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Soil aggregate stability is considered as an important indicator of soil quality in the 
landscapes witnessing land degradation due to soil erosion by water. An increase in 
anthropogenic activities over the period of time has accelerated soil erosion that 
necessitated need to assess soil aggregate stability in various land use/land cover in the 
hilly and mountainous landscape. The study investigated the soil aggregate stability of 
surface soils in different land use/ land cover classes, hillslope unites as well as in respect 
to terrain parameters in the watershed. The watershed located in mid- Himalayan region 
of Tehri Garhwal district, Uttarakhand, India covering an area of 196 ha. The elevation of 
the watershed ranges from 1200 m to 1927 m. CartoDEM was used to derive terrain 
parameters i.e., aspect, slope and terrain indices like Terrain Wetness Index (TWI) and 
Stream Power Index (SPI) of the watershed. Among the various land use /land cover 
classes, aggregate stability in crop land was found to be in the range of 0.16 (lower 
hillslope) to 0.28 (mid hillslope), in forest ranged from 0.18 (mid hillslope) to 0.28 (upper 
hillslope) and in dense scrub ranged from 0.16 (middle slope) to 0.32 (upper/lower 
hillslope). The aggregate stability was further analyzed in relation with various soil 
(carbon, nitrogen, sand, silt, clay and pH) and terrain (slope, elevation, TWI and SPI) 
variables. Among these variables soil carbon, nitrogen, elevation, TWI and SPI were found 
to have moderate to high degree of correlation with soil aggregate stability. Prediction 
model developed by using the various significant soil and terrain parameters were found 
to be more effective (r2 = 0.50) than the models developed using only soil parameters 
(r2= 0.36) or only terrain parameters (r2= 0.37). 

 Keywords: Land Use/ land cover, Mid-Himalaya, soil aggregate stability, terrain 
parameters. 
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Introduction 
Aggregate stability of a soil is the measure of the resistance of soil structure against mechanical or physico-
chemical destructive forces. Soil structure is closely associated with soil characteristics like soil water regime, 
soil nutrient availability and soil erodibilty (Shaver et al., 2002). Aggregate stability is considered to be one of 
the main soil properties controlling soil erodibility (Cerdá, 1996). It is one of the major factors influencing 
plant growth by its adverse impact on root penetration, soil temperature and gas diffusion, water transport 
and seedling emergence. Increase in aggregate stability reduces the soil loss and ingresses the quality of 
macro-aggregates and total and effective porosity. It also helps in reducing the loss of carbon, nitrogen and 
phosphorous (Kasper et al., 2009). 

Gülser (2006) observed decrease in the proportion of micro aggregates in the fractions 0.5 mm in size and 
increased the proportion of macro aggregates in the fractions 1.00 mm in size in various forage cropping 
treatments. He found significant increase in organic carbon (OC) content and aggregate stability in various 
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forage cropping treatments in comparison to the fallow control treatment. Zhu et al. (2017) reported positive 
correlation of soil organic carbon (SOC) with soil aggregate stability index in natural restoration grassland 
whereas opposite in Chinese red pine forest. 

 Erosion primarily hinders the development of soil structure. Since aggregates can only be made when there is 
limited loss of finer particles and cementing agents (Shi et al., 2010). Several studies had described the 
relationship between the aggregate stability indices and soil erosion (Le Bissonnais, 1996; Cantón et al., 
2009). It is a vital and critical component of soil erodibility as it regulates the soil dispersion and surface seal 
development. Soil aggregate stability directly or indirectly related to soil erosion and degradation (Barthès et 
al., 1999; Tejada and Gonzalez, 2006; Mataix-Solera et al., 2011) performed a study on amended soils and 
suggested to adopt both erodibility and structural stability as a measure of soil vulnerability. Field 
investigation of soil susceptibility to water erosion is generally an expensive and time taking process (Barthès 
and Roose, 2000). Therefore, determining its relationship with soil aggregate stability is rather cheaper and 
easier approach to enable characterizing soil aggregation which can further be extended to investigate its 
susceptibility (Poch and Antúnez, 2010).  

Several studies had focused on establishing relationship between organic carbon, soil erosion and the role of 
soil aggregation in organic carbon protection in different landscapes (Six et al., 2004; Berhe et al., 2007; Yadav 
and Malanson, 2007). Certain factors like temporal and spatial heterogeneity and complexity in soil 
continuum make it really difficult to measure aggregation and carbon storage in soil (Bronick and Lal, 2005). 
Water test of aggregate is discrete and indirect method to estimate aggregation which is a simple and fast way 
to understand the management effect on aggregation and carbon storage. (Shrestha et al., 2007) studied the 
relationship between soil aggregate stability and land use systems. The study showed that different land use 
systems and management practices have a significant impact on the soil’s properties, especially organic 
carbon and soil aggregation. Soil aggregate stability can be substantially enhanced by increasing the organic 
carbon content which is more profound in soils having higher clay content. Soils with high organic matter and 
clay content develop better soil structure that ultimately provides high resistance to water erosion (Emadodin 
et al., 2009). 

Topography is the key soil forming factor in climatically and geologically homogenous areas. It plays a 
significant influence on a wide range of soil physical and chemical properties (Gerrard, 1981). Quantitative 
topographic data are widely applied in studies to understand how topography influences the soil properties 
(Kumar and Singh, 2016). Digital Elevation Models (DEMs) are commonly being used for extracting terrain 
parameters of the landscape. Currently, global DEMs such as Shuttle Radar Topography Mission (SRTM) 
(version 4, C-Band DEM of 3 arc-second, 90 m resolution) and the Advanced Space borne Thermal Emission 
and Reflection Radiometer (ASTER) (version 2, 30 m resolution) are available to the global users. However, 
CartoDEM (30 m resolution) is available for Indian Peninsula (Jain et al., 2017). High resolution provides 
improved estimation of terrain variables and help in better characterization of morphometric parameters of 
watershed and soil properties (Case et al., 2005; Hancock et al., 2006; Smith et al.,  2006; Anornuet al., 2012; 
Das et al., 2016). Several studies have used ASTER, SRTM and Cartosat DEM with 30 to 90 m resolution in 
predicting soil parameters for small and large area (Saran et al., 2010; Ballabio et al., 2016). Terrain attributes 
are usually used regardless of the study scale or DEM resolution and are associated with the mathematical 
sense of particular variables (Florinsky, 2012). Kienzle (2004) compared terrain variables on 100 m elevation 
points with high resolution DEM and reported that elevation and slope has strong positive relationship while 
other terrain derivatives were not represented very well when derived from a coarse DEM. 

Terrain attributes such as slope, aspect, Terrain Wetness Index (TWI) and Stream Power Index (SPI) are 
closely associated with the spatial heterogeneity of aggregate stability through their impact on various soil 
properties (Rhoton and Duiker, 2008). TWI is a study state wetness index its higher values represent drainage 
depressions, lower values represent crests and ridges and SPI used to describe potential flow erosion at the 
given point of the topographic surface. However, there are few studies concentrating on the soil aggregate 
stability and its relationship with terrain attributes. There are few studies conducted on the assessment of soil 
aggregate stability in various parts of the hill landscape systems (Rhoton et al., 2006; Tang et al., 2010) 
considering their direct relationship with topographic derivatives (Cantón et al., 2009). However studies 
exploring such relationships are rarely been conducted and reported from the fragile ecosystems of North 
West Himalayan region.  Soils of the Himalayan region are very young and very prone to erosion. These soils 
have poor structural development. The present study was aimed to investigate the soil aggregate stability in 
different land use/ land cover as well as to assess the soil aggregate stability in relation to soil properties and 
terrain attributes of the watershed.    
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Material and Methods 

Description of the study area 

The study was carried out to study soil aggregate stability under various land use/land cover in a watershed 
represent mid-Himalayan region of Tehri Garhwal district of Uttarakhand state in India (Figure 1). The 
watershed is located at longitude of 78°25’2.556”E to 78°24’1.2”E and Latitude of 30°21’31.87”N to 
30°21’21.51”N covering an area of 196 ha. The elevation in the watershed ranges from 1200 to 1927 m. The 
region is characterized as humid sub-tropical. The minimum and maximum mean temperatures in the region 
are 4.6° C in winter and 33.5° C in summer, respectively. The average annual rainfall is 1400 mm. The entire 
watershed consists of high hills and ridges which are deeply incised by the streams. The hilly landform of the 
watershed has been divided into upper, middle and lower hillslopes (Figure 2). The soils of the watershed is 
characterized as excessively drained to well drained and containing slight to moderate coarse fragment in 
the surface layer. Soils are shallow to moderately deep and sandy loam to loam in texture (Table 1, Figure 3). 

 
Figure 1. Location of the study area 

 

  
Figure 2. Landform map showing various hillslope units 

in the watershed 

 

Figure 3. Soil textural class map of the watershed 
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Table 1. Site characteristics and physico-chemical properties of soils in the study area 

S. no. Variables Range of Characteristics 
1 Elevation (MSL) 1200-1927 m 
2 Slope class Undulating to very steep 
3 Soil Texture Class Sandy Loam to Loam 
4 Soil Depth class Shallow to moderate deep 
5 Drainage class Well to Excessive 
6 Erosion class Moderate to severe 
7 pH 5.3-7 
8 EC 0.02-0.66 dS/m 
9 Total soil Carbon 1.2-3.28 % 

10 Total soil Nitrogen 0.05-0.55 % 

Data Used 

Resourcesat-1 LISS-IV data was used to prepare land use land cover of the watershed by on screen visual 
interpretation at 1:25,000 scale. CartoDEM derived from Cartosat-1 satellite having a spatial resolution of 10 
m was used to generate terrain indices like Stream Power Index (SPI), Terrain Wetness Index (TWI) and 
terrain parameters like aspect and slope. The CartoDEM was downloaded from website 
http://bhuvan.nrsc.gov.in/data/download/index.php. The DEM has vertical accuracy of 8 meter (Santillana 
et al. 2016). The salient characteristics of satellite data and DEM used in the study are given in (Table 2). The 
google earth image of the study area used for detailed understanding and preparation of the field plans. 

Table 2.   Salient characteristics of satellite data and DEM used in the study 

Satellite  
data 

Used  
for 

Date of 
acquisition 

Resolution 
Source 

Spatial (m) Radiometric Temporal 
Resourcesat-2 

LISS-IV 
Land use/land 

cover 
18/5/2016 5.8 10 5 NRSC data center 

Carto-DEM Terrain 
characterization 

27/5/2016 10 bhuvan.nrsc.gov.in
/data/download/ 

Methodology 

Soil sampling 

The watershed was classified into upper, middle and 
lower hillslopes based on elevations. Three number 
of transects were selected for soil sampling 
corresponding lower to upper hillslope positions 
with various land use/ land cover. Field sites were 
identified to collect soil sample in each hillslope of 0-
20 cm depth (Figure 4). There were 15 no. of soil 
sample were collected from each hillslope unit 
accounting total 45 no. of soil samples in July 2016. 
The geographic coordinates were recorded using 
GPS. Soil sample were analyzed for soil aggregate 
stability and their physico-chemical properties. The 
soil samples were processed and soil texture (sand, 
silt and clay contents) was estimated by using 
Bouyoucos hydrometer method (Kroetsch and 
Wang, 2007). The total soil carbon (TC) and total 
nitrogen (TN) were estimated using CHNS elemental 
analyzer (Vario MICRO cube, Elementar Inc., 
Germany).  Soil pH (1:2) was measured using a pH-
meter. 

 

Figure 4.   Slope map of the study area showing the field 
sample point 

Soil aggregate stability analysis 
The aggregate stability was analyzed using Wet Sieving Apparatus following the procedure described by 
(Nimmo and Perkins, 2002). Aggregates were determined on 2-mm sieved, air dried soil samples of 4 g, pre-

http://bhuvan.nrsc.gov.in/data/download/index.php
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moistened the aggregates for 5-10 minutes. The sample was then wet-sieved using a motor –driven holder 
lowering and raising 0.25-mm sieves in containers of deionized water, the stroke length was 1.3 cm and 
sieving frequency was 34 cycles min-1 for 3 minutes. The fraction < 0.25 mm was collected to determine 
fraction < 0.25 mm by sedimentation, the fraction > 0.25 mm was dried at 105oC and then weighed. The 
aggregates remained on the sieve were next sieved in the solution of sodium hexameta phosphate (0.05M) 
until only sand particles remained on the sieve using the same device. Then it was dried at 105o C and 
weighed.  The index of water stable aggregates, (WSA), was then determined as:  

WSA = 
WDS

WDS+WDW
 (1) 

where; 
WDS – weight of aggregates dispersed in the dispersing solution (M)  
WDW – weight of aggregates dispersed in distilled water (M) 

Terrain analysis 
Terrain parameters of watershed were extracted using CartoDEM. Integrated algorithms were utilized to 
compute terrain parameters such as slope, aspect, flow direction, flow accumulation. The following terrain 
parameters such as slope, Terrain Wetness Index (TWI) and Stream Power Index (SPI) the average value 3x3 
pixels of the samples sites was computed using ArcGIS 10.2.2  

Slope 

It is primary terrain attribute used to describe the steepness of the area. Mathematically it is the rise over 
run. The range of slope values in the watershed varies from 0 to 90 degrees. 

Terrain wetness index (TWI) 

It is one of the secondary terrain parameters also known as CTI (Compound Topographic Index), it 
quantifies the contribution of topography on the soil erosion generated at a particular sites. The terrain 
wetness index was computed as (Beven and Kirkby, 1993): 

TWI = ln (As/tanβ) (2) 

where, 
A = Upstream contributing area (m2) 
β = Local slope gradient 

Stream power index (SPI) 

It is the secondary terrain parameter. It represent the rate of depletion of energy by the flowing stream of 
water on the channel bed and basins, which determines the strength of the flowing water body to carry soil 
particles and sediments. 

SPI = ln (As * tanβ) (3) 

where, 
A = Upstream contributing area (m2) 
β = Local slope gradient 

ArcGIS 10.2 used for creating and using maps, compiling geographic data and managing geographic 
information in a database. 

Statistical analysis 

The multiple linear regression analysis was used to evaluate the relationships between the soil aggregation 
stability with soil properties and terrain variables. The simple correlation between the variables was 
assessed using Pearson correlation coefficient. Two factors with replication analyses of variance ANOVA 
procedures was computed to establish relationship between aggregate stability under various land use/land 
cover using statistical package (SPSS) version 16.0. (R Studio) was used for statistical and graphical 
techniques, that includes linear and multiple linear modeling, classical statistical tests. 

Results and Discussion 

Land use/ land cover and terrain characteristics of the watershed 

Land use/land cover type map of the study area was prepared by visually interpreting the standard FCC of 
satellite data by onscreen digitization. The major land use/land cover types interpreted in the watershed 
were crop land, open forest, dense scrub, open scrub and settlement.  
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Dense scrub (45.07 %) formed the predominant land 
use/land cover type followed by agriculture (36.90%) 
(Table 5; Figure 5). Analysis of soil aggregate stability 
data in the present study revealed that highest 
aggregate stability was found in dense scrub land with 
a mean value of 0.26, followed by forest land (mean 
value of 0.23) and cropland (mean value of 0.22) 
respectively (Table 4). Lower soil aggregate stability 
in cropland may be attributed to frequent 
disturbances caused by human activities such as 
plowing as well as other inter cultural operations, 
which are very minimal or absent in case of scrub and 
forest lands. The elevation within the watershed 
varied from 1200 to 1927 m above MSL. Elevation 
range in the watershed of >1713m was categorized as 
upper hillslope and < 1489m as lower and 1489 To 
1713 m as mid-hillslope area. Within the entire study 
are TWI and SPI value ranges from 3.52-15.14 and 
4.03-18.1 respectively (Figure 6 & 7). The watershed 
was characterized by highly rugged terrain with steep 
slope. Larger area (>85%) of the watershed was 
characterized with slope of more than 25 percent, 
whereas 17 percent of the area had slope values 
greater than 60 percent (Table 6). 

 
Figure 5. Land use land cover map showing various 

LU/LC units in the watershed 
 

  
Figure 6. Terrain Wetness Index (TWI) map of the 

watershed 
Figure 7. Stream Power Index (SPI) map of the watershed 

Table 4. Distribution of aggregate stability in different land use with respect to hillslope units 

Land use/land cover 
 

Hillslope Units Aggregate Stability Value 
with in study area Upper Middle Lower 

Mean SD Mean SD Mean SD Mean  

Crop land (12) - - 0.28 0.18 0.16 0.09 0.22 

Forest land (18) 0.28 0.09 0.18 0.06 - - 0.23 
Dense Scrub (15) 0.32 0.04 0.16 0.17 0.32 0.13 0.26 
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Table 5. Watershed area under various land use / land cover classes 

Land use/land cover Area in (Ha) Area in (%) 
Agriculture 72.18 36.9 
Dense Scrub 88.89 45.07 
Open Forest 35.34 17.61 
Open Scrub 0.36 0.14 
Settlement 0.33 0.27 

Table 6. Watershed area under various slope classes 

Slope Class Slope Value % Area in (%) 
Nearly Level 0-10 1.49 

Gentle Sloping 10-25 12.98 
Moderate Slope 25-40 29.35 

Steep 40-60 39.16 
Very Steep >60 17 

Physico-chemical characteristics of soils 

The soil analysis revealed that the soils of the watershed are slightly acidic with a mean pH value of 6.01. It 
containing high amount of soil carbon with an average value of 2.26 percent and nitrogen with a mean value 
of 0.18 percent (Table 3). The predominant soil textural class in the watershed was sandy loam to loam. 

Table 3. Distribution of SOC, N, Sand, silt, clay and pH in different hillslope units 

Aggregate stability of soil 

Aggregate stability in various Land use/land cover 

Several studies have been carried out to determine the influence of the land use of the soil, topographical 
position, and management practices on the soil organic matter (SOM) content and stability of soil aggregates 
(Lyneh, 1984; Cambardella et al., 1994; Bricchiet al., 2004; Annabie et al.,2017; Ouet al., 2017). Analysis of 
soil aggregate stability data in the present study revealed that highest aggregate stability was found in dense 
scrub land with a mean value of 0.26, followed by forest land (mean value of 0.23) and cropland (mean value 
of 0.22) (Table 4). It has been observed that cropland soils had significantly lower soil aggregates stability 
than that of other land use types (Zhao et al., 2016). Zhang (2012) reported soil organic matter (SOM) 
contents in surface soils followed in a descending order of scrubland, grassland, woodland and cropland, 
respectively. Lower soil aggregate stability in cropland may be attributed to human activities such as 
plowing. Plowing can destroy the natural soil structure (Reicoskyet al., 1995) and the decomposition of SOC 
(Rovira and Greacen, 1957; Davidson and Ackerman, 1993). High soil organic carbon will bind the soil 
particles through the formation of various organo-mineral as well as organo-clay complexes thus resulting in 
soil aggregate high stability. SOM serves as a cementing in the soil aggregates development (Six et al. 2002). 
These complexes provide high aggregate stability because of their strong ability to withstand action of 
erosion causing forces mainly water, due to their strong binding action. The positive effect of high organic 
matter on aggregate stability are much prominent and distinct in soils with higher clay content, because of 
their synergistic effect in binding of molecules by formation of chemical bonds. Soil aggregation increases 
with an increase in SOM content and clay mineral in the soil (Bronick and Lal, 2005; Fernández-Ugalde et al., 
2013). Several studies revealed a linear relationship between organic carbon content and water stable 
aggregates for various soils (Angers, 1992; Carter,1992).   

Among the various hillslope positions, upper hillslope has no agricultural area. It is covered with natural 
pine forest and dense scrub. Soil of dense scrub land showed higher aggregate stability ranged from 0.16 
(middle slope) to 0.32 (upper/lower hillslope) followed by soil in forest cover ranged from 0.18 (mid 
hillslope) to 0.28 (upper hillslope). In mid hillslope area of the watershed cropland showed the highest 

Soil 
Variables 

Hillslope Units Value with in entire 
study area Upper Middle Lower 

Mean SD Mean SD Mean SD Mean 
Carbon 2.44 0.50 2.25 0.61 2.11 0.59 2.27 

Nitrogen 0.20 0.06 0.19 0.13 0.16 0.03 0.18 
Sand 35.38 12.45 45.48 14.07 38.64 6.91 39.83 
Silt 41.10 11.27 35.1 9.69 39.37 6.04 38.52 
Clay 23.63 3.52 19.41 5.65 22.65 3.16 21.89 
pH 6.06 0.30 6.01 0.30 5.97 0.38 6.01 
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stability (0.28) followed by forest and dense scrub cover (Table 4). Agriculture is major land use in lower 
hillslope with dense scrub land in patches, where no forest cover was observed. In lower hillslope scrub land 
showed the highest values for soil aggregate stability followed by cropland (Amézketa, 1999) studied macro 
aggregation at various hillslope positions and observed higher aggregation in surface soil at the lower slope 
position as well as an increase in soil organic carbon (Stanchi et al., 2015) found higher aggregates stability 
in the soils due to lower erosion rate at lower hillslopes. 

Land use / land cover types strongly influences distribution of soil organic carbon (SOC) contents in the soil 
(White et al., 2009; Fang et al., 2011). Soils under forest cover had high soil organic carbon than the soils of 
cropland. (Sreenivas et al., 2016) showed highest SOC density in forest soils than the agricultural land in 
India. SOC accumulation from vegetation biomass contributes to the enhancement of soil aggregation and 
vice versa (Six et al., 2000).  In cropland soils, soil disturbance from tillage destabilizes aggregates, releasing 
intra-aggregate organic matter and increasing decomposition of soil carbon (Grandyand Robertson, 2006; 
Six et al., 1999, Six et al., 2000). It results decline in SOC in cropland and therefore poor aggregate stability in 
the soils of cropland. Besides this, SOC accumulation is also strongly influenced by soil erosion and 
deposition that differs at slope position in the watershed. Organic matter acts as major binding agent and 
stabilizer to natural soil aggregates (Greenland et al., 1962; Six et al., 2004). 

In the present study, scrub land located in upper hillslope showed highest aggregate stability in the 
watershed. Forest soils had higher soil aggregate stability than the crop land attributed to the high SOC 
contents in the forest land. Forest land in upper hillslope had higher aggregate stability as these soils 
witnesses less surface runoff and eventually low soil erosion. Soils of crop land of mid-hillslope had high 
aggregate stability than the lower hillslope as it receive higher surface runoff water from upper hillslope 
area resulting removal of SOC from soil and these soils witness higher soil erosion rate. (Zhang et al., 2015) 
showed decrease in the surface runoff and soil erosion in forest land compared to crop land and fallow land 
in the Hilly Watershed of Southern China. Similarly, (Zhang et al., 2006) reported less SOC contents in toe‐
slope (lower- slope) portions than those above the toe‐slope (i.e. upper‐ and mid‐slope portions) in the 
watershed. Soil aggregation and soil carbon accumulation differed between slope positions (Tang et al., 
2010). (Liu et al. 2003) pointed out that terrain characteristics have significant impacts on soil C dynamics.  
Further, topographical influences on soil C can interact with management, resulting in altered responses to 
management such as tillage (Senthilkumar et al., 2009) and land use (Tan et al., 2004) depending on slope 
positions in the landscape. 

Aggregate stability relation with soil and terrain variables 

Topography significantly influences physical and chemical properties of soils. Terrain attributes derived 
from digital elevation models (DEMs) have been widely used in predicting soil properties (Camplig et al., 
2002; Lai et al., 2006; Wang et al., 2007, Kumar and Singh, 2016). Spatial variation in SOC strongly influenced 
by the topography (McBratney et al., 2003; Schwanghart and Jarmer, 2011) and local terrain attribute 
algorithm better capture the spatial variation of SOC in the landscape (Behrens et al., 2010). In the study, 
Multiple Linear Regression Analysis was performed considering soil aggregate as dependent variable and all 
other factors as independent variable. Here, the correlation coefficient quantifies the linear association 
between the dependent and independent variable. The value of the coefficient (ß1) shows the affect 
independent variable on the dependent variable.  The P-value is used as a measure to reject null hypothesis, 
P-value of 5% (p <0.05) or less is the generally accepted point at which to reject the null hypothesis. The 
coefficient (ß1) and P-value are calculated to identify the best factors that can be used to model the change 
in soil aggregation. Regression analysis for AS prediction of different land use land cover types revealed 
varying influences of soil and terrain variables for prediction. Among the different land use type’s regression 
models were able to predict AS prediction, with varying accuracy levels. (R2 values (r2=0.27), (r2=0.75) and 
(r2=0.95) respectively. higher soil aggregate stability found in scrub lands may be minimal or absent 
frequent disturbances caused by human activities such as plowing as well as other inter cultural operations, 
which are very common in crop land. The Prediction variables were found to be the same. But the level of 
significance varied much among the different land use land cover types with respect to AS. 

An attempt was also made to study the relationship between various soil variables and the soil aggregate 
stability. Various soil properties like total soil carbon, total nitrogen, pH, clay and silt were estimated by the 
laboratory analysis of soil samples. Among these variables, carbon and nitrogen were found to exhibit 
statistically significant (p <0.05) correlation with soil aggregate stability. Multiple linear regression model 
(r2=0.36) was developed using the various soil properties for the prediction of soil aggregate stability (Table 
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7). Gulser (2018) analyzed water stable aggregates of surface cultivated soils and found clay, sand, pH and 
organic matter (OM) contents as the most effective variables in predicting soil aggregate stability. 

Table 7. Relationship between soil aggregate stability and different soil variables 

Various soil and terrain parameters had significant relationship with soil aggregate stability and were 
further used for developing statistical model for predicting soil aggregate stability. Among the terrain 
variables slope gradient, curvature (profile and plan), topographic wetness index (TWI) and stream power 
index (SPI) are the most important variables influencing aggregate stability of soils (Walock and McCabe, 
1995; Pennock, 2003).   An analysis was attempted to study relationship between soil aggregate stability and 
terrain variables. Among the different terrain variables, elevation, TWI and SPI were found to have 
significant relationship with the soil aggregate stability. Regression model for the prediction of soil 
aggregate stability was also developed using these terrain variable (r2=0.37) (Table 8).  Several studies 
described significant relationship between the terrain variables and soil aggregates stability (Rhoton and 
Duiker, 2008; Canton et al., 2009). Aggregate stability varies in different parts of the slope position and had a 
direct relationship with topographic derivatives (Rhoton et al., 2006; Canton et al., 2009; Tang et al., 2010). 
Zádorová et al. (2011) identified the plan curvature as the main variable influencing spatial distribution of 
soil organic carbon. 

Table 8. Relationship between soil aggregate stability and different terrain variables 

The variables carbon, nitrogen, elevation, TWI and SPI having high correlation coefficient were selected. 
Multiple linear regression analysis using these variables yielded more accurate prediction model (r2= 0.50) 
compared to the models developed using the soil and terrain parameters separately (Table 9).  

Table 9. Relationship between the aggregate stability and selected soil and terrain variables 

The following plots obtained after performing regression analysis clearly revealed the existence of linear 
relationship between Soil aggregation, carbon, nitrogen, elevation, TWI and SPI as well as the normal 
distribution of the variables in the watershed (Table 10). Multiple linear regression equation to model soil 
aggregate stability and residual vs fitted plot and normal Q-Q plot revealed that error is comparatively lesser 
than the previous models developed using all the soil properties as well as terrain parameters (Figure 8, 9, 
10). Normal Q-Q plot analysis was carried out to estimate the error in statistical model analysis revealed 
lesser error values of model developed with soil and terrain variables. 

Table 10.  Multiple Linear Regression equations to predict soil aggregate stability 

Variables Multiple Linear Regression R2 

Soil YAS=0.698-0.0795*Carbon-0.6097*Nitrogen-0.005*Clay-0.001*Silt 0.368 
Terrain YAS=-0.641+0.002*Elevation+0.080*Slop-0.051*TWI+0.0003*SPI 0.372 
Soil + Terrain YAS=-0.266-0.154*Nitrogen-0.082*Carbon+0.051*TWI-0.019*SPI+0.0003*Elevation 0.504 

Soil  
variables 

Aggregate stability Vs Soil Variables 

R2 Intercept β1 P-Value 

Carbon (C)  
 

0.36 
 

 
 

0.69 

-0.079 0.01 
Nitrogen (N) -0.609 0.009 
Clay (%) -0.0051 0.223 
Silt (%) -0.001 0.559 

Terrain  
variables 

Aggregate stability Vs  Soil/Terrain Variables 

R2 Intercept β1 P-Value 

Elevation  
 

0.37 

 
 

-0.64 

0.002 0.018 
Slope 0.080 0.578 
TWI -0.051 0.013 
SPI 0.0003 0.034 

Soil and Terrain   
variables 

Aggregate stability Vs  Soil/Terrain Variables 

R2 Intercept β1 P-Value 

Nitrogen  
 

0.50 

 
 

-0.266 

-0.154 0.434 
Carbon -0.082 0.009 
Elevation 0.0003 0.022 
TWI 0.051 0.001 
SPI   -0.019 0.246 
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Figure 8. Soil aggregate stability with carbon, nitrogen, clay and silt as explanatory variable and the scatter plot and QQ 

plot were analyzed 

 

 
Figure 9. Soil aggregation with Elevation, slope, TWI and SPI as explanatory variable and the   scatter plot and QQ 

plot were analyzed 

 
Figure 10. Soil aggregation with carbon, nitrogen, elevation TWI and SPI as explanatory variable and the scatter plot 

and QQ plot were analyzed 

Conclusion 
Aggregate stability of surface soil denote its resistance to susceptibility of soils. Changes in soil aggregate 
stability with respect to land use and topographic positons were investigated in Tehri Garhwal district of 
Uttarakhand state, India. Analysis revealed that the land use type had significant impact on the soil aggregate 
stability. Among the various land use /land cover classes, aggregate stability was found highest in dense 
scrub land with a mean vale of 0.26 ranged from 0.16 (middle slope) to 0.32 (upper/lower hillslope) 
followed by forest land (mean value of 0.23) ranged from 0.18 (mid hillslope) to 0.28 (upper hillslope) and 
lowest in crop land (mean value of 0.22) was found to be in the range of 0.16 (lower hillslope) to 0.28 (mid 
hillslope). Soil aggregate stability was found to be highest in dense scrub and lowest in crop land. This may 
be due to the high organic carbon rooting and proportion of vegetative cover in dense scrub, which 
limits/restricts the deteriorating impact of raindrops and runoff water on soil aggregates. 15 Aggregate 
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stability was also correlated with soil and terrain variables, of which, carbon and nitrogen among soil 
variables and elevation, TWI and SPI among the terrain variables showed highest correlations, significant p-
values and less error. Multiple linear regression analysis using soils and terrain variables resulted much 
better prediction model (r2= 0.50) in comparison to the models developed using the soil and terrain 
parameters separately. The knowledge generated from this study will help us in identifying areas which are 
vulnerable to soil loss as well as nutrient due to the lower stability of aggregates. The relationships 
established between aggregate stability and terrain parameters will help us in spatial mapping of aggregate 
stability status with optimum number of sampling thus avoiding extensive sampling in these hilly 
mountainous terrains where inaccessibility is an issue due to terrain characteristics.  
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