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Abstract. Mathematical model of the process of water softening using ion exchange pre-treatment of waters to desalination, with a view to removal of scale 

forming components, such as calcium and magnesium, are formed in the paper. In this process, no additional chemicals, except for brines formed during 

desalination, are required for regeneration of ion-exchanger in operation cycles. An asymptotic approximation of a solution of a corresponding model 
problem is constructed. Theoretical description and modelling assumptions included the set of differential equations of mass balance, initial, boundary and 

operational conditions. The paper deals with the development of a computer model for description and prediction of the performance of ion exchange 
columns. 
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MODELOWANIE MATEMATYCZNE SYNGULARNEGO ZABURZONEGO PROCESU 

ZMIĘKCZANIA WODY W FILTRACH SODOWO-KATIONOWYCH 

Streszczenie. W pracy opracowano matematyczny model procesu zmiękczania wody przy użyciu wstępnej obróbki wody poprzez wymianę jonową 
do odsalania w celu usunięcia składników tworzących kamień, takich jak wapń i magnez. W procesie tym dla regeneracji wymiennika jonowego w cyklach 

roboczych nie trzeba wykorzystywać dodatkowych chemicznych czynników za wyjątkiem solanek, które powstają podczas odsalania. Opracowano 

asymptotyczne przybliżenie odpowiedniego rozwiązania z modelem. Opis teoretyczny i założenia modelu obejmują szereg równań różniczkowych bilansu 
masy, warunków początkowych, granicznych i eksploatacyjnych. Rozpatrzono opracowanie modelu komputerowego dla opisu i prognozowania działania 

kolumn wymiany jonowej. 

Słowa kluczowe: modelowanie matematyczne, wymiana jonowa, absorpcja 

Introduction 

Hight salinity levels in wastewater usually have negative 

consequences to equipment that comes in contact with such water, 

for example boiler room installations. Though many techniques 

have been developed to solve the problem, high capital costs 

or energy consumption have hindered their application in wider 

areas. One economical solution of reusing the wastewater of high 

salinity is applying natural or synthetic zeolites as ion exchanger 

and adsorbent.  

The principle of work of softeners is based on the process 

of replacing calcium, magnesium and other metals with cations 

of sodium (or hydrogen). The process of softening the water 

is carried out by filtration from the top down through the cationite 

layer of insoluble nanoporous granules about 1 mm in diameter. 

After exhausting the cation exchanger, the quality of softening 

is significantly worse. To restore the ion-exchange resin's 

properties, an automatic transition to the regeneration mode occurs 

by passing through a layer of salt solution. 

The mechanisms governing the salt removal process by 

zeolites are mainly ion exchange, adsorption, and salt storage. 

Factors such as zeolite's geochemical properties, pH, co-existing 

anions, concentration, valency, surface charge, and experimental 

conditions all influence the ion exchange process [6]. 

The adsorption kinetics of Ca on zeolites is mostly a pseudo-

second-order type with an exothermic nature. Calcium removal by 

zeolites appears to be an effective water treatment technology for 

maximizing the beneficial use of poor-quality wastewater. 

However, challenges still remain and further work is required in 

areas of lowering operational cost and improving zeolite's 

regenerability. To overcome these challenges, researchers could 

make more efforts in technical improvements, including alterable 

surface properties and the incorporation of other approaches 

to achieve better salt removal outcome. 

1. Literature review 

The reaction of ion exchange, which is the basis of the cation 

exchange method of water softening, is a complex multi-stage 

process. On the basis of the known laws of sorption dynamics 

in [4] a one-dimensional mathematical model of the cation 

exchange filter operation under the conditions of the

nonequilibrium dynamics of the mixed diffusion kinetics 

of exchange of Na
 cations on 

2Ca 
 cations was proposed. 

In this model, the mutual influence of diffusion of some cations 

on the diffusion of others was not taken into account. In addition, 

since different stages of the described process proceed at different 

speeds, for some members of the mathematical model equations, 

small parameters appear, that is, the model is perturbed, 

and the solution of the corresponding model problem permits 

the asymptotic development of a small parameter [5]. 

In this paper, the asymptotic approximation of the solution 

of a singularly perturbed problem of convection diffusion-

adsorption transfer of a solution of calcium salts through 

a cationite layer is explained. 

2. Formulation of the problem 

On the basis of existing ideas [1, 6], when softening water 

in cationite, in the theory of ion exchange, it is customary 

to consider three stages of cation exchange: a) delivery 

of the cation from the cation-exchange filter solution to the surface 

of the cationite grain; b) the penetration of this cation into 

the inside of the cationite grain; c) chemical interaction 

of the cation with the functional group of the cation exchanger. 

All the listed stages usually proceed simultaneously, but their flow 

rates are different. In this regard, the equations describing 

the course of the most slowly proceeding ion exchange stage 

in the case under consideration will be described by equations 

of external diffusion transfer (kinetics) in the first stage and inside 

diffusion transfer (kinetics) in the second stage. 

Thus, based on the foregoing, and taking into account 

the existing ideas, the process of water softening in the ion-

exchange filter consists of the following steps: 

 convection-diffusion-adsorption transfer of cations 
2Ca 

 

and Na
 in a filtration solution 
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 diffusion transfer inside the grain of cation 
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 transfer of cations from the solution to the cation exchange 

granule 
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

 
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 
, (3) 

where  ,jc x t  – concentration of sodium ( 1j  ) and calcium 

( 2j  ) cations in the water,  ,ju x t  – concentration of cations 

on the surface of cationite grains,  , ,jq x r t  – concentration 

of cations in the grains, ( )v x  – filtration rate, 
j jD d  

and 
j jD d  – coefficients of diffusion of a j component 

in a filter and in cationite grains, 0   – a small parameter 

characterizing the predominance of the convective and adsorption 

component of the process over the diffusion, w  – specific surface 

area of grain of cationite. 

The system (1) – (3) is supplemented by the initial 

and boundary conditions:  

 
0( ,0) ( )j jc x c x , 

0( ,0) ( )j ju x u x , ( , ,0) 0jq x r  ,  (4) 

 
*(0, ) ( )j jc t c t , 

0

( , , )
0

j

r

q x r t

r






.  (5) 

 

Fig. 1. Ion exchange column 

The ion-exchange isotherm equation (assuming that the 

coefficients of activity of 
2Ca 

 and Na
 cation equal to 1 [6]) 

have the form: 

 1 1

1,2

2 2

u c
k

u c
 . (6) 

where 
1 2,c c – equilibrium concentration of cation in solution at 

the boundary with the surface of cationite grains, 1,2k  – constant 

of ion exchange equilibrium. Conditions for the preservation of 

electroneutrality and constant absorption capacity is 
1 2 ac c c   

and 
1 2 au u u  .  

The following assumptions are taken when compiling the 

model: the interaction of cations in the liquid and solid phases is 

absent, in particular, this substance is present in the liquid and 

solid phases mainly in the same form; the exchange of cations of 

sodium and calcium is independent of the presence of other 

cations; at each time, the cationic pairs that are in solution and 

adsorbed by the cationite grains are in equilibrium, which makes it 

possible to set j jc c  when deriving equation (6), introducing 

the appropriate correction to the constant 1,2k ; a layer of a cation 

exchanger consists of grains (granules) of spherical shape with 

conditional radius R, to which, according to well-known 

recommendations, grains (particles) of any shape can be given. 

Note that the latter have a microporous structure, which ensures 

the outflow of cations into their pore space. 

3. Materials and methods 

We introduce dimensionless quantities as follows /x x l , 

/r r R , /t t v l    : 
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The case of the predominance of the convective component 

of the mass transfer on diffusion and mass transfer is considerer, 

that is when 
1jD

v l Pe
  


 is a small parameter ( Pe  is the 

Peclet number) (
*( ) 0v v x v     ). Two other options 

jw D l

v R

 


 and 

2

jl D

v R




 can be an arbitrary. Since 

3(1 )
w

R


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[4], after marking the variable 
2

jl D

v R






, we get 

3(1 )
jw D l

v R
 

 
 


. Thus, in the case when 

2

jl D v R   , 

get a system with two small parameters   and  . Next we 

evaluate the ratio of parameters   and  . Generally speaking, 

different cases of correlation of these parameters are possible: 
    , where   is arbitrary real number,   is positive 

finite (not commensurate with the given parameters) number. In 

particular, we considered the case of the values of diffusion 

coefficients 
jD  and jD  are values of order 

510
 and 

1510
 m2/s 

respectively. In this case, the parameters   and  are values of 

one order.  

Asymptotic approximation of the solution of the problem (7) – 

(8) are looking for in the form of asymptotic series [3, 5] (back to 

the notation of variables , ,x r t , meaning that it is dimensional 

variables): 

        0 1 0( , ) , , ... , ,n

j j j jn jc x t c x t c x t c x t П t        

    1 1

1 1, ... , ( , , ),n
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1/2

0 0 1/2( , , ) ( , , ) ... ( , , ) ( , , ) ( , , )n
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where  ,jic x t ,  , ,jiq x r t  ( 0,i n ) is the members 

of the corresponding regular parts of the asymptotic series, 

 ,jiП t  ( 0, 1i n  ),  /2 , ,j iF x t  ( 0,2 1i n  ) 

is functions of the type of adjoining layer in the vicinity 1x   

and 1r  , 
1( )l x      and 

1/2(1 )r      

is the corresponding regularizing transformations, 
1

nR , 
2

nR  

is the residual members. 

Substituting (9), (10) into (7) – (8) and equating 

the coefficients in the same degrees of  we obtain for each 

0,i n  the tasks, analogously to [3]: 
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where 
0 ( , , ) 0jg x t  ,

0 ( , ) 0jh x   ,  
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are constructed for the purpose of fulfilling the second one 

of the boundary conditions (5) and conditions (6) respectively. 

Taking into account the ratio 
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, and Taylor series expansions 

of functions (1 )v  and 
2

1  
 in the vicinity 1x   

and 1r  , we get a task to find the boundary functions [2]: 
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Solutions of which obtained with accurately
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 0 ( , , ) 0jq x r t  , 

 

*

0 0 1

( ( / ( )), ( ),
( , )

( ( ( ) / )) , ( ),

j

j

j

c t f x t f x
c x t

c f f x t t f x

  

 

  
 

 

 

1

0

1

1

1

0

( ( / ( ) ( )), )
, ( ),

( )
( , )

1
( , ( / / ( ))) , ( );

z
j

j t

j

g t f x f x x
dx t f x

v x
c x t

g t f t t f x dt t f x

 


  




  





   






  
 0

x
dx

f x
v x

  , 

2

12
( , ) ( , )ji j j ig x t d c x t

x



 


 

 
1

2
1 1 1

2

( ( ,1, ) ( ,1, ) ( ,1, ))j j i j i
j i

wd q x t F x t F x t
r r r

 


  
  

  

, 

 

(1)

1

0 0( , ) (1, ) (1) j

v

D

j j jП t D C t v e











. 

To assess the remaining members we have: 
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where 
1( , , )jb x t   and 

2 ( , , , )jb x r t   is known functions that 

are the sum of the products of already known members 

of the series (9), (10), as well as the coefficients for   

in the Taylor series of function (1 )v   in the in the vicinity 

1x  . By requiring a sufficient degree of smoothness 

and consistency of the initial and boundary conditions, we arrive 

at the validity of such assertion on the basis of the principle 

of the maximum type for partial differential equations: 

 
1 1( , , ) ( )n

jnR x t O   , 
2 1( , , , ) ( )n

jnR x r t O   . 

As a technical object for computer simulation of the process, 

the filter with the length 1l m  was selected, with the filling 

of particles of a microporous structure with size
510R m . 

Computer simulation was carried out with the following 

parameters: 

 
5 2

1 10 /D m s , 
5 2

2 0.8 10 /D m s  , 
15 2

1 10 /D m s , 

 
15 2

2 1.3 10 /D m s  , 1 / 6   , ( ) 1 /v x m s , 

 *

0.005cos((15 ) 0.005), /15,
( )

0.01, /15.
j

t t
C t

t

 



  
 


 

 

Fig. 2. Distribution of ion concentration in microparticles 
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Distribution of the concentration of ion in the interparticle 

space is shown in Fig. 2. Thus, curve 1–3 corresponds to the 

solution and 
2 ( , )q x t  at the time 1t h , 3t h , 5t h  when 

* 4 2

1 2 10 /d d m h   and 
* 4 2

1 2 10 /d d m h  (1*-3*). 

As the experiment showed, the purification takes place at a 

certain point in time (contamination of microporous particles). 

Under given conditions it is 5t h , after which the intensity of 

cleaning begins to decrease, although the timepieces are not yet 

completely polluted. The maximum deviation of the calculated 

concentration value at the filter outlet under given conditions, 

taking into account adsorption, is 14%. 

In Fig. 3, and depicts the distribution of the concentration 

of pollutant in a microporous particle at moments of time 

0.5t h , 0.6t h , 0.8t h , 1t h , 1.8t h  (curves 1-5) 

with a center at the point 0.2x  . 

 

Fig. 3. Distribution of the concentration of pollutant in the interparticle space 

4. Conclusions 

A mathematical model of a singularly perturbed process 

of convection diffusion and adsorption mass transfer of ions 

is formed 
2Ca 

 and Na
 in a homogeneous environment 

particles of microporous structure, which unlike the existing, takes 

into account the mechanism of convective transfer, as well 

as specifies the calculation of the distribution of concentration 

in a microporous medium (filter). The asymptotic approximation 

of solutions of the corresponding boundary value problem 

is constructed. t is confirmed that despite the small velocity 

of the diffusion mass transfer phenomena in particle pores, over 

time this significantly affects the distribution of concentration 

in the part itself and throughout the filter. 
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