 phosphorylation in Eca109 cells. (A) Western blotting analysis of apoptosis-
associated proteins in Eca109 cells treated with SCEO. (B-D) Relative levels of Bax, Bcl-2, Bcl-2/Bax ratio, cleaved caspase-3, cleaved caspase-9, PARP, and 
cleaved PARP. (E) Western blotting analysis of p-STAT3 and STAT3 in Eca109 cells treated with SCEO. (F) Relative levels of p-STAT3 (Tyr705) proteins. 
Data are presented as mean ± SD of three independent experiments. *P<0.05, **P<0.01 vs. control.

Figure 6. Schematic summary of the proposed underlying mechanisms of SCEO-induced Eca109 cell apoptosis. cyto c: cytochrome c.

SCEO treatment
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stained and apoptotic bodies were rarely seen. In contrast, S. costus 
essential oil-treated Eca109 cells exhibited apoptotic morphology 
with enhanced nuclear fluorescence intensity and an increased 
number of apoptotic corpuscles. The essential oil from S. costus 
induced apoptosis in Eca109 cells in a dose-dependent manner. In 
addition, the apoptotic rate was assessed by annexin-V/PI double 
staining and flow cytometry analysis. The S. costus essential oil-
treated Eca109 cells had a higher apoptotic rate than that of the 
untreated group with 17.8%, 22.9%, and 24.8% at 7.5, 15, and 22.5 
μg/mL, respectively. 

3.5. Essential oil from S. costus activates mitochondrial 
apoptosis and suppresses STAT3 signaling in Eca109 cells

  The expressions of proteins related to apoptosis were detected by 
Western blotting assay (Figure 5). The essential oil from S. costus 
significantly increased the expression of cleaved caspase-9, cleaved 
caspase-3, and cleaved PARP, and reduced the ratio of Bcl-2/Bax in 
a dose-dependent manner. The results suggested that the activation 
of the mitochondrial apoptosis pathway may be involved in the 
apoptosis of Eca109 cells induced by essential oil from S. costus.
  As presented in Figure 5, essential oil from S. costus dose-
dependently inhibited the phosphorylation of STAT3 at Tyr705 but 
did not inhibit the total expression of STAT3 protein. Figure 6 shows 
the molecular mechanism of S. costus essential oil-induced apoptosis 
of Eca109 cells. 
 

4. Discussion

  S. costus is a perennial Chinese folk medicinal plant. However, 
the pharmacological effects and the underlying molecular 
mechanisms of S. costus in human esophageal squamous cell 
carcinoma are still poorly understood. A large number of terpenoids 
contained in essential oils have been reported to possess anticancer 
properties[16,17]. In the present study, the chemical composition 
of essential oil from S. costus was analyzed by GC-MS and it was 
found that it consisted mainly of sesquiterpenes which might be 
responsible for its anticancer activity observed. The results of MTT 
assay showed that the inhibition of essential oil from S. costus on 
Eca109 was time- and dose-dependent. Moreover, Western blotting 
assay showed that essential oil from S. costus inhibited cell viability 
by impeding the cell cycle of Eca109. MMPs play an important 
role in the migration and invasion of tumor cells[18]. The essential 
oil from S. costus also demonstrated significant inhibitory effects on 
Eca109 cell migration by downregulating the expression of MMP-9 
and MMP-2.
  Cell death takes many forms, of which necrosis and apoptosis are 
the two most common types[19]. Necrosis represents passive cell 
death resulting from external stimulation, while apoptosis is an 

active process of programmed cell death regulated by genes[20]. In 
the present study, we found that the morphology of Eca109 cells was 
significantly altered after treatment with essential oil from S. costus, 
including concentrated chromatin, enhanced fluorescence, and 
bright blue spots. Annexin-V/PI double staining and flow cytometry 
analysis showed that essential oil from S. costus could induce the 
apoptosis of Eca109 cells.
  Caspase-3 occupies a central role in mediating apoptosis, serving 
as a key downstream executor of apoptosis. Bcl-2 and Bax are 
homodimeric proteins that counteract each other. Increased Bcl-
2 protein content results in increased heterodimer formation with 
Bax, thus inhibiting apoptosis[21]. During apoptosis, pro-apoptotic 
members of the Bcl-2 family are activated and transferred to 
mitochondria via dephosphorylation or caspase-mediated protein 
hydrolysis. Bax induces mitochondrial release of proteins, including 
whole cytochrome c. Only whole cytochrome c can induce caspase 
activation. Bax can directly bind to apoptotic protease activating 
factor-1, causing it to oligomerize and recruit caspase-9 enzymes 
through the corresponding caspase recruitment domains to form an 
apoptotic complex, which in turn activates caspase-3 and initiates 
the caspase cascade reaction to induce apoptosis. Pro-apoptotic Bax 
and anti-apoptotic Bcl-2 regulate intrinsic apoptotic pathways[22]. 
Caspase-9 and caspase-3 serve as target proteins during apoptosis, 
and their precursor forms are cleaved during activation[23]. Poly 
ADP-ribose polymerase (PARP) acts as a target protein of caspase-3 
and affects the repair of cancer cells.
  This study also investigated whether essential oil from S. costus 
could induce apoptosis in Eca109 cells through an internal apoptosis 
pathway. Western blotting results showed that the expressions of 
cleaved caspase-9, cleaved caspase-3, and cleaved PARP were 
increased in a dose-dependent manner after cells were treated 
with essential oil from S. costus, while the ratio of Bcl-2/Bax was 
decreased. These results suggested that essential oil from S. costus 
induced the apoptosis of Eca109 cells through the mitochondrial 
apoptosis pathway. 
  It was hypothesized that essential oil from S. costus might affect 
a key target protein to trigger a series of downstream signals. The 
transcription factor STAT3 can regulate apoptosis in tumor cells as 
well as cell proliferation[24]. As the previous experiments observed 
that essential oil from S. costus exhibited anti-proliferative and 
apoptotic effects on Eca109 cells, STAT3 protein expression was 
analyzed. The phosphorylation of STAT3 in esophageal cancer is 
primarily mediated through phosphorylation of Tyr705[25]. STAT3 
is a member of a family of transcription factors that regulate 
proliferation and apoptosis[26]. The level of STAT3 phosphorylation 
is closely associated with p53 which has DNA-binding activity and 
can be regulated by phosphorylation. When p-STAT3 expression is 
downregulated, STAT3-dependent gene transcriptional activity is 
inhibited. As the phosphorylation of STAT3 is regulated by multiple 
mechanisms, it can be mediated via different pathways and protein 
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kinases[27]. The results showed that essential oil from S. costus dose-
dependently inhibited STAT3 phosphorylation, and upregulated 
the expression of p53, leading to p53-mediated apoptosis and 
transcription of various downstream genes. Inhibition of cell 
proliferation is associated with cell cycle arrest[28]. Therefore, the 
effects of essential oil from S. costus on cell cycle-associated proteins 
were analyzed. Cyclin D1 is a regulator of cell cycle progression; 
in contrast, p53 and p21 Waf1/Cip1 play a key role in negative 
regulation of cell cycle[29-31]. The p21 Waf1/Cip1 protein can bind 
to cyclin/cyclin-dependent kinase complexes to induce cell cycle 
arrest[32,33]. We found that the essential oil from S. costus increased 
the expression level of p21 Waf1/Cip1. All these results suggested 
that the essential oil from S. costus has the potential to be a targeted 
chemotherapy agent for esophageal squamous cell carcinoma. 
However, the anti-esophageal cancer effects of essential oil from S. 
costus still need to be further verified in in vivo and clinical studies.
  In conclusion, GC-MS analysis showed that the main components 
of essential oil from S. costus were sesquiterpenes. Also, S. costus 
essential oil can inhibit the expression of cyclin D1 which is 
essential for the G1 to S phase transition, as well as the expression of 
MMP-9 and MMP-2, thereby inhibiting proliferation and migration 
of Eca109 cells. Moreover, it could induce apoptosis in Eca109 
cells through the mitochondrial apoptosis pathway and inhibition of 
STAT3 phosphorylation.
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