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Fucoxanthin suppresses OxLDL-induced inflammation via activation of Nrf2 and 
inhibition of NF-κB signaling
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ABSTRACT

Objective: To explore the impact of fucoxanthin on oxidized low-

density lipoprotein (OxLDL)-induced stress and inflammation in 

human endothelial cells and its underlying mechanisms.

Methods: HUVECs were treated with OxLDL and/or fucoxanthin 

for a range of time points and concentrations. We evaluated the 

effects of fucoxanthin on OxLDL-induced HUVECs using the 

MTT assay, reactive oxygen species accumulation assay, ELISA, 

RT-PCR, immunofluorescence, and Western blotting.

Results: Fucoxanthin enhanced the cell viability in a dose 

dependent manner after OxLDL exposure. Furthermore, 

fucoxanthin pretreatment significantly decreased OxLDL-induced 

reactive oxygen species production and prevented the activation 

of the nuclear factor kappa-B pathway, which led to substantial 

suppression of pro-inflammatory gene expressions. OxLDL-

induced upregulation of interleukin-6, intercellular adhesion 

molecule-1, vascular cell adhesion molecule-1, interleukin-1β, 

monocyte chemotactic protein-1, cyclooxygenase-1, and tumor 

necrosis factor-α was significantly reduced by fucoxanthin.  

Conclusions: Fucoxanthin can inhibit OxLDL-induced vascular 

inflammation and oxidative stress in HUVECs by targeting Nrf2 

signaling pathways.
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1. Introduction

  Across the globe, atherosclerosis is a major cause of morbidity 

and mortality[1]. The condition is often accompanied by other 

comorbidities like metabolic syndrome, hypertension, diabetes, and 

dyslipidemia[2,3]. Dysregulated lipid metabolism and a maladaptive 

immune response are the main causes of atherosclerosis. Low-

density lipoproteins (LDLs) accumulate under the endothelium 

after vascular damage[4,5]. During atherosclerosis, excess LDL is 

converted into oxidized LDL (OxLDL), which initially damages 

the endothelial barrier, interferes with endothelial healing, and 

then emerges into the subendothelial space. The initial stages of 
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Significance

Oxidized low-density lipoprotein plays a central role in 
atherosclerosis by acting on endothelial cells. The anti-oxidant 
and anti-inflammatory properties of fucoxanthin contribute to 
decreasing oxidized low density lipoprotein-induced oxidative 
stress and pro-inflammatory cytokine levels in human endothelial 
cells. These findings support the use of fucoxanthin in treatment 
of the chronic inflammation-associated atherosclerosis and 
provide a basis for future clinical investigations.
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atherosclerosis are accompanied by the recruitment of monocytes 

by endothelial cell-derived ligands, mainly vascular cell adhesion 

molecule (VCAM)-1 and intercellular adhesion molecule 

(ICAM)-1[6]. Toll-like receptor (TLR) co-signaling pathways 
are also activated in the endothelium by OxLDL, leading to pro-
inflammatory signaling cascades and inflammasomes[7]. Plaque 
stability is determined by the balance between pro- and anti-
inflammatory signals. 
  Signals for binding molecules include nuclear factor kappa-B 
(NF-κB) translocation and intracellularly generated ROS, which 
play a major role in vascular diseases. In endothelial and non-
endothelial cells, OxLDL increases the production of superoxide 
radicals (O-

2) and activates NF-κB[8,9]. Inflammation and oxidative 
stress-related molecules like superoxide dismutase, reactive 
oxygen species (ROS), and nuclear transcription factor-E2-related 
factor 2 (Nrf2) are regulated by NF-κB. Heme oxygenase-1 (HO-
1) is an enzyme regulated by Nrf2 that protects cells from ROS[10]. 
The activation of Nrf2 and HO-1 protein expression in HUVECs 
inhibits apoptosis, inflammation, and pro-inflammatory mediators 
like interleukin (IL)-6, tumor necrosis factor (TNF)-α, and 
cyclooxygenase (COX)-2[11]. Additionally, PI3K/AKT provides a 
cellular defense against oxidative stress and inflammation. Various 
signal transduction pathways, including PI3K/AKT, regulate Nrf2 
and signal to activate antioxidant enzymes[12,13]. In the context 
of endotoxin-induced endothelial damage, these proteins are 
cytoprotective, antioxidant, and anti-inflammatory. The expression 
of these proteins in various cell types can be triggered by a 
variety of natural compounds and crude herbal extracts. Some 
Nrf2-mediated genes have antioxidant and anti-inflammatory 
properties[14]. Therefore, the most effective way to combat 
OxLDL-induced ROS generation is to supplement antioxidants 
exogenously. 
  Diatoms and brown algae produce fucoxanthin (Fux), a carotenoid 
(Figure 1). This compound possesses multiple biological functions 
including antidiabetic, anti-obesity, antimicrobial, and anticancer 
properties[15-18]. In addition, Fux is a powerful antioxidant[19]. 
Fux has anti-inflammatory properties in lipopolysaccharide-
stimulated murine macrophages in vitro and improves fat oxidation 
and decreases lipid levels in vivo[20]. However, Fux’s effect on 
inflammation caused by OxLDL remains unexplored. Therefore, 
determining Fux’s ability to reduce OxLDL-induced inflammation 
in endothelial cells was the aim of this study.

 

Figure 1. Chemical structure of fucoxanthin (Fux).

2. Materials and methods

2.1. Reagents

  Human umbilical vein endothelial cells (HUVECs) were from the 
Chinese Academy of Sciences in Shanghai. OxLDL from Union-
Bio Technology, China. Methyl thiazolyl tetrazolium (MTT) 
and 2,7-dichlorodi-hydrofluorescein diacetate (DCFH2-DA) 
from Sigma (St. Louis, MO, USA). Fetal bovine serum (FBS), 
Dulbecco’s Modified Eagle Medium (DMEM) from Gibco BRL/
Invitrogen (Carlsbad, CA, USA). Antibodies against IL-6 ( #P620), 
IL-1β (#PBOIL1BI), TNF-α (#PA5-19810), COX-1 (#PA5-16318), 
ICAM-1 (#MA5407), HO-1 (#PA5-77833), NAD(P)H:quinone 
oxidoreductase 1 (NQO-1) (#PA5-82294), γ-GCLC (#PA5-44190),  
p-P65 (#MA5-15160), p-inhibitory kappa B alpha (p-IKBα) 
(#PA5-36653), and TLR4 (#48-2300) were from Thermo Fisher 
Scientific, Inc. (Waltham, MA, USA). Nrf2 (AB-M-018), β-actin 
(AB-M-003), secondary antibodies goat anti-rabbit (AB-M-010), 
and goat anti-mouse (AB-M-009) were from MOLEQULE-ON 
(New Lynn, Auckland, New Zealand).   

2.2. Cell culture and treatment 

  HUVECs were cultured at 37 曟 with 10% FBS in DMEM. 
After 24 h, HUVECs were treated with OxLDL (100 µg/mL) and/
or Fux at the indicated concentrations (5, 10, 25 and 50 µmol/
mL). The MTT assay (Sigma, MO USA) was used to measure the 
proliferation of the cells.

2.3. Viability assay

  MTT assay was used to assess the viability of the cells. These 
cells were then maintained in wells of a 12-well plate, at 4伊105 
cells/well, and exposed to various treatments. This was followed 
by further incubating the cells for 2 h of phosphate buffer saline 
(PBS) containing 400 μL of MTT (0.5 mg/mL). After removing 
the medium, the developed formazan product was liquefied 
in dimethylsulfoxide (400 μL). Finally, a microplate reader 
(Winooski, VT, USA) was used to determine the absorbance of 
each well at 570 nm.  

2.4. ROS accumulation measurements

  DCFH2-DA fluorescence dye was used to determine intracellular 
ROS accumulation[21]. Cells were seeded in a 6-well plate at 1伊
107 cells/mL, then pretreated with Fux (0-50 µmol/mL for 2 h) 
followed by OxLDL stimulation (100 µg/mL) for 24 h, at which 
point intracellular ROS accumulation was quantified. Afterward, 
DCFH2-DA was supplementary to the culture medium for 30 min 
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at 37 曟. Using Leica D6000 fluorescence microscope (Leica, 
Germany) the dichlorofluorescein fluorescence intensity inside 
cells was examined. By comparing the fluorescence intensity of 
treated cells and vehicle-treated cells, ROS levels were measured.
	  

2.5. Cytokine measurements  

  HUVECs were cultured in a 12-well plate with approximately 6.5 
伊105 cells/well in the culture medium. Cells received pretreatment 
with Fux (0-50 µmol/mL, 2 h) and then OxLDL treatment (100 µg/
mL, 72 h). IL-6, monocyte chemotactic protein (MCP)-1, IL-1β, 
TNF-α, and ICAM-1 were quantified using their respective ELISA 
kits[14].   

2.6. Real-time qPCR

  After the treated cells were cleaned with PBS, tRNA was isolated 
from cells using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). 
RNA was converted to cDNA using a PrimeScript RT reagent kit as per 
the recommended guidelines of the manufacturer (Takara Bio, Shiga, 
Japan). Real-time qPCR was performed using SYBR Green system 
(Applied Biosystems, Foster City, CA, USA) and a ViiA-7 Applied 
Biosystem (Carlsbad, CA, USA). The mRNA expressions of IL-6, 
MCP-1, and VCAM-1 were standardized to the expression of β-actin, 
the housekeeping gene. The primer sequences are shown in Table 1. 
The relative gene expression was calculated via the 2–牔牔Ct[22].

2.7. Production of cytoplasmic and nuclear extracts 

  The cytoplasmic material was extracted in BufferⅠ[25 
mM HEPES pH 7.9, 5 mM KCl, 0.5 mM MgCl2, and 1 mm 
dithiothreitol (DTT)] for a 5 min cycle. Then, it was mixed with 
an equivalent amount of BufferⅡ[25 mM HEPES pH 7.9, 5 
mM KCl, 0.5 mM MgCl2, 1 mM DTT, and 0.4% (v/v) NP-40] 
accompanied with protease and phosphatase inhibitors, and then 
kept with continuous stirring at 4 曟. The cell lysates were put in 
a centrifuge for 5 min at 4 曟 and 500伊g. The respective upper 
layers (supernatants) were then moved to fresh 1 mL Eppendorfs. 
The lower layer (cells pellet) were suspended with fresh Buffer 
Ⅱ solutions, then it was mixed with the cytoplasmic protein. In 
order to get rid of any residual nuclei, the pellets were further 
centrifuged at 10 000伊g and the upper aqueous phase were 
separated. Cytoplasmic Nrf2, p-IKBα, total IKBα activation were 
analyzed by using Western blotting.
  For the preparations of nuclear extracts, the cytoplasmic extraction 
pellets were re-suspended in Buffer Ⅲ [25 mM HEPES pH 7.9, 
400 mM NaCl, sucrose (10%), NP-40 (0.05%), and 1 mM DTT] 
with inhibitors of both phosphate and protease. Then, the tubes were 
vortexed for 1 h at 4 曟 before they were subjected to a centrifugation 

step of 10 000伊g for 10 min. The supernatants gathered after 
this, which contains nuclear proteins, nuclear Nrf2, p-P65 and p65 
activation were also analyzed by using Western blotting. 

2.8. Western blotting

  After treatment, cells were harvested and then washed once with 
cold PBS, after which cytoplasmic, nuclear, and total extracts 
were prepared as aforementioned in section 2.7. In each sample, 
to detect the protein level, a Bio-Rad protein assay was used, and 
bovine serum albumin was used as the reference standard. SDS-
PAGE (8%-15%) was used to resolve equal amounts of protein (50 
μg), and the proteins were transferred to nitrocellulose membranes 
overnight. Five-percent skimmed milk was used for blocking the 
membranes at 37 曟 for 30 min, after which the membranes were 
readily incubated with the indicated primary antibodies (IL-6, 
IL-1β, TNF-α, COX-1, ICAM-1, Nrf2, HO-1, NQO-1, γ-GCLC, 
p-P65, p-IKBα, and TLR4) for 24 h. After this, a horseradish 
peroxidase-conjugated goat anti-mouse or anti-rabbit secondary 
antibody was incubated with the nitrocellulose membranes for 1 h, 
and an enhanced chemiluminescence substrate was used to develop 
the membranes (Pierce Biotechnology, Rockford, IL, USA). An 
LI-COR chemiluminescence imaging system (3600-00-C-Digit 
Blot Scanner) was used to examine the samples. Image Studio 
Lite software (LI-COR Biosciences, Lincoln, NE, USA) was used 
to generate the graphs of the densitometric band intensities with 
normalization to the intensity of the untreated control band, which 
was set to 1[23].  

2.9. Immunofluorescence assay  

  In a four-well glass Tek chamber containing DMEM medium with 
10% FBS and Fux for 2 h, OxLDL (100 µg/mL) was added in cells 
for 24 h. After fixation with 2% paraformaldehyde for 15 min and 
permeabilization with 0.1% Triton X-100 for 10 min, cells were 
washed and blocked with 10% FBS in PBS, then incubated with 
1.5% FBS for 2 h with an anti-Nrf2 primary antibody. After that, 
we incubated the cells for 1 h with FITC-conjugated secondary 
antibodies. The cells were stained with 1 µg/mL DAPI for 5 min. 
A fluorescence microscope at 200伊 magnification was used to view 
the stained cells after they were washed with PBS[24].

Table 1. Primer sequences.
Gene Sequence (5’-3’)
IL-6 Forward: GGTACATCCTCGACGGCATCT

Reverse: GTGCCTCTTTGCTGCTTTCAC
MCP-1 Forward: TCACCACCATGGAGAAGGC

Reverse: AGGTGGAAGAATGGGAGTTG
VCAM-1 Forward: AGACAGAGAACAGGGAATTAAATGTGT

Reverse: AGACAGAGAACAGGGAATTAAATGTGT
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2.10. Statistical analysis

  Statistical analyses were performed using GraphPad Prism 
software version 6.0 (GraphPad Software Inc., San Diego, CA, 

USA). This study analyzed the data using an analysis of variance 
(one-way analysis of variance) and Tukey’s post-hoc test. The 
results were considered significant at P<0.05. 

Figure 2. Effect of fucoxanthin (Fux) on reactive oxygen species (ROS) production and cell viability. (A) Human umbilical vein endothelial cells (HUVECs) 
were treated for 24 h with Fux at 0, 5, 10, 25, and 50 µmol/mL and then analyzed for viability using the MTT assay. (B) HUVECs were exposed to Fux and/
or oxidized low-density lipoprotein (OxLDL) for 24 h and then analyzed for viability using the MTT assay. (C) The effect of Fux on OxLDL-induced ROS 
generation. *P<0.05 denotes significant differences in comparison to the control. #P<0.05 denotes significant differences as compared to OxLDL alone treatment 
group.
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Figure 3. Effect of Fux on interleukin (IL)-6, monocyte chemotactic protein (MCP)-1, IL-1β, tumor necrosis factor (TNF)-α, intercellular adhesion molecule-1 
(ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in HUVECs. (A-E) IL-6, MCP-1, IL-1β, TNF-α, and ICAM-1 were determined using a 
commercial ELISA kit; (F-H) Fux reduces the levels of IL-6, MCP-1, and VCAM-1 in HUVECs. IL-6, MCP-1, and VCAM-1 mRNA expressions were 
analyzed by RT-PCR. *P<0.05 denotes significant differences in comparison to the control. #P<0.05 denotes significant differences as compared to OxLDL 
alone treatment group.
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Figure 4. (A) Nrf2 nuclear translocation; (B) Effect of Fux on OxLDL-induced expression of IL-6, COX-1, IL-1β, TNF-α, and ICAM-1. Western blotting was 
performed. *P<0.05 denotes significant differences in comparison to the control. #P<0.05 denotes significant differences as compared to OxLDL alone treatment 
group.

3. Results

3.1. Fux inhibits OxLDL-induced cytotoxicity in HUVECs

  The MTT was used to test cell cytotoxicity. Fux had no cytotoxic 
effects on HUVECs up to 50 µmol/mL (Figure 2A); therefore, this 
concentration was used in the following experiments. While OxLDL 
(100 µg/mL) significantly reduced cell viability by 39.6% (P<0.05), 
Fux dose-dependently protected the cells from OxLDL-induced cell 
death (Figure 2B).  

3.2. Fux suppresses intracellular ROS dose-dependently 

  DCFH2-DA fluorescence was used to measure intracellular ROS. 
Fux pretreatment significantly attenuated OxLDL-induced ROS 
accumulation in a dose-dependent manner (Figure 2C).

3.3. Fux suppresses OxLDL-induced pro-inflammatory 
cytokine

  Figure 3A-E shows that OxLDL stimulation significantly 
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increased the production of TNF-α, IL-1β, MCP-1, IL-6, and 
ICAM-1. In contrast, Fux pretreatment significantly suppressed the 
release of these pro-inflammatory cytokines.  

3.4. Fux suppresses IL-6, MCP-1, and VCAM-1 gene 
expression in OxLDL-treated HUVECs

  According to the qRT-PCR results, cells pretreated with Fux had 
significantly lower levels of these mRNA transcripts than cells 
treated with OxLDL alone (Figure 3F-H) (P<0.05). Fux suppressed 
the cytokine production associated with OxLDL-induced 
inflammation.  

3.5. Fux enhances Nrf2 nuclear translocation 

  We used an immunofluorescence assay to examine the nuclear 
translocation of Nrf2. In cells treated with OxLDL, nuclear Nrf2 
accumulation decreased (Figure 4A). Fux treatment increased Nrf2 
nuclear aggregation, as evidenced by the high Nrf2 staining in Fux-
treated cells, according to immunofluorescence images.

3.6. Fux suppresses IL-6, IL-1β, TNF-α, COX-1, and 
ICAM-1 protein expression in OxLDL-treated HUVECs 

  Treatment with 100 µg/mL of OxLDL for 24 h led to the 

overexpression of IL-6, IL-1β, TNF-α, COX-1, and ICAM-1 protein 
while Fux treatment suppressed overexpression significantly (P<0.05) 
(Figure 4B). These results indicate that Fux could reduce OxLDL-
induced inflammation in HUVECs.

3.7. Effect of Fux on Nrf2 activation in HUVECs 

  OxLDL reduced nuclear Nrf2 levels while co-treating with 
Fux reversed it dose-dependently (Figure 5A). Furthermore, 
nuclear Nrf2 localization in HUVECs was also confirmed by 
immunofluorescence. These data suggested that Fux enriched Nrf2 
expression in nuclei.

3.8. Effect of Fux on HO-1, γ-GCLC, and NQO-1 
activation 

  According to Western blotting results, OxLDL reduced HO-
1, NQO-1, and γ-GCLC protein expression; while Fux treatment 
upregulated the expressions dose-dependently (Figure 5B).

3.9. Effect of Fux on OxLDL-associated NF-κB activation 

  OxLDL stimulation led to an increase in p-P65, p-IKBα, and 
TLR4 levels (Figure 6). Fux pretreatment significantly attenuated 
OxLDL-induced increases in p-P65, p-IKBα, and TLR4 levels.

Figure 5. Effect of Fux on Nrf2 (nucleus, cytosolic, and total) (A), HO-1, NQO-1, and γ-GCLC protein expressions (B). *P<0.05 denotes significant differences 
in comparison to the control. #P<0.05 denotes significant differences as compared to OxLDL alone treatment group.
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4. Discussion 
  
  Atherosclerosis remains one of the leading causes of death in the 
world, despite huge advances in science[25-28]. This inflammatory 
condition causes LDL to accumulate in arteries. There is evidence 
that inflammation plays a significant role in atherosclerosis 
development. Recent studies have focused on the role of modified 
lipoproteins, particularly OxLDL. OxLDL may be a key antigen 
in atherosclerosis, according to several lines of evidence. Several 
studies have found OxLDL and antibodies against its epitopes in 
both human and rabbit plasma, as well as in atherosclerosis lesions. 
However, Holvoet et al. reported that OxLDL levels are associated 
with coronary artery disease in both heart transplant recipients 
and patients with established coronary artery disease[29,30]. The 
molecular mechanism underlying Fux’s effect on OxLDL-induced 
damage to HUVECs was investigated in this study, which revealed 
how pivotal Nrf2 was in this process. Through the Nrf2/TLR4/
NF-κB pathways, we showed that Fux regulates HUVEC viability, 
ROS, and inflammation, clarifying a new role for Fux in protecting 
against atherosclerosis. OxLDL generates ROS, which plays a 
major role in the progression of atherosclerosis. Oxidative stress, 
inflammation, and apoptosis are central to vascular endothelial 
dysfunction. We used OxLDL to simulate early inflammation in 
HUVECs. Fux significantly inhibited the inflammatory response in 
OxLDL-stimulated HUVECs.
  In various cell lines, including HUVECs, Fux is antioxidative 
and cytoprotective[31]. HUVECS stimulated by OxLDL are 
widely used in anti-inflammatory studies[32,33]. In the current 
study, HUVECS were stimulated with OxLDL to induce an 
inflammatory reaction. OxLDL stimulation up-regulated TNF-α, 
IL-1β, and IL-6 cytokine expression. At both Fux concentrations 
(25 and 50 µmol/mL), the secretion of TNF-α, IL-1β, and IL-6 
was significantly downregulated. These findings suggest that Fux 
protects the endothelium by acting as a potent anti-inflammatory 
agent. VCAM-1 and ICAM-1, early markers of atherosclerosis, 
are increased by NF-κB activation[34]. The promoters of ICAM-

1 and VCAM-1 contain from one to three NF-κB binding sites, 
and NF-κB acts as a “transducer” to activate these genes. OxLDL 
increased ICAM-1 and VCAM-1 in HUVECs as expected, and Fux 
pretreatment significantly blocked this effect.  
  Regarding the molecular basis of Fux’s protective effects, we 
hypothesized that Fux can induce cell-adaptive responses via 
Nrf2. The expression of Nrf2-regulated cytoprotective proteins 
in endothelial cells may contribute to Fux’s anti-inflammatory 
and atheroprotective effects. Crosstalk exists between Nrf2 and 
NF-κB, and Nrf2 specifically inhibits the NF-κB transcription 
machinery. In addition, results show that Nrf2 nuclear translocation 
is induced by Fux and Fux inhibits NF-κB signaling in HUVECs. 
In addition, we found that Fux also modulated Nrf2 expression. 
Due to Nrf2 activation, HO-1, NQO-1, and γ-GCLC expression 
levels were upregulated following Fux pretreatment. Flavonoids 
induce HO-1 expression in endothelial cells through activating 
the p38/Akt pathway, which can inhibit endothelial adhesion and 
dysfunction[35]. The production of anti-inflammatory cytokines 
is augmented by HO-1, which attenuates the release of pro-
inflammatory cytokines. Fux may work by directly enhancing 
endothelial HO-1 expression and quenching oxidative stress inside 
cells.
  In conclusion, the protective effect of Fux against OxLDL-
induced endothelial dysfunction supports the potential benefits 
of consuming foods rich in brown algae. Our findings on the 
intracellular signaling pathways modulating the oxidative insults 
induced by OxLDL in endothelial cultures may facilitate the 
discovery of an innovative therapeutic approach to the prevention 
of atherosclerotic progression. 
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Figure 6. Fux inhibits NF-κB activation in OxLDL-induced HUVECs. Western blot was used to detect p-P65, p-IKBα, and TLR4. *P<0.05 denotes significant 
differences in comparison to the control. #P<0.05 denotes significant differences as compared to OxLDL alone treatment group.
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