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Abstract

This paper presents some aspects of sensor data fusion that were derived from the EU-SENSE project of the European Commission 
(Horizon 2020, Grant Agreement No 787031). The aim of EU-SENSE was to develop a novel network of sensors for CBRNe 
applications through the exploitation of chemical detector technologies, advanced machine-learning and modelling algorithms. The 
high-level objectives of the project include improving the detection capabilities of the novel network of chemical sensors through the 
use of machine learning algorithms and reducing the impact of environmental noise. The focus in this paper is on the detection and 
data fusion aspects as well as the machine learning approaches that were used as part of the project. Detection (in the sense of detect-
to-warn) is a classification task and improvement of detection requires enhancing the discriminatory power of the classifier, that is 
reducing false alarms, false positives, and false negatives. This was achieved by a two-step procedure, that is a sensitive distance-based 
anomaly/change detection followed by downstream classification, identification and concentration estimation. Bayesian networks 
proved to be useful when fusing information from multiple sensors. For validation purposes, experimental data was gathered during 
the project and the developed approaches were applied successfully. Despite the development of several new, helpful tools within the 
project, the domain of chemical detection remains challenging, particularly regarding provisioning of the necessary prior-knowledge. 
It might make sense from a coverage point of view to look into integration of stand-off detection techniques into a sensor network, 
including data fusion too.
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Introduction

This paper reports our work in the EU-SENSE project. EU-SENSE is sponsored by 
the European Commission1 and aims to (1) contribute to a better situational aware-

ness of CBRN practitioners, (2) improve the detection capabilities using a novel network 
of chemical sensors and (3) showcase the usability of the EU-SENSE network.

During the project, a network of chemical point sensors was developed. This network 
consists of sensor nodes, where each node is equipped with different sensor technologies: 
IMS,2 EC,3 PID,4 FPD5 and MO6 Sensor array (for a technology overview, see for example 
Sferopoulos (2009). The idea is to place such a network in an area of interest and

1.	 to detect a chemical attack;
2.	 to estimate the concentration of the detected substance;
3.	 to infer information about the source that released the substance;
4.	 to predict the hazard resulting from that source.

Examples for these kinds of scenarios could be mass events such as sport events, open-air 
festivals, etc. The aim in such a scenario is to detect a CBRN attack as early and reliable 
as possible. This detection should be sensitive but also reliable. This requirement is usually 
difficult to achieve since there is a trade-off between sensitivity and reliability of a sensor. 
The more sensitive a sensor is the higher is its probability of producing false positives. 
With a network of sensors however, the expectation is to reduce the number false alarms. 

The focus of this paper is on the data fusion aspects, the statistical and machine learning 
approaches that were used in the project. We have been focussing in particular on the 
first two tasks mentioned, that is detection and concentration estimation. Source term 
estimation and hazard prediction was at ask in another part of the project, led by FOI.7

The goal of reliable detection was achieved by a two-step procedure: First, a sensitive 
anomaly or change detection was applied. Then, an identification step followed, making 
the detection reliable and quantifiable. The anomaly detection uses straightforward statis-
tical methods. Bayesian inference proved to be a robust tool for data fusion and classifica-
tion as well as regression.

Network and Hardware

The prototypal network developed in EU-SENSE consists of three sensor nodes 
(Fig.  1).  Three nodes are somewhat sparse for monitoring a “high visibility mass 

event” but the focus was on building a network with real CBRN Detectors in order to see 
which improvement sensor data fusion can achieve. Due to budgetary restrictions, it was 
not possible to use a larger set of sensors.

Each node was equipped with the following sensors, as shown in Table 1.

The GDA-P and AP4C are mature chemical detectors. The MO Sensor array is an exper-
imental system still under development. The AP4C provides five response channels corre-
sponding to specific substance classes (As, CH, HNO, P, S). The two GDA-P instruments 
combine an IMS with one other sensor (PID or EC) respectively: The IMS does not 
provide merely a simple sensor response but a spectrum (drift-times/mobilities) that 
allows for identification. In combination with a second detector (EC, PID), they form an 
orthogonal detector themselves. Figure 2 shows one of the three nodes.

7 S w e d i s h 
D e f e n c e 
Research Agency, 
Member of the 
E U - S E N S E 
Consortium.

2IMS – Ion Mobility 
Spectrometer.
3EC – Electro-
chemical Cell.
4PID – Photo 
Ionization Detector.
5FPD – Flame 
P h o t o m e t r i c 
Detector.
6MOS – Metal 
Oxide Sensor.

1Horizon 2020, 
Grant Agreement 
No. 787031.
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Figure 1. Sensor nodes and  
fusion centre.

GDA-P(IMS (H2O) + EC) Producer: AIRSENSE Analyticsa

GDA-P(IMS (NH3) + PID) Producer: AIRSENSE Analytics
AP4C(FPD) Producer: Proengin
MO Sensor Array Prototype: TNO 

Table 1. List of sensors within a 
single node.

aIRSENSE Analytics GmbH, Member of the 
EU-SENSE Consortium

Figure 2. Node 3 of  
EU-SENSE network.

The green box is the node controller. Its task is to receive the sensors responses and for-
ward them to the network of sensors controller.

The following diagram shows the overall system architecture (Figure 3).

The diagram also shows other modules of EU-SENSE. However, the focus of this paper is on 
data fusion. Other aspects of the EU-SENSE network are covered in specific project reports.

Experiments and Data Model

In order to perform data fusion and for machine learning algorithms, relevant data is 
required. Within the EU-SENSE project, a number of experiments were conducted in 

the laboratory and outdoors as well. 

http://doi.org/10.35467/sdq/144296
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Figure 3. Network architecture 
(ITTI a).
aITTI Sp. z o.o. – Consortium 
Lead and responsible for technical 
architecture.

Date Institution Where

2019 Dec FFI Outdoor ramp-up
2020 Jan FFI Outdoor
2020 Feb FFI Outdoor
2020 Mar FFI Laboratory
Corona Interruption
2020 Jun FOI Outdoor
2020 Aug SGSP Outdoor
2020 Nov TNO Outdoor
2020 Dec TNO Outdoor & Laboratory
2021 May FII Outdoor

Table 2. Schedule of measurements.

The measurement campaigns started at the end of 2019 (Norway FFI). However, the 
process of setting up complex sensing equipment and experiments was error-prone and 
time-consuming. It was not until mid-December when the first useful measurement 
results were available. Table 2 shows the time schedule of the measurements.

Laboratory measurements were planned and started in Spring 2020. During Summer 
2020, FOI and SGSP1 conducted outdoor measurements. In November and December, 
TNO2 conducted measurements, outdoor and in a laboratory as well. It was also extremely 
helpful that they were able to perform measurements in a breeze tunnel. 

Recently, in May 2021, FFI3 again conducted outdoor measurements in Norway. The 
results served as test data.

Figures 4 and 5 give an impression of the FOI measurement setup.

The measurements at a sampling rate of approx. 1 Hz produce a lot of data. 

1Main School 
of Fire Service 
(Poland), Member 
of the EU-SENSE 
Consortium.
2The Netherlands 
Organisation for 
applied and scientific 
research, Member 
of the EU-SENSE 
Consortium.
3Norwegian Defence 
Research Establish
ment, Member of 
the EU-SENSE 
Consortium.
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The essential part of the responses (w/o the many support values like flags, temperatures, 
pressures, etc.) are:

•	 MO sensor: 16 channels;

•	 FPD: 5 channels;

•	 IMS: approx. 900 channels;

•	 PID, EC: 1 channel.

These form a time series of approx. 2000 values which are continuously processed by the 
data-fusion functions of the system.

Task: Sensor Data Fusion

According to (Mitchell, 2007, p. 3), multi-sensor data fusion is defined as follows: The 
theory, techniques and tools which are used for combining sensor data or data derived 

Figure 4. Outdoor experiments 
FOI (June 2020).

Figure 5. Laboratory experiments 
TNO (November 2020).

http://doi.org/10.35467/sdq/144296
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from sensory data, into a common representational format. In performing sensor fusion our aim 
is to improve the quality of the information, so that it is, in some sense, better than would be 
possible if the data sources were used individually.

This is a very general definition and to make it more specific, it has to be explained what 
kind of information is needed in the EU-SENSE context. The information EU-SENSE 
is interested in:

1.	 detection of an incident, that is the release of a harmful substance concentration;

2.	 estimation of the concentration of the released agent;

3.	 estimation of the source (location, strength) of the released agent;

4.	 hazard prediction.

Therefore, the above definition of multi-sensor data fusion translated into the EU-SENSE 
context aims at improving the quality of the detection, concentration/source-term estimation 
and prediction of the area under threat, so that it is, in some sense, better than would be possible 
if the data sources were used individually. 

Detection (in the sense of “detect-to-warn”) is the decision regarding whether an (real) 
incident has occurred or not within a timeframe that still allows preventive action to be 
taken. Incident means the presence of a harmful substance concentration. In this case, the 
detection should follow as early and reliably as possible. Long delays (e.g. minutes) are 
usually not acceptable.

In addition, the concentration estimation should also be better solved using sensor data 
fusion.

In order to make the detection sensitive and simultaneously reliable, we perform detection 
in several steps, namely:

1.	 Anomaly Detection – detecting if the signal is changing;

2.	 Classification – pre-classification into substance groups;

3.	 Identification – determining the substance.

The first step ‘anomaly detection’ ensures that detection is sensitive. However, it has to 
be verified that this anomaly is a real event. The next steps accomplish this verification: 
identification/classification. All these steps provide results in a few seconds.

Figure 6. Subtasks: 
anomaly detection, 
classification/identifi-
cation and concentra-
tion estimation.

Data

Task

Anomaly detection
Calssification
Identification

Concentration-Estimation

Classifiaction

Regression
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Mathematically, our data fusion solves classification and regression tasks. It is classification 
when you want to decide whether a certain sensor response is a significant change, an 
anomaly. Obviously, it is also classification when you decide which agent or which agent 
class is released. However, concentration estimation is a regression task. A certain number 
of µg/m3 or ppm need to be known. 

Detection

As mentioned, detection is performed first by an anomaly detection, that is detection 
of a change, an unusual, possibly harmful situation, in the incoming time series of 
sensor responses. The method we have chosen is sensitive but not specific. This makes 
it necessary to verify whether the detected anomaly is really a harmful incident or is 
merely a false positive. The following chapters describe this detection process in more 
detail. 

Anomaly Detection

Anomaly Detection has been and still is a large area of research and development. In 
the domains of banking, fraud and intrusion detection, cyber security, predictive main-
tenance and others, many different problems have been researched. Characteristics of 
anomaly detection problems are manifold and so are the approaches to solve these prob-
lems (see e.g. Mehrotra, Mohan, and Huang, 2017). 

The following two sections give a short description of how anomaly detection 
is implemented in the EU-SENSE project and show its performance based on 
experimental data.

Method
Anomaly detection is based on raw sensor data collected from the individual sensors. 
These sensors are combined into “sensor nodes” and, at a higher level, a network of sensor 
nodes. Therefore, the anomaly detection can take place on sensor level, at node level and/
or at the network level. We decided to use a straightforward statistical, distance-based 
approach which compares incoming response values against (multi-variate) probability 
distributions learned continuously from previously seen data (online learning) in different 
schemes.

The results of anomaly detection are, eventually, new (one-dimensional) time series (on 
sensor level, node level etc.) of anomaly scores. These anomaly scores are sensitive. This 
is due to the multivariate nature of the many response channels in some sensors or in the 
whole node. If a signal is caused by an incident (or whatever), then it is common that mul-
tiple sensor channels will respond to this signal. This can reinforce the distance measure, 
that is the anomaly score. Figure 8 shows an early example. The upper graph shows the 

Figure 7. Learning principle.

Learning
Window moving

Time
∆tRead

∆tLWin

Sensor Reading
at time t0
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21 Days

Daily variation in 
temperature and

rel. humidity

Sensor Responses (Array of 16 Sensors)
1 Sensor Reading every second

16*21*24*3600 = approx. 30 Mio Values

2018 -04-23 23:38:32 …  2018 -05-15 10:12:37
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Alarming of MO Sensor Array
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Anomaly Score ( Detection )

400

0

Figure 8. Anomaly score filter.

NODE

1 2 3

IMS H2O + Score_1 Score_1 Score_1
- Score_2 Score_2 Score_2

IMS NH3 + Score_1 Score_1 Score_1
- Score_2 Score_2 Score_2

EC Score Score Score
PID Score Score Score
FPD Score Score Score
MO Array Score Score Score

Table 3. Score designation.

responses of the 16 MO Sensor channels and the lower graph shows (among others) the 
time series with the anomaly score in red. 

In particular, when some signal appears in multiple channels (upper graph), then this 
corresponds to a very significant peak in the red anomaly score (lower graph).

Since there are three nodes with quite a lot of sensors involved, the number of different 
scores gets quite complex. Table 3 shows the designations of the single-sensor scores, used 
in the following graphs and explanations:

To keep the designation simple, only the IMS scores have an index to distinguish between 
the positive (Score_1) and the negative spectrum (Score_2). Further, there are sen-
sor-vs-sensor scores, that is the scores that are computed for pairs of sensors in the net-
work. Since we do not use those in the following figures, we omit the details here. All this 
makes the tracing of an anomaly a bit confusing. 

Experimental Review of the anomaly detector
This section shows the performance of the previously described anomaly detection. It is 
based on experimental data sets that were obtained during the measurement campaigns 
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of EU-SENSE. The aim is to show that the anomaly detection robustly detects a real 
incident and that the anomaly detection is sensitive. However, the latter implies that False 
Positives are unavoidable:

•	 It detects small concentrations

•	 It detects signals of harmless substances

•	 It detects artefacts

In this context, it is interesting to reflect for a moment what a false alarm actually is. Is it 
a false alarm when there is a harmless concentration of a substance in the air, for instance 
phosphorus containing fertilizers and the FPD (P channel) responds to that? The FPD 
obviously does exactly what it is supposed to do and, from this perspective, this not a false 
alarm. However, it is a false alarm for emergency personnel since the substance is harmless. 
Therefore, it is necessary to verify, whether an anomaly is a real incident. The following 
discussion contains examples for the above-mentioned anomaly cases.

Anomaly detection caused by a real incident

The first example is from the TNO experiment on 17 December 2020, which was 
recorded as a dedicated validation data set. The experiment took place in a breeze tun-
nel environment, where it is possible to generate defined concentrations, while at the 
same time exposing the EU-SENSE sensor nodes to the same environment. In this 
experiment, Node 1 was placed outside the tunnel, that is, it was not exposed to the 
test substances. Node 2 (with FPD) and Node 3 (without FPD) were inside the tunnel, 
that is to say exposed to the same environment and substance releases. The experiment 
consisted of 

•	 a start-phase without a release.

•	 followed by a NH3 release with a rather low concentration (below AEGL-11).

•	 a TEP release on top of the continuing NH3 flow with fluctuating concentrations 
(two peaks; assumed harmful).

•	 a final phase where first the TEP release and later the NH3 release were shut down.

Figure 9 shows the original, recorded response channels of the FPD on Node 2. These 
responses reflect the concentration development over time. The HNO channel (cyan) 
qualitatively represents the NH3 concentration; the P channel (orange) qualitatively rep-
resents the TEP concentration.

For a test of the Anomaly Detection part, a (real-time) replay was performed on 11.05.2021 
with the original data from this experiment using all three nodes. Replay means that the 
original time series is read and replayed with modified time and processed with the usual 
data fusion functions. Figure 10 shows this for the FPD.

It can be clearly seen that the blue anomaly score rockets upward when the NH3 signal 
starts. Also, note that the score increases further when the orange response (due to TEP 
signal) increases. The appearance of the NH3 signal is also detected by other sensors, for 
example by the IMS (H2O) shown in Figure 11.

1Acute Exposure 
Guideline 

Levels (AEGL); 
we are referring 
to the 10 min. 
values always.

http://doi.org/10.35467/sdq/144296


79

Figure 9. 17.12.2020, FPD, Node 2 
(original).

Figure 10. 17.12.2020, FPD, Node 
2 (replay with score).

In this case, there are three scores: score (EC), score_1, score_2 (pos./neg. spectrum). 
Here, only score_1 rockets upward. According to our naming conventions, score_1 arises 
from the positive spectrum of the IMS. The two other scores do not contribute at all. They 
correspond to the negative IMS spectrum (purple) and to the electro chemical cell (blue).

Does the IMS (NH3) detect the NH3 signal? No, because this is NH3 doped and hence 
not able to detect NH3. Here are the responses and scores of the IMS NH3 + PID.

In the picture of the IMS NH3 + PID responses (Figure 12), there is no increase of the 
anomaly scores at 16:38 when the NH3 is released. However, there is a significant increase 
of score_1 (IMS pos. spectrum) starting at approximately 16:59. At that time, the grad-
ually increasing TEP release started. The increase in score is significant but much smaller 
than for the IMS H2O at the NH3 release. The different scale of the right y-axis should 
be noted (the absolute score values can be compared). The PID score ‘score’ shows no 
anomaly since the NH3, as well as the TEP concentration, are below the detection limit 
of the PID.

The examples presented so far show that the anomaly detector is able to discover real 
incidents even with rather low concentrations involved. Sometimes, this is not desirable, 
namely when the concentrations are so low that they are not relevant.
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Figure 11. 17.12.2020, IMS H20 + 
EC, Node 2 (replay with score).

Figure 12. 17.12.2020, IMS NH3 + 
PID, Node 2 (replay with score).

Figure 13. 17.12.2020, IMS NH3 + 
PID, Node 1 (replay with score).

Anomaly caused by small concentrations

An example taken again from the breeze tunnel experiment. As mentioned, Node 1 was 
placed outside the tunnel and should therefore not be exposed to the substances (NH3, 
TEP). Nevertheless, there was also an anomaly warning on Node 1. 

http://doi.org/10.35467/sdq/144296
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This anomaly was only detected by the IMS (H20). Interestingly, score_1 (IMS positive 
spectrum) started to increase at approximately 16:39:30, that is to say approximately at 
the same time NH3 was released. The anomaly score ‘score_1’ was significant but much 
lower than the corresponding score at Node 2. Therefore, it was suspected that some of the 
NH3 somehow has reached Node 1 located outside the tunnel (perhaps during preparation 
activities outside the tunnel). To verify that, we looked at the (positive) spectrum of the IMS 
H2O. Figure 14 shows this spectrum shortly before and shortly after the detected change.

Indeed, at the position where one expects NH3, a small peak is evolving. It seems plausible that 
a fraction of the NH3 inadvertently escaped the breeze tunnel and caused a response at Node 1.

Anomaly caused by harmless substances

This small, unintended signal detected on Node 1 is also a good example of a harmless 
signal. Actually, the NH3 concentrations in the tunnel during this experiment were harm-
less since they were below AEGL-1. The TEP signal that followed later was the actually 
targeted and assumed harmful release. Other examples of common harmless signals were 
seen in experimental data from the tests performed in April/May 2021 by FFI. These took 
place in a half-closed tunnel environment with many short, traffic-induced signals.

Anomaly caused by an artefact

The following example (Figure 15) illustrates where an artefact causes an anomaly warn-
ing at sensor level. This occurred during the validation experiment on 2020/12/17. The 
sensor, which causes the anomaly, was the MO sensor array at Node 1.

Figure 14. Replay 17.12.2020, IMS 
H20, Node 1, tiny signal.

Figure 15. Example: anomaly by 
artefact.
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The anomaly does not leap to the eye when looking at the time series of the 16 MO chan-
nels. After an adjustment phase (approx. up to 09:35), the development of the time series 
seems to be a bit noisy but altogether quite inconspicuous. There are peaks and spikes, but 
the anomaly detector recognised (‘learned’) this as the normal status. However, if you look 
at the corresponding anomaly score (green) of this sensor, a sharp leap at approximately 
10:22 can be seen.

The reason for this leap is a discontinuity in channel 16 of the MO sensor array at 10:22. 
The channel‑16 time series is almost constant with very low noise and no real signal at 
all. At 10:22 there is a small leap and the series continues again almost constant with 
extremely low noise. This is a clear change and is correctly recognised by the anomaly 
detector.

However, the reason for the change is unknown. In addition, the baselines of the 16 chan-
nels are slightly changing from experiment to experiment and also differ among sensor 
instances. 

In this example, the baseline of channel 16 changed significantly within the experiment 
and, therefore, the anomaly detector gave a warning. The anomaly was not due to a real 
incident. None of the other channels of the MO sensor or any other sensor at Node 1, as 
well as the other sensors in the network (breeze tunnel; basically controlled environment), 
showed any conspicuity. Additionally, sudden response level changes on exactly that chan-
nel of that specific sensor (and no other sensor at the same time) were encountered during 
other experiments. We therefore assume this is an example of an anomaly caused by a sen-
sor artefact. There are several more examples of such kinds of anomalies but, for reasons 
of space, they cannot be discussed here.

To sum up, the anomaly detector is sensitive. It can be applied at sensor level and also 
at node level and network level. However, according to our experience, it is sufficient to 
consider only the sensor level. The node level and network level do not bring much addi-
tional benefit to our experience. The anomaly detector is able to detect real incidents but 
it also detects small signals and artefacts. Therefore, the next step in the detection process 
is to verify whether an anomaly is a real incident, that is to say classification/identification. 

Classification/Identification

The second step in detection of a real incident is identification. Only when a signal is 
identified as harmful (substance, concentration) can one speak of a real incident and raise 
an alarm.

Figure 16. Example: anomaly by 
artefact with anomaly score.

http://doi.org/10.35467/sdq/144296
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Identification is performed for each node because it can be assumed that all sensors at a 
specific node are exposed to the same agent concentration. This is not necessarily the case 
for two distant nodes. Identification should make use of all the technologies available at 
that node, that is to say 

•	 IMS (H2O), positive/negative spectrum, 

•	 IMS (NH3), positive/negative spectrum, 

•	 EC, 

•	 PID, 

•	 MO sensor array. 

In the following we describe two approaches for how we fuse the data from the different 
sensors in order to perform identification. We call these two approaches “fusion approach” 
and “stepwise-approach”. Both approaches have to be considered prototypical since the 
number of substances measured in trials and experiments was limited and only some tar-
get substances (namely NH3, TEP, MeS) could be used. Compared to real chemical agents 
such as sarin, mustard etc. these substances are relatively harmless. It was not possible to 
build up a practically relevant substance library with many target substances in the project 
from scratch. 

Fusion approach

This approach is the prototypical development through fusion of all available sensor infor-
mation at a node with Bayesian networks only. The necessary prior knowledge was gained 
from the experiments in the EU-SENSE project itself (i.e. no knowledge is incorporated 
from the sensor manufacturer) and therefore limited to two substances, NH3 (TIC exam-
ple) and TEP (CWA simulant, with assumed high toxicity).

Stepwise approach

This approach relies solely on the existing sensor technology available at the inferring 
node implicitly including the necessary knowledge of the manufacturer (in the form of 
substance libraries, not available to the project). It consists of the two steps:

•	 Classification, that is assigning the observation to a substance group (e.g. phosphorus 
containing agents), thereby narrowing down the whole range of possible substances. 

•	 Simultaneous Identification & Concentration Estimation through IMS technology 
based on existing substance libraries.

Fusion Approach

This approach makes use of Bayesian Networks which process knowledge contained in 
the so-called conditional probability distributions and prior distributions. This knowledge 
was derived from training data collected during the TNO experiments in November and 
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December 2020. This paper is not the place to explain these methods in depth. Instead, 
we refer to the relevant literature to Bayesian Inference available in abundance, see for 
example Jensen and Nielsen (2007), Mitchell (2007) and Ó Ruanaidh and Fitzgerald 
(1996). 

Bayesian approaches are standard in Multi-Sensor Data-Fusion. Many of the papers on 
CBRN sensor data fusion deal with Bayesian methods. Many of them are concerned 
with source term determination, for example Robins and Paul (2005a, p. 8) and Robins, 
Rapley and Thomas (2005b, p. 7).

Here are just some important terms and concepts of Bayesian networks:

Bayesian inference is about knowledge. The nodes of the network are random Variables 
(X1, X2, ..., Xn). There are observation variables (also called feature variables) and hypothesis 
variables. Hypotheses variables in the EU-SENSE context are variables representing the 
different substances and/or representing the corresponding concentrations. Observation 
(feature) variables are variables representing the sensor responses.

The knowledge is contained in (conditional) probability distributions of the response 
variables given a certain substance together with its concentration. This knowledge is 
used when inferring the substance and concentration from a given observation of the 
sensor response(s). Simply spoken, the knowledge is “directed” from the hypotheses vari-
ables to the observation variables and the inference is “directed” from the observation 
variables to the hypotheses variables. This is sketched in the following simple “Bayesian 
network” (Figure 17).

Bayesian network for identification

The core of the identification is the Bayesian Network shown in Figure 18. The hypotheses 
variables are substance and concentration. Both are discrete variables, that is to say they have 
a finite number of levels. 

The hypothesis variable concentration has four levels, that is to say the concentration values 
are assigned to four classes corresponding to the AEGL (10 min.) values:

•	 LOW (< AEGL-1), 

•	 MEDIUM (< AEGL-2), 

•	 HIGH (< AEGL-3), 

•	 VERY_HIGH (> AEGL-3).

Figure 17. Bayesian network 
illustration.

http://doi.org/10.35467/sdq/144296


85

For the hypothesis variable substance, the following substance classes are used:

•	 NH3

•	 TEP

•	 Other: other substance or somehow inconsistent with respect to the implicit knowledge.

•	 None: Not actually a substance; corresponds to a very low signal.

The other nodes of the Bayesian network are observation variables and correspond to sensor 
response values. Note that not all available sensor response variables are represented in the 
network. The relevant response values have been identified through a relevance analysis 
during training time. Of course, this selection is substance specific, that is to say sensor values 
that neither respond to NH3 nor TEP do not appear here. We used the WEKA tool suite 
(Waikato Environment for Knowledge Analysis) for the relevance analysis. Despite this 
down-selection for simplicity reasons, all sensor channels can easily be added here. 

The mechanics of this Bayesian network are that the observation variables, the sensor 
responses, will produce response values after the system has identified an anomaly. Then, 
with Bayes ‘theorem, the probabilities for the presence of a certain substance and its con-
centration are calculated. This is called Bayesian inference. In our case: after observing the 
sensor responses the probabilities for the four substance classes NH3, TEP, Other, None are 
determined. The knowledge, which enables this inference, is contained in the conditional 
probabilities such as: given the substance is TEP in a concentration of class MEDIUM, 
then the sensor responses of the IMS (H2O), positive/negative spectrum, IMS (NH3), 
positive/negative spectrum, EC, PID, MO sensor array possess certain probability distri-
butions. These (conditional) distributions were determined in the experiments. 

Remarks and limitations

•	 The scope of the classification or identification is limited to four substance classes. 
Unfortunately, no other reliable substance information was available to us in the 
project. Though the Bayesian network can easily be extended with other substances, 

Figure 18. Bayes network 
identification.
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we consider this as a proof-of-concept implementation. It should also be noted that 
despite the fact that the algorithms were implemented in software, they have not 
been optimised for real-world use. Many aspects to filter out real-world artefacts 
would have to be considered for this (e.g. baseline correction, smoothing over time). 
This includes measurement situations (signal side) and sensor artefacts, which per-
haps do not occur often. All this requires many more measurements with the sensors 
in many different environments. 

•	 Those real-world artefacts include the behaviour of different instances of the same 
sensor that maybe too different to model uniquely. This is the reason why there 
are three different PID sensors as response variables in the Bayesian network in 
Figure 18. Actually, the Network relates to one node and every node has only one 
PID. However, the differences in response characteristics of the three PID are too 
large and they need to be treated as different sensors. When applying the network to 
a particular node, only the response of the PID for that node needs to be specified. 
The 5-digit number identifies the proper PID for the node. The other two are not 
specified. Also generally, the input to the response variables can be partial, that is to 
say it is not necessary to specify all the response values. The Bayesian inference will 
nevertheless work properly.

•	 The formulation of the identification problem with the Bayesian network in 
Figure 18 implies the assumption that the node is exposed to a concentration of 
a single substance. This will lead to problems when the presented concentration is 
a mixture of two or more agents. Although the classifier is able to identify NH3 or 
TEP correctly, it will come out with the classification OTHER when the node is 
exposed to a mixture of NH3 and TEP. Actually, this is correct since it is not NH3 
and it is not TEP. It is a mixture. Nevertheless, this is somehow unsatisfactory from 
the application point of view. This phenomenon can be observed with the validation 
dataset recorded by TNO on 17.12.2020. We come back to this during the discus-
sion of the experimental results. 

Stepwise approach

The “stepwise-approach” is an engineering approach relying solely on the existing sensor 
technology at the inferring node including the prior knowledge integrated by the manu-
facturers. The basic idea is to utilise orthogonal sensor fusion in order to reduce the size of 
the IMS identification libraries. Narrowing down the set of possible substance candidates 
avoids false positives (substance identified due to a harmless disturbance signal) as well 
as confusion of substance candidates (overlaps of drift time windows). The substance 

Figure 19. Process  
“stepwise” data fusion.
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libraries contain prior knowledge of the IMS manufacturer. Therefore, no additional 
experiments/tests are necessary to gather response relationship information etc.

As a first step after an anomaly detection, the classification step derives information about 
the substance groups. 

The following substance groups are used in EU-SENSE (Table 4):

This information then is used to reduce the substance library and to obtain the IMS 
results containing simultaneously identification and concentration estimates directly.

Figure 19 sketches the “stepwise approach”. Because of the Classification to classes I 
and IV, a sub selection of the identification occurs (it also results from Default, which is 
always included). The * indicates that the concentration estimates might be fused from 
the results of both IMS sensors.

Concentration Estimation

The estimation of the concentration of a substance is important for the source term deter-
mination as well as for operational reasons. However, concentration estimation is diffi-
cult because the underlying physical process (turbulent Diffusion) is chaotic and, hence, 
fluctuating. Further noise/clutter superimposes the sensor signal resulting in additional 
uncertainties apart from the uncertainties related to the sensor itself. All this makes con-
centration determinations rough estimates. Together with the fusion approach comes a 
coarse classification of the concentration with four discrete levels low, medium, high, very 
high. This is coarse and, for several reasons, one would like to have a quantitative estimate. 
Therefore, a separate method was developed to determine the concentration.

Estimating a quantitative concentration from given sensor values is a typical regression 
problem. Since the concentration determination should use all sensors responses avail-
able at a specific node, it is also a fusion problem. This regression/fusion problem again 
can be solved by a Bayesian network. In contrast to the Bayesian network we discussed 
before, all variables are now continuous, in particular the hypothesis variable concentra-
tion. Figure 20 shows the network for the concentration estimation.

The estimation can start after the identification has happened. Since identification is 
already accomplished, there is only one hypothesis variable, namely concentration. The 
parameters are of course substance dependent and the inference result, after putting in all 

Substance groups
(result of 
classification)

Description Determining 
sensor

Chemical I Compounds containing the element Phosphorus FPD
Chemical II Compounds containing the element Chlorine IMS
Chemical III Compounds containing the element Sulphur FPD
Chemical IV Compounds containing the element Nitrogen FPD
Toxic Industrial 
Chemicals V

Compounds containing the element Arsenic FPD

Default Compounds not assigned to the other classes 
but generally detectable by the involved sensors

n/a

Table 4. EU-SENSE substance 
groups.
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the sensor responses, is the probability distribution of the concentration, characterised by 
a mean and a variance.

In order to provide this network with knowledge, we need data. Knowledge means how 
the different sensors respond to the exposure of certain substance concentrations, that 
is to say quantitative intensity and time characteristics (sensor/substance dependent). 
Again, the quantitative TNO measurements in the lab (NH3) and breeze tunnel (TEP) 
in November/December 2020 delivered the necessary data. For both substances, the sen-
sor nodes were completely setup and exposed simultaneously to defined concentrations. 
There were reference calculations and additional, independent measurements for the con-
centrations. Several concentration levels were covered in both an upward stair fashion and 
a downward stair fashion with cleaning phases in between. Based upon this data, we were 
able to derive the necessary conditional probability distributions and regression parame-
ters containing the knowledge.

For pre-training of the algorithms, a data extraction tool was developed that converted 
reference data into dedicated training data sets. These datasets were then finally used for 
training of the Network parameters (mean, standard deviation, regression parameter) for 
a single sensor, that is the prior knowledge was integrated independently for each sensor. 
The training algorithm used was an Expectation Maximization (EM) algorithm. This pro-
cess also demonstrates the extensibility of the approach. Sensors can be integrated step-by-
step on top of an existing configuration.

Experimental Review

In the next sections, we discuss some experimental results that show how the classification/
identification and concentration algorithms perform in the field.

TNO reference measurements 23.11.2020

As a first test, we execute the concentration estimation and identification on ammonia 
data recorded by TNO on 23.11.2020. All nodes/sensors were exposed to the same con-
centrations at the same time. The concentrations were unknown (to us) and the tests were 
performed in a controlled environment with clean sensors.

Figure 21, showing the raw sensor responses of the FPD (Node 1), gives an impression of 
the concentration development over time.

Figure 20. Bayesian network,  
concentration, TEP.
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Node 1 was equipped with all available sensors. Node 3 did not contain an FPD. Therefore, 
on Node 1, information from FPD (HNO), PID and IMS (H2O) was used, while on 
Node 3 only PID and IMS (H2O) were used for the estimation process (MO-array and 
EC not integrated here).

Figure 22 shows the corresponding concentration estimates. The right plot is from Node 
3, that is without an FPD. 

There are slight differences but the results are comparable. At Node 3, the noise is higher. 
Obviously, the fusion led to the stabilising effect in case more sensors are involved.

To further visualise the effects of orthogonal fusion, Figure 23 (left) shows the result for 
Node 1 using only data from the IMS (H2O). It seems as if the algorithm based solely on 
responses from the IMS (H2O) alone overestimates the concentration. In addition, the 
noise is higher here.

The right graph of Figure 23 shows the estimated probabilities of defined concentra-
tion classes. These are derived from the concentration estimation process. The algorithm 

Figure 21. 23.11.2020, TNO, FPD 
Node 1.

Figure 22. 23.11.2020, 
Concentration estimate Node 1 vs. 
Node 3.

Figure 23. 23.11.2020, 
Concentration estimate Node 1, 
IMS only.
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estimates a probability distribution for the concentration, characterised by a mean and a 
variance. With this distribution, the probabilities of the concentration classes are calcu-
lated (assuming normal distribution).

Blue corresponds to the probability of the concentration in class LOW, that is smaller 
than AEGL-1.1 Orange corresponds to class MEDIUM, that is AEGL-1 < concentra-
tion < AEGL-2 and Grey corresponds to class HIGH, that is AEGL-2 < concentration < 
AEGL-3. This visualises the uncertainty estimate. The corresponding plots for Node 1 (all 
sensors) and Node 3 (w/o FPD) can be found in Figure 24.

The class probabilities are just a coarsening of the concentration results in Figure 23 (left). 
The information is essentially the same. In the middle of the up- and down-staircase of 
concentration, the concentration estimate is MEDIUM, that is between AEGL-1 and 
AEGL-2 (Figure 24). 

These results are all generated from the concentration estimation step. 

The identification results in this case are rather unambiguous: For the complete relevant 
period, they deliver probability 1 or almost 1 for NH3. See Figure 25. 

The controlled environment and the clean sensors almost certainly explain this perfect 
result. You should not expect such good results in all practical situations.

TNO Validation data set (17.12.2020)

This experiment was already referred to when discussing the performance of the anomaly 
detector. For additional information on anomaly detection and experimental setup, we 
refer to 4.1.1.2 Experimental Review of the anomaly detector (section: Anomaly detec-
tion caused by a real incident). 

1AEGL 
(10 min) for 

NH3: 30 ppm 
(AEGL-1), 220 

ppm (AEGL-
2), 2700 ppm 

(AEGL-3) 
according to 
https://www.
epa.gov/aegl/

ammonia- 
results- 

aegl-program 
(12.11.2021).

Figure 24. 23.11.2020, 
Concentration estimate Node 1 vs. 

Node 3, class probabilities.

Figure 25. 23.11.2020, 
Identification V1, Nodes 1 and 3.
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Figure 26 displays the results of the classification function for that test. This can be com-
pared tithe timeline against Figure 11. The left plot is for Node 2 (exposed), the right 
plot is for Node 1 (not exposed). The colours indicate different classifications/substance 
classes. These are drawn semi-transparent, that is mixed colours correspond to situations 
where several classes have been identified.

Grey is for the Default class, that is to say no other class could be identified. This naturally 
always stands alone since it indicates that no other substance class could be identified. 
Blue is for Chemicals IV (Nitrogen), Red is for Chemical I (Phosphorous), Cyan is for 
Chemicals II (Chlorine). At the times where both a NH3 and a TEP signal were applied, 
we have a mixed colour (dark magenta) superimposed by blue and red.

The short Grey peak early in the left graph corresponds to a short anomaly detected at that 
time on the MO-array. From approx. 16:38 onward the NH3 signal is detected as “Chemicals 
IV” and from approx. 16:53 also the TEP signal is detected as “Chemicals I” on Node 2.

Node 1 was not intentionally exposed. Nevertheless, anomalies were identified here as 
well as already explained in section 4.1.1.2. In contrast to Node 2 however, the classifi-
cation almost always results in “Default”. There are some very short cyan peaks, which 
indicate a signal anomaly in the area of were usually Chlorine on either the IMS H2O or 
the IMS NH3 would be expected. 

Additionally, the original dataset was processed using the same batch tools as the test from 
23.11.2020 documented in the previous section. Figure 27 visualises the result of apply-
ing identification and the concentration estimation to data of Node 2. The small picture 
below the plots visualises the FPD raw data as a qualitative reference, which reflects the 

Figure 26. Replay 17.12.2020, 
classification.

Figure 27. 17.12.2020, Data 
fusion, Node 2.
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time development of the experiment (cyan – the HNO channel, responding to NH3; 
orange – the Phosphorous channel, responding to TEP).

As soon as the NH3 signal pops up, the identification probability for NH3 goes to 1 and 
the concentration estimate increases. The actual absolute concentrations are not known 
to anybody but TNO, since this is a validation dataset. However, we assume that the base 
level concentration of NH3 is actually quite low. The noisy fluctuations of the concentra-
tion estimate are due to missing smoothing over time. 

This situation does not change for a while until the TEP signal exceeds a certain level. 
Now, the identification jumps to “Other”! As already explained in 4.1.2.1, the reason 
for this is the construction of the Bayesian network that performs the identification. It 
assumes that the sensor is exposed to a single substance. Therefore, when detecting neither 
pure NH3 nor pure TEP, this contradicts the prior trained knowledge of the net. With that 
in mind, the output “Other” is completely correct. Nevertheless, this is not satisfactory 
of course. It would be possible to modify the network so that it is able to result in a list of 
probabilities of different substances, instead of being decisive for one substance (multiple 
simultaneous binary classifications). 

The exposition of a mixture of substances in the validation experiment posed is a good 
stress test for the system. Moreover, it reveals that mixtures can be a general problem for 
chemical sensors: The NH3 in the sample massively influences the signal of the IMS H2O. 
TEP does not show the usual expected peak positions anymore. Instead, the peaks are 
shifted to positions comparable to the IMS, which has been doped with NH3. 

This is an important example that the chemistry of a mixture in combination with the 
chemistry of the chemical sensor can literally lead to unpredictable effects. The best way 
to overcome this is probably to use as many sensors as possible and hope that most sens-
ing technologies are not influenced too much by unwanted chemical side effects, thereby 
distorting the correct result.

Conclusions

The paper describes our work in the EU-SENSE project. The focus is on multi-sensor data 
fusion of chemical point sensors in a network developed in this project. The aim of data 
fusion was to improve the detection capabilities and the estimation of the concentration 
of the detected substance(s). 

Detection is a classification task and improvement of detection means enhancing the 
discriminatory power of the classifier, that is to say reducing false alarms, false positives 
and false negatives. This was achieved by a two-step procedure. First, a sensitive anom-
aly detection identifies significant changes in the input stream of sensor responses by 
comparing the actual sensor response input (-vector) with the responses in a time-period 
in the past. This leads unavoidably to anomalies caused by harmless events. Therefore, 
in a second identification step, this anomaly has to be verified as a real incident. 
Mathematically, the fusion is achieved by means of statistical and Machine Learning 
methods. Bayesian networks proved to be useful, in particular when fusing information 
from multiple sensors. 

Experiments carried out during the project, in order firstly to gather the necessary data 
and secondly to validate the developed approach, show that detection and concentra-
tion estimation works satisfactorily well. However, the set of substances to detect is very 
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limited. It was not possible to build up a practically relevant substance library with many 
target substances within the project from scratch. 

The sensors in the network are chemical point detectors, partially very sophisticated, 
mature but also costly. From an area coverage point of view, such a network is costly. 
Therefore, future work should consider whether standoff-detectors can be integrated in 
such a network and how their results can be fused.
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