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Abstract. A numerical method of quasiconformal mappings for solving the coefficient problems of finding eigenvalues of the conductivity tensor having 

information about its directions in an anisotropic medium using applied quasipotential tomographic data is generalized. The corresponding algorithm 

is based on the alternate solving of problems on quasiconformal mappings and parameter identification. The results of numerical experiments of imitative 
restoration of environment structure are presented. 
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ZASTOSOWANIE METODY QUASIPOTENCJALNEJ DO ROZWIĄZYWANIA ZADANIA 

IDENTYFIKACJI PARAMETRYCZNEJ OŚRODKÓW ANIZOTROPOWYCH 

Streszczenie. Opracowano uogólnioną numeryczną metodę mapowania quasi-formalnego w celu rozwiązania zadań znalezienia wartości własnych tensora 

przewodnictwa posiadając informacje o jego kierunkach w ośrodku anizotropowym z zastosowaniem quasipotencjalnych danych tomograficznych. 

Podstawą algorytmu jest alternatywne rozwiązanie problemów związanych z mapowaniem quasi-formalnym i identyfikacją parametrów. Przedstawiono 
wyniki numerycznych symulacji odtworzenia struktury ośrodka. 

Słowa kluczowe: tomografia quasipotencjałowa, mapowanie quasikonformalne, identyfikacja, anizotropia 

Introduction 

Today, solving the problem of image reconstruction 

of a conductivity tensor (CT) in anisotropic media finds 

its application in an increasing number of areas. In particular, 

in robotics, geology, medicine, etc. (see, e.g., [6–8]). Despite 

the low resolution of the resulting images, geometric flexibility, 

harmlessness to the environment contributes to the continuation 

of relevant studies in order to improve the accuracy and speed 

of the calculations [6, 8]. 

The aim of this work is to generalize the numerical 

quasiconformal mapping method [2 – 4] for solving the coefficient 

problems of finding eigenvalues of the CT having information 

about its directions in an anisotropic medium using applied 

quasipotential tomographic (AQT) data. 

1. The parameter identification problem 

of anisotropic media using AQT data 

We consider the quasiideal processes of particles movement 

(in particular, liquids, electric charges) in a single-connected 

curvilinear domain (anisotropic layer or plate, which is some 

tomographic cross-section) zG  (Fig. 1a), limited by a smooth 

closed curve ( ) :zG x,y   ( ),x x   ( ),y y   0 2 ,    

0(0) (2 ) ,x x x   0(0) (2 ) ,y y y  where ( ),x   ( )y   are 

defined continuosly differentiated functions, 0 0( , )O x y  is given 

refference point, under conditions of various situational states 

(injections), generated by the action of the differences 

in the applied potentials to the selected sections of the boundary 

[1, 2, 4, 6, 8–10]. Suppose that we known not only distributions 

of potentials, but also local velocities of matter at the same points 

[2, 4]. In this case, the problem of parameters identification 

of the quasiideal stream using AQT data is traditionally reduced 

to finding an infinite number of functions-quasipotentials 

( )( , )p x y   and a single anisotropy tensor 

 
, 1,2

( , )x y  
 


  in the domain ,zG  for which 

the equations: 

( ) ( ) ( ) ( )
11 12 21 22( ) ( ) 0

p p p p
x y x x y y                (1) 

are fulfilled when for each p  interconnected conditions

of Dirichlet and Neumann are given [1, 2, 4, 6–10]. Here (1) 

is a consequence of the movement law by Ohm, Darcy type etc. 

( ) ( )p pj grad   and the continuity equation ( ) 0pdiv j   

[1, 2, 4, 6, 8–10]; 1,2,...p   is the injection number (see, e.g., 

[1, 2, 4]); ( , ,...)x y    are bounded continuously 

differentiated in the domain zG  functions that characterizing 

the conductivity and anisotropy of the medium [3]. 

 

 a) b) 

Fig. 1. Tomographic cross-section zG  (a) and the corresponding domains 

of complex quasipotential 
( )p

G  (b) 

In practice, it is not possible to obtain an infinite number 

of data (measurements at the boundary), and therefore scientists 

apply a different kind of simplification (see, e.g., [1, 2, 4, 6–10]). 

First of all, they consider the finite number of injections of current 

through the tomographic section. It, similar to [2, 4], we simulate 

by sets of values 
( ) ( ) ( ) ( )

{ , , , },
p p p p

B DA C
     according to which 

  ( ) ( )
( ), ( ) ,

p p
p A A

A x y    ( ) ( )
( ), ( ) ,

p p
p B BB x y    

  ( ) ( )
( ), ( ) ,

p p
p C C

C x y    ( ) ( )
( ), ( ) .

p p
p D DD x y   

Corresponding for this injection boundary of the domain zG  

with given four marked points is denoted by ( )p
zG  

( ) ( ) ( )( ).p p pz x iy   We propose to set the local velocity 

distributions at sections of constant applied potentials, and at other 

lines, both the constant stream values and the distributions 

of potentials [2, 4]. This, in comparison with the known world 

analogues (see, e.g., [1, 6, 8, 10]), provides the possibility 

of both the physical providing of experiment and the application 

of our developed complex analysis methods. 
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In this case, the mathematical model of AQT [8], similar 

to [1, 2, 4], we write in the form (1) and conditions: 

 
( ) ( )

*
,

p p

p p
A B   

( ) *( ) ,
p p

p p
C D   

 
( ) 0;

p p p p

p
B C A Dj    (2) 

 
( )( ) ( ) ( ),

p p

pp
A DM M   

( )( ) ( ) ( ),
p p

pp
B CM M   

 
( )( )
*

( ) ( ),
p p

pp
A Bj M M   

 
*( )( ) ( ) ( ),

p p

pp
C Dj M M   (3) 

where p pA B  and p pC D  are selected equipotential lines; p pB C  

and p pA D  are impermeable boundary stream lines; n  is unit 

vector of outer normal; M  is a running point of the corresponding 

curve. Functions 
( ) ( )
* *

( ) ( ,...)
p p

M     
( ) ( )

( ),
p p

B A
     

( ) ( )
( ) ( ,...)

p p
M    

( ) ( )
( ),

p p
BC

     
( ) ( )

( ) ( ,...)
p p

M    

( ) ( )
( ),

p p
DA

     
*( ) *( )

( ) ( ,...)
p p

M     
( ) ( )

( ),
p p

D C
     

as in [2], can be constructed by interpolating experimentally 

obtained their values 
( )

( )
,

p

p

i
  

( )

( )
,

p

p

i
  

( )
*

( )

*
,

p

p

j
  

*( )

*( )
p

p

j
  having some 

( )

( )
,

p

p

i
   

( )

( )
,

p

p

i
   

( )
*

( )

*
,

p

p

j
   

*( )

*( )
p

p

j
   at the sections 

,p pB C  ,p pA D  ,p pA B  ,p pC D  respectively 

( ) *( )(0 1,p pi m    
( )( )
*

0 1,
ppi m    

( )
*

( )

*
,

p

p

j


*( )

*( )
0,

p

p

j
   

( )

( ) ( ) *( )
*

,
p

p p p

i
     

( )

( ) ( ) *( )
*

,
p

p p p

i
     

( ) ( )
* *

0 1,
p p

j n    

*( ) *( )0 1).p pj n    CT components with equal elements 

of the additional diagonal [10] are defined as follows: 

 
2

11 1 2 2( ) ,cos        
2

22 1 2 1( ) ,cos         

 12 1 2 ( ) , = sin cos      21 12 ,   (4) 

eigenvalues 1,  2  of corresponding to (1) matrix we search 

in the form: 

,

1 1 ,0 0, ,

, 0

( , , ,..., ) ,
a a

a a a
a a a a a

a a

s k
k r r

s s k r r

k r

x y a a a x y  




    

,

2 2 ,0 0, ,

, 0

( , , ,..., ) ,
b b

b b b
b b b b b

b b

s k
k r r

s s k r r

k r

x y b b b x y  




   (5) 

and we consider the angles distribution function of extreme value 

directions of the conductivity coefficient ( , ),x y   similar 

to [1, 8, 9], a priori known. Here , ,
a a ak r ra   ,b b bk r rb   

( 0,..., ,a ak s  0,..., ,a ar k  0,..., ,b bk s  0,..., )b br k  

are the parameters that are defined during the problem solving 

process. 

The problem lies in image reconstruction of the CT. Here, 

the related is the calculation of the corresponding dynamic meshes 

and velocity fields. 

We can reduce (1) – (5) to the series of more general 

boundary value problems on quasiconformal mapping 

( ) ( ) ( )( ) ( , ) ( , )p p pz x y i x y     of the physical domains ( )p
zG  

(Fig. 1a) onto the corresponding domains of the complex 

quasipotential ( )pG  (Fig. 1b) by the way, similarly to [2–4], 

of introducing the stream functions 
( ) ( )( , ),p p x y   which 

are complex conjugated to ( ) ( )( , )p p x y   ( 1, ),p p  under 

(4) and (5) conditions: 

 

( ) ( ) ( )
11 12

( ) ( ) ( )
21 22

,

;

p p p
x y y

p p p
x y x

    

    

    

     


 (6) 

 
( ) ( )

*
,

p p

p p
A B   

( ) *( ) ,
p p

p p
C D   

 
( ) 0,

p p

p

A D
   

( ) ( ) ;
p p

p p

B C
Q   (7) 

 
( ) ( ) , , ;p p

p p p p

MN

j dl Q M B C N A D    

( )( )
*

( ) ( ),
p p

pp
A B

M M 
*( )( ) ( ) ( ),

p p

pp
C D

M M   

( )( ) ( ) ( ),
p p

pp
A D

M M 
( )( ) ( ) ( ),

p p

pp
B C

M M   (8) 

where ( ) ( , ):pG    
( ) *( )
*

,
p p     ( )0 ;pQ   

( ) ( )
* *

( ) ( ) ,

p

p p

A M

M M dl    *( ) *( )( ) ( ) ;

p

p p

D M

M M dl    

( )pQ  are discharges of the vector fields (current) through 

the contact sections ( p pA B  and );p pC D  dl  is arc element 

of corresponding curve. 

2. Synthesis of the numerical quasiconformal 

mapping method and ideas of alternating 

block parametrization 

In [2, 4], algorithms for numerical solving of inverse nonlinear 

boundary value problems on quasiconformal mappings 

in curvilinear quadrilateral domains bounded by stream 

and equipotential lines are proposed, and in [3] such approaches 

are generalized to the case of anisotropy. Accordingly, solving 

the problem will be carried out applying these methods (using 

the corresponding notations; the algorithms obtained in the above-

mentioned works will be fragments of wider structures, 

in particular, injectivity must be taken into account). 

We reconstruct the CT, like in [2–4], provided minimize 

the residual sum of squares of expressions, obtained from Cauchy-

Riemann-type conditions, with applying the ideas of regularization 

and having positive eigenvalues condition. 

 
(1) (1) ( ) ( )

,0 ,0 0, 0,( , ,..., , , , ,..., , )
a b a b

df
p p

s s s sx y x y a b a b   

 
2 2, ,

, ,

11
1 , 0 , 0

2 (
100 100

a a b b
a a a b b b

a b
a a b b

s k s kp
k r r k r r

k k
p k r k r

a b

 
 

  

  
  

     
 
 

    

  
2

( ) ( ) ( ) ( )
21 12 22 11

) ( ) (
p p p p

y x x y                 

 
2

( ) ( ) ( ) ( )
21 22 12) ( ) ;

p p p p
y x x y     


       


 (9) 

 1 0,   2 0,   (10) 

where   is regularization parameter. 

We write the corresponding difference analogues in the mesh 

domains ( )p
zG  when 

( ) ( ) ( )( )
, ( , )
p p pp

i j i jz z    similar to [2–4]. 

Here  ( ) ( ) ( )( )
, , ,( , ) ,
p p pp

z i j i j i jG z x y     ( ) ( )( ) ( , ) :
p pp

i jG
    

( ) ( ) ( ),
p p p

i i      
( )=0, +1;pi m  

( ) ( ),
p p

j j    
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( )=0, +1;pj n  ( ) ( ) ( )= / ;p p p     ( ) ( ) ( )/ ( 1),p p pQ n    

( )( ) ( ) ( )( ) / ( 1),
pp p pm  

     ( ) ,pm ( ) ,pn N  ( )p  

are quasiconformal invariants for the corresponding domains. 

The algorithm for solving the initial problem consists 

in the alternate parametrization of internal nodes of the mesh 

domains ( ),p
zG  the CT and in use of ideas of the block iteration 

method [3, 12]. Namely: we set the number of injections ,p  

domains border ( )p
zG  (by functions ( ),x x   ( )),y y   

parameters 
( )

,
p

A
  

( )
,

p
B  

( )
,

p
C
  

( )p
D  and 1,  2  (accuracy), q  

( 1q   is responsible for the number of iterations of refinement 

of internal nodes having a specific CT), quasipotentials 
( )
*

,
p

  

*( )p  and discharges ( ) ,pQ  parameters ( ),pm  ( )pn  of domains 

partition ( )pG
  (in order to improve the accuracy 

of the calculations, it is desirable to select this values 

so that 
( ) ( )

*( ) ( ) ( )
*

1
1)

1

p p

p p p

Q n

m 





 [2, 3], regularization parameter 

  and the angles distribution function of extreme value directions 

of the conductivity coefficient ( , ).x y   Then we calculate the 

coordinates of the angular points ,pA  ,pB  ,pC  pD  on ( ),p
zG  

steps of partitioning the complex quasipotential domains 

( ) ( ) ( )/ ( 1),p p pQ n    
*( ) ( )( ) ( )

*
( ) / ( 1)

p pp pm       

and the quasiconformal invariants values ( ) ( ) ( )/ .p p p      

Specify the local velocity value 
( )
*

,
p
j

  
*( )p
j  (and therefore, 

stream functions 
( )
*

,
p
j

  
*( )

)
p

j  and potentials 
( )

,
p

i  
( )p
i  

having some arguments 
( )
*

,
p
j

  
*( )

,
p

j  
( )

,
p

i  
( )p
i  (results 

of physical measurements), respectively, then by the way 

of interpolation we build the functions 
( )
*

( ),
p

    

( )
( ),

p
    *( )

( ),
p

    ( )
( )

p
    ( ) *( )

*
( ,

p p
     

( )
0 ),

p
Q   whereupon, similarly to [2], we find 

the coordinates 
( )
0,

,
p
j

x  
( )
0,

,
p
j

y  
( )

( )

, 1
,

p

p

i n
x


 

( )

( )

, 1
,

p

p

i n
y


 

( )

( )

1,
,

p

p

m j
x


 

( )

( )

1,
,

p

p

m j
y


 

( )
,0

,
p

i
x  

( )
,0
p

i
y  ( )(0 1,pi m    ( )0 1,pj n    

1, )p p  on ( ).p
zG  After that, we begin the iterative 

reconstruction process, which consists of the following steps: 

apply a difference representation of Laplace type equations [3] 

(taking into account the injectivity) for finding the coordinates 

of the internal nodes when 1, ,p p  ( )1, ,pi m  ( )1, pj n  q  

times; solve the problem of conditional minimization, constructed 

on the basis of (9), (10) (by one of the local optimization methods, 

e.g., [13]) relative to 
( )

,
,

a a a

l
k r r

a


 
( )

,b b b

l
k r r

b


 (here 0,1,...l   is step 

iteration number, 1, ,a ak s  0, ,a ar k  1, ,b bk s  0, );b br k  

check the conditions for the completion of the iterative process, 

among which may be [3]: stabilization of border nodes, CT, 

quasiconformality degree parameter, discharge values etc. 

(1 ,p p   
( )1 ,pi m   

( )1 ).pj n   In case of not fulfilling 

at least one of these conditions, the iteration process is restarted, 

otherwise we build the corresponding reconstructed image and, 

if necessary, electrodynamic meshes, domains of complex 

quasipotential or calculate the current densities fields etc. 

Note that the algorithm will be similar if instead of the angles 

distribution function of extreme value directions of the 

conductivity coefficient, known is the distribution either 1  or 2  

for the desired   and either 1  or 1,  respectively. However, 

solving the nonlinear programming problem thus formed will 

require the application of the global optimization method. 

It should be noted that here, as in [2] (in opposite to [3, 4]), 

there is no need to use formulas to refine the boundary nodes 

(these coordinates are a priori known), which, of course, 

accelerates the reconstruction process of the image. In order 

to save machine time, it is also allowed to use formulas 

constructed on the basis of (9) and (10) for selected points only. 

In particular (if it allows to do the chosen optimization algorithm) 

condition (10) should not require all mesh nodes of the meshes, 

but only in the coordinates of the extreme values of the minimum 

of functions (4). In other cases, it makes sense to specify a series 

of control points inside the investigated domain. Such in many 

cases can be nodes of meshes of arbitrary injection. 

3. Numerical results 

We present the results of numerical experiments of imitative 

restoration of medium structure for the following input data: 

( ) 100,pm   ( ) 150cos ,x    ( ) 100sin ,y    3,a bs s   

0,0 0,0 1,a b   , , 0
a a a b b bk r r k r ra b    ( 1, ,a ak s  0, ,a ar k  

1, ,b bk s  0, ),b br k  0.01,   20,p   
( ) 9

+( 1) ,
8

p
A

p
p

 
    

( ) ( )
,

4

p p
B A


    

( ) ( )
,

p p
C A
     

( ) ( )
,

4

p p
D C


    

( )
*

0,
p

   

*( ) 1,p   ( ) ,pQ  
( )
*

,
p
j

  
*( )

,
p

j  
( )

,
p

i  
( )p
i  (1 ),p p   

2
1 2 10 ,     4 4 2 6( , ) 1 12 10 10 16 10x y x x xy           

6 2 7 3 7 2 8 2 8 336 10 10 7 10 45 10 54 10 ),y x x y xy y              

200.q   A visual representation of received CT distribution 

is carried out similar to [10] by application of a specially 

developed procedure. According to it, the researched domain 

is divided into square sections by lines, which 

are parallel to the coordinate axes. The CT is characterized 

in the center of this figures as an ellipses (axes 

and radii of which correspond to the directions 

of eigenvectors and proportional to the values of eigenvalues, 

respectively) of the form 2 2
11 22 122 1,x y xy      where 

2 2 2 2
11 2 1/ ,/sin cos       2 2 2 2

22 2 1/ ,/cos sin       

2 2
12 1 2(1/ 1/ ).sin cos       Fig. 2b presents the reconstructed 

image of the CT distribution in comparison with the given 

theoretically (Fig. 2a). 

4. Acknowledgment 

The numerical quasiconformal mapping method for solving 

the problem of finding the eigenvalues of the CT having 

information about its directions in anisotropic medium 

and using AQT data is generalized. The algorithm for solving 

the corresponding problem is based on the application of the idea 

of quasiconformal similarity in the small for construction 

of curvilinear quadrilaterals (quasiparallelograms), that are 

components of dynamic mesh in the physical domain 

and the corresponding squares in the domain of complex 

quasipotential and alternate parametrization of internal nodes 

of dynamic meshes (constructed for each of the injections) 

and the desired CT. The developed algorithm is characterized 

by comparatively fast computer convergence (since, unlike 

many useful methods, it does not require finding the derivatives 

of the distribution function of the CT at the specified points 

and specifying the boundary nodes at each iteration step), 
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the possibility of relatively easy its parallelization and the 

premature stop of the calculation procedure only if some 

of the conditions for the completion of the process are fulfilled.  

a)  

b)  

Fig. 2. CT distribution: exact (when 0 1.5,a   4
1 5 10 ,a    3

2 5 10 ,a    

3 0,a   6
4 3 10 ,a    5

5 10 ,a    8
6 5 10 ,a     6

7 10 ,a    7
8 3 10 ,a    

7
9 4 10 ,a     0 0.7,b   1 0,b   4

2 12 10 ,b    7
3 27 10 ,b     6

4 8 10 ,b     

6
5 18 10 ,b    8

6 4 10 ,b    9
7 12 10 ,b     8

8 27 10 ,b    7
9 6 10 )b     

(a) and approximated (b) solutions 

The latter may occur in areas with large computational errors 

(so-called "stagnant zones" and "large gradient zones") that 

arise near the singular points of the non-smooth boundary lines 

and the critical points of the interior of the corresponding 

domains. But we note that the considerably new algorithm 

is to take into account the conditions of "anisotropic 

quasiorthogonality" along the boundary equipotentials 

and flow lines (instead of orthogonality in cases of isotropic 

media), which causes additional substantially new constructions.

Also, the anisotropy tensor on orders affects the deterioration 

of accuracy, stability, which in particular requires the creation 

of new structures, procedures of regularization Tikhonov type.It is 

also worth noting that, unlike the traditional approaches to the 

formulation and solving the problems of electrically impedance 

tomography [1, 6 – 10], we determine the distribution of local 

velocities of a substance (fluid, current) and averaged potentials 

on sites the contact of the plate and body, and in other sections the 

distribution of the potential (according to experimental data). This, 

of course, provides greater mathematical conformity, and 

therefore a certain gain in the iterative reconstruction process. 

We plan to extend this algorithm to the following cases: 

spatial reconstruction possibility, formation the several sections of 

apply the quasipotential at the initial stream, parameters 

identification of the CT of piecewise-homogeneous and 

piecewise-inhomogeneous media and filtration-convection-

diffusion type processes (see, for example, [5, 11]). 
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