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/ 
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ABSTRACT 

In this paper, the ultimate crushing displacement Y1 and load Y2 of the coated fertilizer granules were obtained 

by uniaxial compression test as 0.450 mm and 58.668 N, respectively. The Plackett-Burman and Steepest 

ascent tests were taken to determine factors that had significant effects on the results and their ranges of 

values, respectively. Finally, the Particle Swarm Optimization - Back Propagation (PSO-BP) neural network 

was trained, and the correlation coefficients of training, validation, testing and overall performance were 

obtained as 0.98057, 0.95781, 0.96724 and 0.97459, respectively. The Y1 and Y2 are 0.450 mm and 58.703N, 

with a relative error of 0.06% from the actual value. 

 

摘要 

采用 PSO-BP 神经网络模型为代理模型对 Bonding 模型参数进行标定，首先通过单轴压缩试验得到包膜肥料颗粒

的极限破碎位移和极限破碎载荷分别为 0.450 mm 和 58.668 N。建立包膜肥料的 DEM 模型，分别采取 Plackett-

Burman 和 Steepest ascent test 确定对结果影响显著的因素及其取值范围。采用全因素试验数据训练 PSO-BP

神经网络，得到训练过程、验证过程、测试过程和整体性能的相关系数分别 0.98057、0.95781、0.96724和 0.97459，

表明训练后的 PSO-BP 神经网络拟合效果良好，可以预测极限破碎位移和极限破碎载荷。PSO-BP 神经网络预测

结果显示，当法向刚度 X1、切向刚度 X2、切向极限应力 X4和粘结半径 X5分别为 1.006E+10 N/m2、1.021E+10 N/m2、

1200000Pa 和 0.20 mm 时，压缩位移 Y1和压缩载荷 Y2分别为 0.450 mm 和 58.703 N，与实际值相对误差最小为

0.06%。 

 

INTRODUCTION 

Fertilizers play a significant role in increasing crop yields, and China uses a large amount of chemical 

fertilizers with low fertilizer utilization rates (Chojnacka et al., 2020). Controlled release fertilizer adopts polymer 

coating, which can quantitatively control the amount and period of fertilizer nutrient release, so that the effect 

of fertilizer saving and efficiency is significant (Xiang et al., 2017). The nutrient release characteristics of 

wrapper fertilizers are closely related to the material and structure of the wrapper layer (Chen et al., 2018), 

mechanical damage can cause damage to the envelope layer and thus affect the nutrient release 

characteristics of the fertilizer. In order to study the principle of mechanical damage of wrapped fertilizer, the 

discrete element method is proposed to be used for numerical simulation of the crushing process. 

The calibration process of numerical simulation parameters directly affects the accuracy of simulation 

results (Coetzee, 2017). Researchers have tried many methods to calibrate or measure discrete component 

parameters. One is to measure the parameters of the particle directly by experiment, which is applicable to the 

parameters that reflect the nature of the particle itself such as Poisson's ratio, density, shear modulus, etc.; the 

other is to measure the macroscopic phenomenon of the particle by experiment and then reversely calibrate 

it. In the inverse calibration process, the traditional method is "trial and error", which is inefficient and inaccurate 

(Chen, 2017). To remedy these deficiencies, Zhao (Zhao et al., 2012) attempted to explore the complex 

relationships between micro- and macro-mechanical behaviors and parameters through empirical or 

theoretical formulations.  
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During the calibration process, samples were generated using design of experiments methods, such as 

Yoon (Yoon, 2007) using central combined design (CCD), Hanley (Hanley et al., 2011) using Taguchi method 

and orthogonal tests, Rackl (Rackl and Hanley, 2017) using Latin hypercube sampling and Kriging methods. 

Optimization algorithms were then used to process the data and obtain calibration results, such as Do (Do et 

al., 2018) using genetic algorithms, Benvenuti (Benvenuti et al., 2016) using artificial neural networks, and 

Zhou (Zhou et al., 2018) using radial basis neural network method. However, the above studies still have some 

shortcomings. On the one hand, the above calibration methods simplify the parameters, and there are few 

studies on multi-parameter multi-objectives. On the other hand, the accuracy of the obtained models is low, 

and it is difficult to predict the combination of simulation parameters accurately. 

In this paper, the ultimate crushing load and loading displacement of wrapped fertilizer particles were 

measured by uniaxial compression test, and by establishing the same simulation model as the real test, the 

number of factors was gradually reduced and the range of factor values was narrowed by using PB design and 

the most rapid ascent method, and then the PSO-BP neural network was trained by using the full-factor test 

to predict the Bonding model parameter combinations with the well-fitted network model, and the obtained 

parameter combinations were validated. The Bonding model parameters of the envelope fertilizer were 

accurately calibrated. 

 

MATERIALS AND METHODS 

Bonding Model 

In the Bonding model, the material being crushed (particles, blocks, etc.) it consists of a number of small 

particles, which are held together by bonded cements. Bonded cements have mechanical properties similar to 

those of the finite element method and are subject to deformation (tension, compression, torsion) under 

external forces. When the force or moment generated by the deformation of bonded cements reaches a certain 

level, the cements break and the small particles separate from each other. The Bonding model assumes that 

the cement between two particles is a virtual flat plate (cylinder), as shown in Figure 1. When the relative 

motion of two particles occurs, the flat plate (cylinder) is subjected to tension, bending and shear, and the mile 

generated by the bond can be obtained according to the following equation. 
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where: δFn and δFt  are the normal and tangential forces respectively; vn and vt are the normal and tangential 

velocities of the particles respectively; Sn and St are the normal stiffness and tangential stiffness respectively; 

δt is the simulation time step; A is the contact area between the particles of “fraction”; δMn and δMt are 

respectively tangential moment and normal moment; ωn, ωt are the normal and tangential angular velocities, 

respectively; J is the polar moment of inertia of the cement. 
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where: RB is the bonded radius of the cement. It can be seen from formulas (1) and (2) that the bonded radius 

RB has a direct effect on the force and moment. 

When the force and moment reached the limit value or the distance between the “fraction” particles is 

greater than the setting contact radius, the bonded cement will break. The normal and tangential shear force 

calculation formulas are as follows: 
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where: σmax is the normal shear force; τmax is the tangential shear force. 
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Fig. 1 – Bonding model schematic 

Fi is the contact force vector, which can be resolved into normal and shear components; Mn and Mt denote the axial- and shear- directed 

moments, respectively; ni and ti are the unit vectors that define the contact plane; L and Ri are the length and parallel-bond radius of the 

cement; A and B denote two particles in contact; R and R contact denote the radius and contact radius between two particles, respectively. 

 

Material parameters 

In this paper, the coated controlled-release fertilizers were sourced from Shandong Nongyang Biological 

Technology Co., Ltd., China. The moisture content, true density, average triaxial size, equivalent diameter and 

sphericity of fertilizer are 0.88%, 1.46 g/cm3, 4.08 mm×3.97 mm×3.89 mm, 3.98 mm and 0.975, respectively. 

Select fertilizers (as shown in Fig. 2(a) (b)) whose length, width and height are similar to the equivalent 

diameter to establish a contour model. To study the fertilizer particle fragmentation characteristics, the bonded 

particle method (BMP) was used to build a discrete element model of fertilizer particles (as shown in Fig. 2(c)). 

 

 
 

Fig. 2 – Fertilizers and discrete element model 

 

Uniaxial compression test (actual) 

Select fertilizer particles with a diameter of 3.98 mm, and use a universal tester to perform a uniaxial 

compression test on the fertilizer particles, and load them at a speed of 0.05 mm/s until the sample is damaged, 

as shown in Fig. 3(a). The experiment was repeated 20 times and the average value was taken, then the 

displacement load curve of the fertilizer particles was obtained as shown in Fig. 3(b). 

As can be seen from Fig. 3, the ultimate crushing displacement and ultimate crushing load of the coated 

fertilizer granules were obtained by uniaxial compression test as 0.450 mm and 58.668 N, respectively. 

A

B

2R

L

ti

Fi

ni

M t

M n

R

R

R contact

R contact

Particles

Bond formation in 

this area

(a) Bonding model schematic (b) Schematic diagram of particles bonding

2.4 2.7 3.0 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4
0.00

0.05

0.10

0.15

0.20

0.25

F
re

q
u

en
cy

Diameter /(mm)

 Frequency 

 Normal distribution fit line

a
b

3.98 mm
c

Bonded particle Bonded cement



Vol. 65, No. 3 / 2021  INMATEH –
 

258 

 
Fig. 3 – Uniaxial compression test 

 

Uniaxial compression test (simulation) 

The discrete element software EDEM2018 was used to establish a uniaxial compression simulation test 

consistent with the actual test, as shown in Fig. 4. The constitutive and contact parameters of the coated 

fertilizer particles used in the simulation refer to related literature (Du Xin et al., 2019; Liu Cailing et al., 2018), 

and the values are shown in Table 1. 

 
Fig. 4 – Simulation diagram of uniaxial compression test 

Table1 

Simulation parameters 

Parameter Fertilizer ABS 

Poisson's ratio 0.225 0.394 

Real density (kg/m3) 2474 1060 

Shear modulus (Pa) 1.528×108 8.9×108 

Collision recovery factor 0.654  0.47 

Coefficient of static friction 0.189 0.42 

Rolling friction coefficient 0.034 0.095 

 

PSO-BP neural network 

The standard BP neural network (three-layer model) structure is used, i.e., input layer, implicit layer and 

output layer. The BP neural network uses the gradient correction method for learning the weights and 

thresholds. Suitable parameters can effectively improve the overall performance of the system. Two important 

factors that affect the learning quality of BP neural networks are: the number of implicit nodes and the size of 

learning rate. The increase in the number of implicit nodes accelerates the decrease in error, but the 

computational effort also increases and the learning time of the system becomes longer, which reduces the 

usefulness of the system. The number of implicit neurons is estimated using the following formula:  
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 j i k z= + +  (4) 

where j is the number of neurons in the hidden layer, i is the number of neurons in the input layer, k is the 

number of neurons in the output layer, and z is the empirical value (1 ≤ z ≤ 10). 

The learning rate determines the size of the change in weights and thresholds during each iteration. 

Decreasing the learning rate can reduce the probability of the system falling into local convergence and make 

the system eventually converge globally; too small a learning rate results in a small change in each iteration, 

leading to an increase in the number of iterations and a longer training and learning time. 

Different combinations of the number of implied nodes and learning rate are used to form different 

network structures and compare the final error output of the system. Considering the learning time and the 

final error of the network, the best learning ability of the BP neural network is obtained when the number of 

implicit nodes of this system is 10 and the learning rate is 0.3. 

The standard BP neural network can approximate any nonlinear continuous function, but the algorithm 

has the defects of slow convergence and easily falling into local minima. In order to find better network weights 

and threshold values for BP neural networks and minimize their global errors, the PSO algorithm is used to 

optimize the BP neural networks.  

The PSO algorithm is an evolutionary search technique proposed based on birds' predatory behavior 

and movement patterns. Each bird is equivalent to a particle in the model, representing the solution of the 

optimization problem, and their range and direction depend on the velocity of each particle in the particle 

swarm, and the best adaptation value is obtained by the optimal particle searching in the solution space for 

the global optimal solution.  

Assuming that there are M particles forming a particle population in a D-dimensional search space, the 

main computational derivation of the PSO algorithm is:  
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where: vi = (vi1, vi2, ... , vid) denotes the velocity of the i-th particle; xi = (xi1, xi2, ... , xid), (i = 1, 2,…, M) denotes 

the position of the particle in space; Pi = (Pi1, Pi2, ... , Pid) denotes the historical best position passed by the i-

th particle in space; Pg= ( Pg1, Pg2, ... , Pgd ) denotes the historical best position passed by the whole population 

in space; c1, c2 denote the learning acceleration coefficients, which usually take the value of 2.0; r1, r2 are 

random numbers varying between [0,1]; u denotes the inertia weights. 

The weights and thresholds of the BP neural network are regarded as particles, and the training process 

of the system is completed by mutual learning between particles, then the change of the weights is:  

 ( )( ) ( )( )1 1 2 2i j i j i j i j i jW c r W p W c r W g W = − + −  (6) 

where Wij(p) denotes the individual optimal value of the corresponding particle; Wij(g) denotes the global 

optimal value of the whole network. 

The flow chart of BP neural network weights modified by PSO algorithm is shown in Fig. 5. The specific 

training process of the network is as follows. 

(1) Initialize the PSO algorithm parameters. Determine the initial and ending weights according to the 

structural characteristics of the BP neural network, learn the acceleration coefficients and the initial positions 

of the particle population.  

(2) The PSO algorithm corresponds to the BP neural network. A D-dimensional vector is created, which 

represents a particle in the PSO algorithm and includes the weights and thresholds of the implicit and output 

layers in the BP network.  

(3) Calculate the fitness of the particles. In order to measure the goodness of the particle position, the 

fitness function needs to be established, using the error function in the BP network as the fitness function.  

(4) Update individual optima and global optima. Compare the fitness function values of each particle at 

time t-1 with those at time t. If the fitness of the particle is better at time t, the individual optimum of the 

corresponding particle is updated. Similarly, compare the fitness function values of the population at time t-1 

with those at time t. If the fitness of the population is better at time t, then the global optimum of the population 

is updated.  

(5) Update the position and velocity of the particles. The velocity and position information of the particles 

are recalculated according to Eqs. (2) and (4), and the weights and thresholds of each layer are updated.  
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Fig. 5 – Fertilizer granule crushing test 

RESULTS 

Plackett-Burman test 

The normal stiffness, tangential stiffness, normal ultimate stress, tangential ultimate stress and bonded 

radius were used as the five factors (X1, X2, X3, X4, X5) of the Plackett-Burman test, and two levels of each 

factor were selected.  

The Plackett-Burman design with N=11 was chosen for the test, and six dummy terms were reserved 

for error analysis, and the Plackett-Burman test protocol and results are shown in Table 2, and the ANOVA 

and t-test were performed separately for each factor effect using Design-Expert 8.0.6 software, and the 

results are shown in Table 3.  

Table 2 

Plackett-Burman test results 

No. X1 X2 X3 X4 X5 Y1 Y2 

1 9.60E+09 1.28E+10 6.00E+05 1.20E+06 0.16 0.395 37.274 

2 9.60E+09 1.28E+10 4.00E+05 8.00E+05 0.24 0.521 85.528 

3 6.40E+09 1.28E+10 4.00E+05 1.20E+06 0.16 0.355 31.243 

4 9.60E+09 1.92E+10 6.00E+05 8.00E+05 0.16 0.348 39.621 

5 9.60E+09 1.92E+10 4.00E+05 8.00E+05 0.16 0.348 39.621 

6 6.40E+09 1.92E+10 6.00E+05 8.00E+05 0.24 0.428 75.203 

7 6.40E+09 1.92E+10 6.00E+05 1.20E+06 0.16 0.363 40.406 

8 9.60E+09 1.28E+10 6.00E+05 1.20E+06 0.24 0.530 97.275 

9 6.40E+09 1.92E+10 4.00E+05 1.20E+06 0.24 0.475 91.781 

10 6.40E+09 1.28E+10 4.00E+05 8.00E+05 0.16 0.357 31.481 

11 6.40E+09 1.28E+10 6.00E+05 8.00E+05 0.24 0.484 79.520 

12 9.60E+09 1.92E+10 4.00E+05 1.20E+06 0.24 0.488 94.295 

 

Table 3 

Analysis of significance of parameters in Plackett-Burman test 

 Compression Displacement Compression Load 

Source 
Sum of 

Squares 
df 

Mean 

Square 
F Value p-value 

Sum of 

Squares 
df 

Mean 

Square 
F Value p-value 

Model 0.055 5 0.011 42.07 0.0001* 8046.936 5 1609.387 73.06 ＜0.0001* 

X1 0.002 1 0.002 9.02 0.0239* 159.034 1 159.034 7.22 0.0362* 

X2 0.003 1 0.003 11.81 0.0139* 27.941 1 27.941 1.27 0.3031 

X3 0.000 1 0.000 0.01 0.9439 1.581 1 1.581 0.07 0.7978 

X4 0.001 1 0.001 4.62 0.0753 144.188 1 144.188 6.55 0.0430* 

X5 0.048 1 0.048 184.92 ＜0.0001* 7714.192 1 7714.192 350.17 ＜0.0000* 

Residual 0.002 6 0.000   132.178 6 22.030   

Cor Total 0.056 11    8179.114 11    

Notes：*Shows that the term is significant (i.e., P < 0.05). 
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Steepest ascent test 

According to the Plackett-Burman test results, the initial values of the selected factors X1, X2, X4 and X5 

were 8.00×109 N/m2, 1.60×1010 N/m2, 1.00×106 Pa and 0.18 mm, and the step length was 0.80×109 N/m2, -

0.16×1010 N/m2, 0.10×1010 Pa and 0.01 mm, respectively. Based on the above description, a steepest ascent 

test was carried out to further find the parameters combination that approximates the true value. The steepest 

ascent test plan and results were shown in Table 4. 

Table 4 
Steepest ascent test plan and results 

No. X1 X2 X4 X5 Y1 Y2 

1 8.00E+09 1.60E+10 1.00E+06 0.18 0.409  52.517 

2 8.80E+09 1.44 E+10 1.10E+06 0.19 0.420 57.086 

3 9.60E+09 1.28E+10 1.20E+06 0.20 0.446 63.534 

4 1.04E+10 1.12E+10 1.30E+06 0.21 0.498 75.726 

5 1.12E+10 9.60E+09 1.40E+06 0.22 0.510  78.411 

 

From the test results in Table 5, it can be seen that the error between the compressive displacement and 

load in the simulation test and the real value first decreases and then increases, combined with 2.3.1, it can 

be seen that the actual uniaxial compressive displacement and load of fertilizer granules are 0.45 mm and 

58.668 N respectively, and the compressive displacement Y1 and load Y2 of the 3rd group test are closest to 

the real value.  

 

PSO-BP neural network 

As can be seen from Table 5, the actual loading displacement and ultimate load are between the results 

of Scheme 1 and Scheme 4, therefore, the factor ranges of Scheme 1 and Scheme 4 were selected to complete 

the full-factor test with 4 factors and 4 levels, and the test factor level ranges are shown in Table 5.  

 

Table 5 

Table of test factor levels 

Factor 
Level 

1 2 3 4 

X1 8.00E+09 8.80E+09 9.60E+09 1.04E+10 

X2 1.60E+10 1.44 E+10 1.28E+10 1.12E+10 

X4 1.00E+06 1.10E+06 1.20E+06 1.30E+06 

X5 0.18 0.19 0.2 0.21 

 

The objectives to be optimized in this paper are compression displacement Y1 and compression load Y2. 

According to the importance of each objective, the linear weighted combination method is used to transform 

the multi-objective optimization problem into a single-objective optimization problem, and the index conversion 

and weighting formulas are as follows.  
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where: 

wi is the weighting factor, w1= w2=0.5 in this paper; yi is the relative error of each index and the actual 

value; Yij is the simulation result of each index of each scheme; Yio is the actual value of each index, where 

Y1o=0.45 mm, Y2o=58.668 N. 

 

There are 256 sets of simulation results, 180 sets are randomly selected as training network, and the 

other data are used as validation and testing network performance, and the correlation coefficients of training 

process, validation process, testing and overall performance of PSO-BP neural network are obtained as 

0.98057, 0.95781, 0.96724 and 0.97459, respectively (as shown in Fig. 6). In general, a correlation coefficient 

greater than 0.9 is considered a good network fit (Dong et al., 2020). 
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Fig. 6 – Simulation diagram of fertilizer particle crushing during fertilizer discharge process 

 

Combined with the relative error between the validation set, test set and the real value from Fig. 7, it can 

be concluded that the PSO-BP neural network fitted in this paper can realistically predict the fertilizer granule 

crushing. 

 
Fig. 7 – Relative error of validation set, test set and true value 

 

With the above trained PSO-BP neural network model as the objective function, the compression 

displacement Y1 and compression load Y2 are optimized, and the network input that makes the network output 0 

(with zero relative error to the true value) is solved to obtain a series of parameter combinations, which are 

inverted and substituted into EDEM to verify the rationality of the parameter combinations (as shown in Table 6).  
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Table 6 

Parameter combination verification results 

No. X1 X2 X4 X5 Y1 Y2 y1 y2 y 

1 9.979E+09 1.036E+10 1200000 0.20 0.455 59.524 1.111 1.459 2.570 

2 1.006E+10 1.021E+10 1200000 0.20 0.450 58.703 0.000 0.060 0.060 

3 1.008E+10 1.019E+10 1200000 0.20 0.451 58.594 0.222 0.126 0.348 

4 9.948E+09 1.031E+10 1200000 0.20 0.452 58.941 0.444 0.466 0.910 

5 1.003E+10 1.038E+10 1200000 0.20 0.452 59.395 0.444 1.238 1.683 

 

The simulation results of the five parameter combinations in Table 7 show that the relative error y is 

0.06%~2.57%, which indirectly proves that the PSO-BP neural network model fits well. When the normal 

stiffness X1, tangential stiffness X2, tangential ultimate stress X4 and bonded radius X5 are 1.006E+10 N/m2, 

1.021E+10 N/m2, 1200000 Pa and 0.20 mm, respectively, the compression displacement Y1 and compression 

load Y2 are 0.450 mm and 58.703 N, respectively, with the minimum relative error of 0.06%.  

 

CONCLUSIONS 

The ultimate crushing displacement and ultimate crushing load of the encapsulated fertilizer granules 

were obtained by uniaxial compression tests as 0.450 mm and 58.668 N, respectively. The PSO-BP neural 

network model was used as a proxy model to calibrate the Bonding model parameters, and the factors with 

significant effects on the results and their value ranges were determined by the Plackett-Burman and Steepest 

ascent tests, respectively. The full-factor test data were used to train the PSO-BP neural network, and 

correlation coefficients of 0.98057, 0.95781, 0.96724 and 0.97459 were obtained for the training process, 

validation process, testing process and overall performance, respectively. The prediction results of PSO-BP 

neural network show that when the normal stiffness X1, tangential stiffness X2, tangential ultimate stress X4 

and bonded radius X5 are 1.006E+10 N/m2, 1.021E+10 N/m2, 1200000 Pa and 0.20 mm, respectively, the 

compression displacement Y1 and compression load Y2 are 0.450 mm and 58.703 N, with a minimum relative 

error of 0.06% from the actual value. 
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