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Introduction
Nowadays, universities are capable of collecting data with 

reference to their students in electronic format. As a result, 
there is an urgent need to effectively transform large volumes 
of data into knowledge to improve the quality of managerial 
decisions and to predict academic performance of students 
at an early stage. As a part of artificial intelligence (AI) 
techniques recently adopted in a wide variety of human life 
applications [1, 2], various machine learning (ML) approaches 
have been increasingly applied to analyse educational data, 
such as student scores, to concentrate academic assistance 
on students as well as to improve the university training 
programs. ML is an especially appealing alternative in the 
field of engineer training and education as it is difficult or 
unfeasible to develop conventional algorithms to perform 
required tasks [3, 4]. 

S.S. Abu-Naser, et al. (2015) [4] developed an artifical 
neural network (ANN) model for predicting student 
performance at the Faculty of Engineering and Information 

Technology, Al-Azhar University, based on the registration 
records of 1407 students using a feed forward back 
propagation algorithm for training. The model was tested 
with an overall result of 84.6%. E.Y. Obsie, et al. (2018) [5] 
developed a neural network model for predicting student 
cumulative grade point averages for the 8th semester (CGPA8) 
and designed an application based on the predictive models. 
The real dataset employed in the study was gathered from 
134 students at the Hawassa University School of Computer 
Science that graduated in 2015, 2016, and 2017. It is shown 
that the student progress performance, which is measured 
by CGPA8, can be predicted using scores from their first-, 
second-, and third-year courses. Z. Iqbal, et al. (2017) [6] 
utilized collaborative filtering (CF), matrix factorization 
(MF), and restricted Boltzmann machine (RBM) techniques 
to systematically analyse real-world data collected from 225 
undergraduate students enrolled in the Electrical Engineering 
program at the Information Technology University (ITU) 
from which the academic performance of the ITU students 
was evaluated. It was shown that the RBM technique was 
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better than the other techniques in predicting student 
performance in the particular course. S.D.A. Bujang, et 
al. (2021) [7] introduced a comprehensive analysis of 
machine learning techniques to predict final student grades 
in first semester courses by improving the performance of 
predictive accuracy. The performance accuracy of six well-
known machine learning techniques, namely, decision tree 
(J48), support vector machine (SVM), naïve bayes (NB), 
K-nearest neighbour (K-NN), logistic regression (LR), and 
random forest (RF) using 1282 student course grades were 
presented and followed by a multiclass prediction model to 
reduce the over-fitting and misclassification results caused by 
imbalanced multi-classification using the Synthetic Minority 
Oversampling Technique (SMOTE) with a two feature 
selection method. It was shown that the proposed model 
integrated with RF had significant improvement with the 
highest f-measure of 99.5% [7]. 

It is worth mentioning that most of the aforementioned 
ML approaches were conducted in a deterministic manner. 
Hence, there is a need to develop a probabilistic model that 
is capable of providing well-predicted results as well as 
estimating the confidence of the results through associated 
intervals. Such a result is more relevant for experimental data 
on student exam scores rather than a single point estimation 
because, even with the same student, scattered results can be 
obtained from different series of experiments.

In training programs at engineering universities, 
specialized mini projects (SMPs) play an important role as 
they progressively provide knowledge as well as accumulate 
conceiving, designing, implementing, and operating skills 
necessary for their FYP, which is an integrated topic to solve 
a practical problem of the particular field of engineer training. 
This article applies a machine learning approach to predict FYP 
and final CGPA results from those SMPs based on which the 
influence of SMPs on the FYP and CGPA can be evaluated in 
a data-driven manner. A case study is conducted by collecting 
2890 datapoints in the form of score results from eight SMPs, 
one FYP, and the CGPA of a group of 289 engineering students 
that graduated in 2022 in Hanoi. Then, two deep learning 
probabilistic models based on BNNs are established for FYP 
and CGPA predictions. It is shown from the obtained results 
that the proposed approach is a practical tool providing quick 
and reasonable analysis results such as the feature importance 
score of an individual SMP and the estimated FYP and CGPA 
results. Furthermore, a relatively close estimation can be 
captured from the BNN model for CGPA, providing useful 
information for academic management.

Stochastic model using BNNs
As pointed out by various authors, a major obstacle to the 

data-driven method is the scarcity of relevant data, and this 
problem becomes accentuated when studying the obtained 
scores of various individual students [8-12]. Even with data 

in hand, there exist unavoidable deviations between them 
[13-14]. Thus, this study proposes to engineer a probabilistic 
machine learning model on the basis of BNNs rather than 
deterministic ones as done in the reviewed works. The 
advantage of such a probabilistic model is that it is capable 
of predicting quantities of interest such as the FYP score or 
CGPA, as well as estimating the amount of uncertainty that 
is associated with the prediction values. It is evident that the 
more data available, the more accurate the model, and vice 
versa. In summary, the key contribution of this article is to 
propose a probabilistic ML model to predict the FYP score 
and CGPA results from the given scores of SMPs so that 
the effect of an individual SMP as well as FYP on the final 
performance of students can be evaluated. 

We begin by briefly reviewing the ANN to set up 
mathematical symbols and terminology. Given a dataset 
D=[X,Y], the ith data sample is denoted by Xi=[xi,1,…,xi,n] 
with n being the number of features. Herein, each feature is 
an input related to SMP and FYP results. It is desirable to 
develop a non-linear mapping from X to Y, i.e., Yi=f(Xi). A 
standard architecture of ANN consists of an input layer, an 
output layer, and one or many hidden layers with the total 
number of layers of the ANN being L. Each layer consists 
of various neurons that are fully connected with all neurons 
in neighboring layers. Mathematically, a neuron j at layer 
l could be described by a linear transformation plus a non-
linear activation function, as follows:
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where 𝑌̂𝑌𝑖𝑖 is a prediction of 𝑌𝑌𝑖𝑖, and 𝑓𝑓𝑙𝑙 with 𝑙𝑙 = 1, … , 𝐿𝐿 denotes transformation operations 

at layer 𝑙𝑙 in the ANN. The network will be iteratively trained to determine the optimal 

values of 𝑊𝑊𝑙𝑙 that minimize the discrepancy between 𝑌̂𝑌𝑖𝑖 and 𝑌𝑌𝑖𝑖. 

BNN is a probabilistic deep learning model that combines the high prediction 

performance of ANN with the ability to estimate uncertainty of the Bayes theory [16]. 

In the authors’ opinion, the model is especially suitable for working with not-so-

abundant collected data owing to two reasons: (i) in practice, similar series of 

experiments with identical input parameters still provide different results due to 

unavoidable uncertainty; and (ii) fitting an ANN with many parameters to a limited 
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the high prediction performance of ANN with the ability to 
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estimate uncertainty of the Bayes theory [16]. In the authors’ 
opinion, the model is especially suitable for working with 
not-so-abundant collected data owing to two reasons: (i) in 
practice, similar series of experiments with identical input 
parameters still provide different results due to unavoidable 
uncertainty; and (ii) fitting an ANN with many parameters to a 
limited database may cause the over-fitting problem, i.e., ANN 
is likely to yield low-accuracy results on new data despite being 
well trained. In other words, it is necessary to not only perform 
prediction of FYP and CGPA results but also to estimate how 
much confidence we have about the prediction results.

For this purpose, rather than assigning the deterministic 
values for weight W of the neural network, BNN uses a 
Gaussian probability distribution for W as below:
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where μ and σ denote the mean and standard deviation 
matrices of W and ϵ is the noise drawn from a zero-mean 
unity-variance normal distribution. Then, μ, σ are parameters 
to determine through the learning process. 

Note that the output of BNN is a probability distribution, 
thus a specialized loss function L is required to measure the 
model’s performance. The adopted metric is the Kullback-
Leibler divergence (KL) whose formula is:
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Next, the optimal values of μ* and σ* are the solutions of 

the following minimization problem: 
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𝜇𝜇∗, 𝜎𝜎∗ = argmin
𝜇𝜇,𝜎𝜎

𝐾𝐾𝐾𝐾(𝑞𝑞(𝑊𝑊|𝜇𝜇, 𝜎𝜎)||𝑝𝑝(𝑊𝑊|𝐷𝐷)). (5) 

Via the Bayes’ rule, 𝑝𝑝(𝑊𝑊|𝐷𝐷) can be calculated as below: 

𝑝𝑝(𝑊𝑊|𝐷𝐷) = 𝑝𝑝(𝐷𝐷|𝑊𝑊)𝑝𝑝(𝑊𝑊)
𝑝𝑝(𝐷𝐷) . (6) 

Substituting Eq. (6) into Eq. (4), the loss function 𝐿𝐿 is rewritten as follows:  

𝐿𝐿 = 𝐸𝐸𝑞𝑞(𝑊𝑊|𝜇𝜇, 𝜎𝜎) log 𝑝𝑝(𝐷𝐷) − 𝐸𝐸𝑞𝑞(𝑊𝑊|𝜇𝜇, 𝜎𝜎) log 𝑝𝑝(𝑊𝑊) − 𝐸𝐸𝑞𝑞(𝑊𝑊|𝜇𝜇, 𝜎𝜎) log 𝑝𝑝(𝐷𝐷|𝑊𝑊). (7) 

This loss function can be approximated from observed discrete data as follows: 

𝐿𝐿 = 1
𝑁𝑁𝑠𝑠

∑[log 𝑞𝑞(𝑊𝑊𝑖𝑖|𝜇𝜇, 𝜎𝜎) − log 𝑝𝑝(𝑊𝑊𝑖𝑖) − log 𝑝𝑝(𝐷𝐷|𝑊𝑊𝑖𝑖)],
𝑁𝑁𝑠𝑠

𝑖𝑖=1
 (8) 

where 𝑁𝑁𝑠𝑠 is the total number of samples. 

Next, the gradients of the loss function with respect to 𝜇𝜇 and 𝜎𝜎 are derived by: 

Δ𝜇𝜇 = 𝜕𝜕𝜕𝜕(𝑊𝑊|𝜇𝜇, 𝜎𝜎)
𝜕𝜕𝜕𝜕 + 𝜕𝜕𝜕𝜕(𝑊𝑊|𝜇𝜇, 𝜎𝜎)

𝜕𝜕𝜕𝜕  

Δσ = 𝜕𝜕𝜕𝜕(𝑊𝑊|𝜇𝜇, 𝜎𝜎)
𝜕𝜕𝜕𝜕 × 𝜖𝜖 + 𝜕𝜕𝜕𝜕(𝑊𝑊|𝜇𝜇, 𝜎𝜎)

𝜕𝜕𝜕𝜕 . 
(9) 

Finally, 𝜇𝜇 and 𝜎𝜎 are updated using a small learning rate 𝛼𝛼 as follows:  

𝜎𝜎 ← 𝜎𝜎 − 𝛼𝛼 × Δ𝜎𝜎;  𝜇𝜇 ← 𝜇𝜇 − 𝛼𝛼 × Δμ. (10) 

Case study - Database on score results of SMPs, FYP and CGPA 

In the postgraduate training program of civil engineers, a student is required to 

pass all the subjects including eight specialized mini projects before being qualified to 

conduct his/her final year project. The SMPs consist of: Design of Architecture (DoA), 

Design of Foundation (DoF), Mechanism of  Reinforced Concrete Structures (MoRCS); 

Design of Reinforced Concrete Buildings (DoRCB); Design of Structural Steel 

Buildings (DoSSB); Construction Technology 1 (CT1); Construction Technology 2 

(CT2); and Construction Management (CM) that will be numbered from SMP.1 to 

SMP.8, respectively. Each individual SMP provides students with the corresponding 

knowledge and professional skill that will be integrated in his/her FYP to design and 

build a civil/industrial building in real situation. It is noteworthy that the SMPs’ and 

 (5)

Via the Bayes’ rule, p(W|D) can be calculated as below:
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where Ns is the total number of samples.
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Case study - Database on score results of SMPs, FYP 
and CGPA

In the postgraduate training program of civil engineers, 
a student is required to pass all the subjects including eight 
specialized mini projects before being qualified to conduct 
his/her final year project. The SMPs consist of: Design 
of Architecture (DoA), Design of Foundation (DoF), 
Mechanism of  Reinforced Concrete Structures (MoRCS); 
Design of Reinforced Concrete Buildings (DoRCB); 
Design of Structural Steel Buildings (DoSSB); Construction 
Technology 1 (CT1); Construction Technology 2 (CT2); and 
Construction Management (CM) that will be numbered from 
SMP.1 to SMP.8, respectively. Each individual SMP provides 
students with the corresponding knowledge and professional 
skill that will be integrated in his/her FYP to design and build 
a civil/industrial building in real situation. It is noteworthy 
that the SMPs’ and FYP’s exams are all conducted in the 
form of oral defence. As a result, all the aforementioned 
SMPs significantly influence the FYP, which together with 
all theoretical subjects and SMPs contributes to the CGPA 
(Fig. 1).
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Fig. 2. Score histograms of SMP.1-DoA and SMP.2-DoF. 

Fig. 1. Projects in training program of civil engineers in HUCE.

In this research, a dataset of 2890 scores of eight SMPs, 
one FYP, and the CGPA is collected from 289 civil engineers 
who graduated from Hanoi University of Civil Engineering 
(HUCE) in 2022. Figs. 2-5 display the histograms of all the 
score results of their SMPs, FYP, and CGPA on the 4-point 
scale, showing clear visualization of the range of values as 
well as their distributions. 
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It can be seen in Fig. 2 that the score results of SMP.1-DoA 
of the investigated 289 students were quite high, among which 
74 students obtained 4.0, whereas the biggest group was 3.0 
with 111 students. There were 67 students that earned a 3.5 and 
the number of students receiving scores of 2.5, 2.0, and 1.5 
were 11, 21, and 5, respectively. It is noted that although this is 
the first SMP of engineering students in the university program, 
there is not much calculation in this task of architectural design. 
The remaining seven SMPs are all critical to students as they 
are curtailed to train them on the design as well as construction 
of buildings. It can be observed in the distributions of  these 
SMP scores that the group of 3.0 is almost dominant, except the 
cases of SMP.2-DoF and SMP.5-DoSSB, of which the dominant 
group was 2.0 (Figs. 2 and 3). It is shown in Figs. 3 and 4 that 
the distribution of the main SMPs in the program were similar 
to each other. Meanwhile, it can be observed in Fig. 5 that the 
distribution of FYP results was quite standard, whereas there 
is a regression trend of the number of students with the higher 
scores in the CGPA results.

Analysis results on FYP and CGPA using BNN model 
In this study, the adopted architecture of the BNN for FYP 

scores is 8/16/16/1. The model consists of an input layer with 8 
neurons, 2 hidden layers with 16 neurons, and an output layer 

with one neuron corresponding to the FYP result, as graphically 
illustrated in Fig. 6A. The neurons in the input layer correspond 
to the score results of SMP.1 to SMP.8. Since the data size is 
moderate, it is reasonable to avoid using too deep architectures 
of many hidden layers as well as wide layers with a significant 
number of neurons, which may lead to a pronounced increment 
of parameters to determine. Besides, the number of neurons for 
the hidden layer is set to 16 since it should be a power of 2 to be 
convenient for the memory of the computer. For the proposed 
BNN model, each neuron has two parameters to be determined, 
characterizing the probability distribution of its weight. At 
the beginning of learning, they are initialized as a normal 
distribution with zero mean and unity standard deviation. For 
prediction of CGPA, the corresponding BNN architecture is 
9/16/16/1 in which the FYP score in the dataset is combined 
with the SMPs as the 9th element of the input layer (Fig. 6B).
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Fig. 6. Graphical representation of BNN whose weights are 
characterized by probability distributions.

Updating the model’s weights as described in Eq.(10) is 
based on the Adam Optimization Algorithm belonging to 
the first-order gradient descent optimization family, which 
gradually adapts the model’s weights by a small amount 
after each iteration to reduce the loss function. The number 
of updates is controlled through a hyper-parameter of 0.001. 
This value can also be referred to as the learning rate that 
was determined via a preliminary test to ensure the learning 
process is convergent within a reasonable learning time. It is 
noted that a small learning rate will unnecessarily increase 
learning time, whereas a large value could lead to premature 
results. On the other hand, pre-processing standardization 
is adopted to obviate the scale difference issue between 
different features with different physical meanings. By 
utilizing the aid of the deep learning library Pytorch for 
building the overall framework, the deep probabilistic 
library Pyro [17] for establishing the BNN-based data-
driven model, Pandas for data management, scikit-learn 
library [18] for data standardization, and Matplotlib for 
data visualization, the implementation of the proposed data-
driven framework can be realized in this study. 

In this study, the investigated database is split into three 
non-overlapping datasets, namely, the training, validation, 
and testing sub-sets with a ratio of 60:20:20, corresponding 
to data from 173, 58, and 58 students.
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After being built, the probabilistic models were trained 
with the training database mentioned in the previous section. 
Figs. 7A and 7B depict the learning curves of the BNN 
models of FYP and CGPA results, respectively, showing 
how loss functions evolve versus the number of training 
iterations (epochs) on both training and validation datasets. 
In the following paragraphs, the corresponding results of 
the BNN model for CGPA will be given in parentheses. 
The KL loss function of FYP (CGPA) quickly dropped for 
epochs from 0 to 500, before gradually decreasing to values 
around 0.035 and 0.02 (0.03 and 0.025) on the training and 
validation datasets, respectively. After that, a steady trend 
is observed, i.e., no clear improvement is obtained, until 
the number of epochs reached 2000. For epochs 1300 to 
1400, there is less fluctuation in loss function than the other 
intervals. Hence, an iteration value of 1300 is selected as the 
final configuration of the BNN model. 
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and validation datasets for (A) FYP and (B) CGPA. 

The effect of each SMP on FYP and CGPA results can be investigated via a 

feature importance study. Importance scores will be assigned for all SMPs, a high score 

means that the corresponding SMP has a significant impact on the FYP/CGPA and a 

low score means there is less impact. The SMPs are ranked based on their importance 

score. Such results provide understanding about the correlation between the projects and 

helps students optimize their learning strategy to achieve desired final scores. The 

permutation feature importance method is used along with the proposed data-driven 

model. Herein, a feature refers to an SMP score. The simple, yet effective, core idea of 

this method is to permute the values of features and evaluate the change in prediction 

errors. A permuted feature means that original values of this feature are shuffled among 

data samples while other features remain unchanged. If a permuted feature incurs large 
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Fig. 7. Evolution of the KL loss function against number of 
iterations on training and validation datasets for (A) FYP and (B) 
CGPA.

The effect of each SMP on FYP and CGPA results can 
be investigated via a feature importance study. Importance 
scores will be assigned for all SMPs, a high score means that 
the corresponding SMP has a significant impact on the FYP/
CGPA and a low score means there is less impact. The SMPs 
are ranked based on their importance score. Such results 
provide understanding about the correlation between the 
projects and helps students optimize their learning strategy 
to achieve desired final scores. The permutation feature 
importance method is used along with the proposed data-
driven model. Herein, a feature refers to an SMP score. The 
simple, yet effective, core idea of this method is to permute 
the values of features and evaluate the change in prediction 
errors. A permuted feature means that original values of this 
feature are shuffled among data samples while other features 
remain unchanged. If a permuted feature incurs large errors, 
this feature is important and contributes significantly to 
the prediction results. Hence, all features will be permuted 
one by one, and the respective error will be calculated 
for each case. Next, these errors are sorted in descending 
order, and importance scores are derived. Since the BNN 
is a probabilistic model, the feature importance results 
obtained with BNN are random variables. Thus, one repeats 
the feature importance calculations 100 times and then 

derives their statistical characteristics such as mean, min, 
and max values. The influence of SMPs on a student’s final 
performance on their FYP and CGPA in terms of importance 
score are shown in Fig. 8A and Fig. 8B, respectively.
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Fig. 8. Feature importance graph of SMPs’ influence on (A) FYP 
and (B) CGPA.

It can be observed from Fig. 8A that, compared to the 
remaining SMPs, the mini projects of DoSSB and MoRCS 
have more pronounced influence on FYP results. It is noted 
that in the training program the SMP and FYP have 1 and 
10 credits, respectively (each credit equals to 15 hours of 
lecturing). It can be seen in Fig. 8B that the influence of the 
FYP on CGPA, which is counted from a total of 168 credits, 
is most significant while MoRCS holds the second position. 
The large gap between the feature importance scores of 
FYP and MoRCS is reasonable due to their credit relative 
ratio of 10:1. Fig. 8 also proves that reinforced concrete and 
steel structures are the leading applications with significant 
distributions currently in the field of construction.

Next, the final performance of the trained model is 
evaluated on the test dataset and the prediction results of 
FYP and CGPA are demonstrated in Fig. 9. 
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Fig. 9. Prediction results of (A) FYP scores and (B) CGPA. 
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FYP is not as close as expected in Fig. 9A, the predicted points of CGPA lie relatively 

close to the ideal line in Fig. 9B. Specifically, the mean relative errors of predicted FYP 

and CGPA results are 12.1%  and 6.8%, respectively. These results qualitatively confirm 

the viability of the proposed BNN model for CGPA. 
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based on the results of eight SMPs, which are considered as a characteristic of the 

training program for engineering students. Probabilistic machine learning models based 

on the BNN were introduced and the theoretical foundation of the model and key 

parameters of the proposed approach were described, followed by a case study using a 

database of 2890 score results of SMPs, FYP, and CGPA from a group of civil engineers 

that graduated in 2022 in Hanoi. One of the main results of the proposed model is that 

it can be utilized to evaluate the influence of an individual SMP on a student’s final 
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that the subjects commonly applied in practice also contribute a more significant 
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Fig. 9. Prediction results of (A) FYP scores and (B) CGPA.

It is shown in Fig. 9 that for each data point (shown 
in the dot symbol), its X-coordinate denotes true FYP 
scores from the database while the Y-coordinate is a 
value predicted by the model. Ideally, a perfect model 
will provide the same results as those from the database, 
as highlighted by the red 45-degree line. While the BNN 
model for FYP is not as close as expected in Fig. 9A, the 
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predicted points of CGPA lie relatively close to the ideal 
line in Fig. 9B. Specifically, the mean relative errors of 
predicted FYP and CGPA results are 12.1%  and 6.8%, 
respectively. These results qualitatively confirm the 
viability of the proposed BNN model for CGPA.

Conclusions
This study applied a data-driven method for assessing 

the FYP score and CGPA based on the results of eight 
SMPs, which are considered as a characteristic of the 
training program for engineering students. Probabilistic 
machine learning models based on the BNN were 
introduced and the theoretical foundation of the model 
and key parameters of the proposed approach were 
described, followed by a case study using a database 
of 2890 score results of SMPs, FYP, and CGPA from a 
group of civil engineers that graduated in 2022 in Hanoi. 
One of the main results of the proposed model is that it 
can be utilized to evaluate the influence of an individual 
SMP on a student’s final performance in terms of FYP 
and CGPA. It was shown from the results of the case 
study that the subjects commonly applied in practice also 
contribute a more significant influence. In addition, the 
BNN model for CGPA is capable of providing relatively 
close predictions with a mean relative error of 6.8%. 
Furthermore, the application of the data-driven model 
is straightforward as it is built based on open source 
libraries and the user-friendly programming language, 
Python, without requiring any specialized software.

For the next step of the study, other models such as 
straight artificial neural network and drop-out neural 
network can also be incorporated for comparison purposes. 
Furthermore, one can complement the database with the 
score results of all students that graduated before, during, 
or after the COVID-19 pandemic to gain an overall 
picture to propose appropriate solutions to improve 
academic activities of engineering universities, where 
the projects play very important role for undergraduate 
students.
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