
54 IAPGOŚ 3/2019 p-ISSN 2083-0157, e-ISSN 2391-6761

artykuł recenzowany/revised paper IAPGOS, 3/2019, 54–57

DOI: 10.35784/IAPGOS.234

COMPARISON OF OPTIMIZATION ALGORITHMS OF CONNECTIONIST

TEMPORAL CLASSIFIER FOR SPEECH RECOGNITION SYSTEM

Yedilkhan Amirgaliyev
1,2

, Kuanyshbay Darkhan
1,2

, Aisultan Shoiynbek
2

1Institute Information and Computational Technologies CS MES RK, Almaty, Kazakhstan, 2Suleyman Demirel University, Almaty, Kazakhstan

Abstract. This paper evaluates and compares the performances of three well-known optimization algorithms (Adagrad, Adam, Momentum) for faster

training the neural network of CTC algorithm for speech recognition. For CTC algorithms recurrent neural network has been used, specifically Long-
Short-Term memory. LSTM is effective and often used model. Data has been downloaded from VCTK corpus of Edinburgh University. The results

of optimization algorithms have been evaluated by the Label error rate and CTC loss.

Keywords: recurrent neural network, search methods, acoustic, systems modeling language

PORÓWNANIE ALGORYTMÓW OPTYMALIZACJI KLASYFIKATORA CZASOWEGO

DO SYSTEMU ROZPOZNAWANIA MOWY

Streszczenie. W artykule dokonano oceny i porównania wydajności trzech znanych algorytmów optymalizacyjnych (Adagrad, Adam, Momentum) w celu

przyspieszenia treningu sieci neuronowej algorytmu CTC do rozpoznawania mowy. Dla algorytmów CTC wykorzystano rekurencyjną sieć neuronową,

w szczególności LSTM, która jest efektywnym i często używanym modelem. Dane zostały pobrane z wydziału VCTK Uniwersytetu w Edynburgu. Wyniki

algorytmów optymalizacyjnych zostały ocenione na podstawie wskaźników Label error i CTC loss.

Słowa kluczowe: rekurencyjna sieć neuronowa, metody wyszukiwania, akustyka, język modelowania systemów

Introduction

There have been many techniques for recognizing speech and

variety of tasks like voice pattern recognition, which helps to

identify human by his voice [12]. Considering the fact that speech

data is complicated in terms of segmentation that is [1], it is

difficult to build a model with a simple structure. The state-of-the-

art technique for ASR (Automatic speech recognition) is always

been HMM model [7], which involves other pre-trained models

like acoustic model, language model etc. However, recent

researches have shown that by using recurrent neural networks [9],

we can build such architecture of neural network, which will

require only speech data (.wav) and transcription (.txt) to train the

model completely, whereas traditional models (HMM) [7] would

require data for training language model and acoustic model. This

advanced algorithm called Connectionist-Temporal-Classifier [8],

the heart of which is RNN. One of the most common and crucial

steps in neural network is training. It is important that the model

will train fast and at the same time does not overfit or underfit,

especially with speech data. Labelling an unsegmented data is

very common and often difficult problem in the sequence-to-

sequence models. Straightforward way to solve this problem is to

label each segment of a sequence (for example wave file)

manually. However, considering that there are so many words in

speech, not counting the sentences, which brings a certain

transformations time-consuming, boring and hard to do. To avoid

this kind of issues traditional ASR system uses Language model

like in [4], which predicts the probability of last word given the

sentence and Acoustic model using a progresses like in [3], which

gives the phoneme representation of the given speech (Fig. 1).

Fig. 1. Traditional ASR system

Labelling an unsegmented data is very common and often

difficult problem in the sequence-to-sequence models.

Straightforward way to solve this problem is to label each segment

of a sequence (for example wave file) manually. However,

considering that there are so many words in speech, not counting

the sentences, which brings a certain transformations time-

consuming, boring and hard to do. To avoid this kind of issues

traditional ASR system uses Language model like in [4], which

predicts the probability of last word given the sentence and

Acoustic model using a progresses like in [3], which gives the

phoneme representation of the given speech (Fig. 1).

Connectionist temporal classifier [8] require only a speech

data (raw audio) and transcription (txt file) in order to train only

one model without involving the Language model. Instead of

Language model, it uses dynamic programming method, which

called Beam search in [13]. For training the model, any neural

network structure uses an optimizer that helps to achieve the good

accuracy fast and with no issues (over fitting, under fitting).

This paper organized as follows. Section 2 contains the

information about CTC algorithm, Beam search and optimization

algorithms, which will be considered in the experiment. Section 3

contains the experiment itself, which is about building a neural

network, used optimization algorithms and dataset. Section 4

illustrates the outcomes of the experiment that shows a result of

optimization algorithms comparing with each other (Adagrad,

Adam, and Momentum). Section 5 concludes the whole

experiment by choosing the best optimizer for CTC algorithm.

1. Encoder and decoder

The RNN encoder-decoder is a neural network model that

directly computes the conditional probability of the output

sequence given the input sequence without assuming a fixed

alignment, i.e. P(y1, . . ., yO|x1, . . ., xT) where the lengths of the

output and the input, O and T respectively, may be different. For

speech recognition, the input is usually a sequence of acoustic

feature vectors, while the output is usually a sequence of class

indices corresponding to units such as phonemes, letters, HMM

states, or words. The idea of the encoder-decoder approach is that

for each output yo, the encoder maps the input sequence into a

fixed-length hidden representation co, which is referred as context

vector. From the previous output symbols and the context vector,

the decoder computes.







o

o

ocyyyPxxyyP
ooTO

1

),...,(),...,,...,(
,1111

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 3/2019 55

Since the probability
1 1,..., ,...,()

O T
P y y x x (| is

conditioned on the previous outputs as well as the context vector,

an RNN can be used to compute this probability which implicitly

remembers the history using a recurrent layer.

Let yo be a vector representation of the output symbol yo,

where yo is a one-hot vector indicating one of the words in the

vocabulary followed by a neural projection layer for dimension

reduction. The posterior probability of yo is computed as

 (| (

 (

where so denotes the output of a recurrent hidden layer f(·) with

inputs yo−1, so−1, and co. g(·) is a softmax function with inputs

yo−1, so and co. We condition both f(·) and g(·) on the context

vector to encourage the decoder to be heavily reliant on the

context from the encoder. The previous output yo−1 is also fed to

the softmax function g(·) to capture the bigram dependency

between consecutive words [3]. We have also investigated a

simpler output function without the dependence on the previous

output yo−1, i.e. P(yo|y1, ..., yo−1, co) = g(so, co).

Encoder

As discussed above, the computation of the conditional

probability relies on the availability of the context vector for

each output . The context vector is obtained from the encoder

which reads the input sequence and generates a continuous space

representation. The context vector co is obtained by the weighted

average of all the hidden representations of a bidirectional RNN

(BiRNN) [8]:

 ∑

where ∈ [0, 1] and ∑ ; (
⃗⃗ ⃗

⃗⃗ ⃗) and
⃗⃗ ⃗,

⃗⃗ ⃗
denote the hidden representations of xt from the forward and

backward RNNs respectively. The context vector is global, for

instance, . This means the context vector does not depend

on the index o, meaning that the whole input sequence is encoded

into a fixed vector representation. This approach has produced

state-of-the-art results in machine translation when the dimension

of the vector is relatively large [14]. When the model size is

relatively small, however, the use of a dynamic context vector has

been found to be superior, especially for long input sequences.

The weight is computed by a learned alignment model for

each co, which is implemented as a neural network such that

 (

∑ (

 (

where a(·) is a feedforward neural network that computes the

relevance of each hidden representation ht with respect to the

previous hidden state of RNN decoder so−1. The alignment model

is a single-hidden-layer neural network:

 ((

where W and U are weight matrices, and v is a vector so that the

output of a(·) is a scalar. More hidden layers can be used in the

alignment model.

In the case of using a fixed context vector using an RNN to

map the whole input sequence into the context vector is necessary

because this vector must represent all the relevant information in

the input sequence.

2. Connectionist temporal classifier

The CTC algorithm considers the order of the output labels of

RNNs with ignoring the alignments by introducing a blank label,

b. For the set of target labels, L, and its extended set with the

additional CTC blank label, L′ = L ∪ {b}, the path, π, is defined as

a sequence over L′, that is, π∈ L ′T, where T is the length of the

input sequence, x. Then, the output sequence, z ∈ L ≤T, is

represented by z = F(π) with the sequence to sequence mapping

function F. F maps any path π with the length T into the shorter

sequence of the label, z, by first merging the consecutive same

labels into one and then removing the blank labels. Therefore, any

sequence of the raw RNN outputs with the length T can be

decoded into the shorter labelling sequence, z, with ignoring

timings. This enables the RNNs to learn the sequence mapping,

z = G(x), where x is the input sequence and z is the corresponding

target labelling for all (x, z) in the training set, S. More

specifically, the gradient of the loss function L(x, z) = − ln p(z/x)

is computed and fed to the RNN through the softmax layer, of

which the size is |L′|.

The CTC algorithm employs the forward-backward algorithm

for computing the gradient of the loss function, L(x, z). Let z′ be

the sequence over L′ with the length of 2|z|+1 where z′u = b for

odd u and z′u = zu/2 for even u. Then, the forward variable, α, and

the backward variable, β, are initialized by

 ({

 ({
 | | | |

where
 is the soft max output of the label k ∈ L′ at time t. The

variables are forward and backward propagated as

 (

 ∑ (
 (

 (∑ (

 (

where

 ({

 ({

With boundary conditions:

 ((| |

Then, the error gradient with respect to the input of the

softmax layer at time t, at
k

 , is computed as

 (

 (

)
∑ (((

where (
 and (| (| |

Beam search

This algorithm iterates through the NN output and creates text

candidates (called beams) which are scored. Figure 2 shows an

illustration of the evolution of beams: we start with the empty

beam, then add all possible characters (we only have “a” and “b”

in this example) to it in the first iteration and only keep the best

scoring ones. The beam width controls the number of surviving

beams. This is repeated until the complete NN output it processed.

Fig. 2. Beam search

3. Optimization algorithms

Gradient descent [14] is one of the most popular algorithms to

perform optimization and by far the most common way to

optimize neural networks. At the same time, every state-of-the-art

Deep Learning library contains implementations of various

algorithms to optimize gradient descent. These algorithms,

however, often used as black-box optimizers, as practical

explanations of their strengths and weaknesses are hard to come

by.

Gradient descent is a way to minimize an objective function

 (parameterized by a model’s parameters by updating the

parameters in the opposite direction of the gradient of the

objective function (w.r.t. to the parameters. The learning

rate  determines the size of the steps we take to reach a (local)

minimum. In other words, we follow the direction of the slope of

the surface created by the objective function downhill until we

reach a valley.

56 IAPGOŚ 3/2019 p-ISSN 2083-0157, e-ISSN 2391-6761

Stochastic Gradient Descent

SGD in [10] updates model parameters in the negative

direction of the gradient (g) by taking a subset or a mini-batch of

data of size (m):

 ∑ ((() ()

Adagrad

This method simply allows the learning Rate - - to adapt

based on the parameters. Therefore, it makes big updates for

infrequent parameters and small updates for frequent parameters.

For this reason, it is well suited for dealing with sparse data.

Adagrad uses a different learning rate in [5] for every

parameter (i) (at every time step t , we first show Adagrad’s

per-parameter update, which we then vectorise. Briefly, we set g(t,

i) (to be the gradient of the loss function w.r.t. to the

parameter (i) ((at time step t .

√

Momentum

SGD has trouble navigating ravines, i.e. areas where the

surface curves much more steeply in one dimension than in

another, which are common around local optima. In these

scenarios, SGD oscillates across the slopes of the ravine while

only making hesitant progress along the bottom towards the local

optimum.

Momentum in [2] is a method that helps accelerate SGD in the

relevant direction and dampens oscillations. It does this by adding

a fraction γ of the update vector of the past time step to the

current update vector.

 (

The momentum term γ is usually set to 0.9 or a similar value.

Essentially, when using momentum, we push a ball down a hill.

The ball accumulates momentum as it rolls downhill, becoming

faster and faster on the way (until it reaches its terminal velocity,

if there is air resistance, i.e. γ < 1). The same thing happens to our

parameter updates: The momentum term increases for dimensions

whose gradients point in the same directions and reduces updates

for dimensions whose gradients change directions. As a result, we

gain faster convergence and reduced oscillation.

Adam

Adam stands for Adaptive Moment Estimation. Adaptive

Moment Estimation (Adam) is another method that computes

adaptive learning rates for each parameter [15]. In addition to

storing an exponentially decaying average of past squared

gradients, Adam also keeps an exponentially decaying average of

past gradients M (t) (, similar to momentum:

 (

 (

 and are estimates of the first moment (the mean) and the

second moment (the uncentered variance) of the gradients

respectively, hence the name of the method. As and are

initialized as vectors of 0’s, the authors of Adam observe that they

are biased towards zero, especially during the initial time steps,

and especially when the decay rates are small (i.e. β1 and β2 are

close to 1).

 ̂

 , ̂

They then use these to update the parameters:

√ ̂
 ̂

The authors propose default values of 0.9 for β1, 0.999 for β2,

and 10−8 for . They show empirically that Adam works well in

practice and compares favourably to other adaptive learning-

method algorithms.

4. Results

After training the model three times with different

optimization algorithms, we see the following outcomes (Table 1):

Table 1. Result of each optimizer

Name
Training

cost

Validation

cost

Training

LER

Validation

LER

Adagrad 166.774 242.164 0.970 0.980

Momentum 2.405 71.289 0.000 0.500

Adam 166.774 242.164 0.970 0.980

Fig. 3. CTC loss and LER of Adagrad

As we can see in Figure 3 CTC loss at the beginning of each

iteration starts to decrease as it should, but after that, the loss value

starts to hesitate drastically between 500 and 50 (approximately).

At the same time, LER right from the beginning start to hesitate

between 1 and 0.9 (approximately), which does not allow the

model to learn.

Fig. 4. CTC loss and LER of Momentum

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 3/2019 57

The visualization we see in Figure 4 shows that Momentum

works a lot better than Adagrad. LER and CTC loss are

continuously decreasing for training and validation sets. Because

of learning rate is equal to 0.005 decreasing process slows down

little bit. Other than that, learning process is doing well.

Fig. 5. CTC loss and LER of Adam

As shown in Figure 5 CTC loss decreases at the beginning

of the gradient steps and once again as in Adagrad optimizer starts

to hesitate between two numbers with a big difference. LER

on the other hand decreases to 1 after few iterations and after that

does not change for a long gradient steps. Right after it reaches

about 750 iteration LER starts to hesitate between 1 and 0.5

(approximately), which is not a well performance.

5. Conclusion

This paper shows a clear benefit of Momentum optimizer over

Adam and Adagrad for CTC algorithm for speech recognition.

The experiment showed that model with Momentum optimizer

learns faster decreasing the CTC loss and LER after each gradient

step, whereas Adagrad and Adam optimizers performed very

poorly, showing a hesitation of errors from big number to small.

Other than that, this paper shows the advanced algorithm called

Connectionist Temporal Class for speech recognition in action. It

also describes the clear benefits of this algorithm over the

traditional method, which is HMM based model, which is the

simplicity and effectiveness.

References

[1] Amirgaliev Y., Hahn M., Mussabayev T.: The speech signal segmentation

algorithm using pitch synchronous analysis. Journal Open Computer Science

7(1)/2017, 1–8.

[2] Andrychowicz M., Denil M., Colmenarejo S.G., Hoffman M.W., Pfau D.,

Schaul T., Shillingford B., de Freitas N.: Learning to learn by gradient descent

by gradient descent. 30th Conference on Neural Information Processing Systems

NIPS 2016.

[3] Bahdanau D., Cho K., Bengio Y.: Neural machine translation by jointly learning

to align and translate. Proc. ICLR, 2015.

[4] Bengio Y., Ducharme R., Vincent P., Jauvin C.: A Neural Probabilistic

Language Model. Journal of Machine Learning Research 3/2003, 1137–1155.

[5] Bottou L.: Large-Scale Machine Learning with Stochastic Gradient Descent.

NEC Labs America, Princeton.

[6] Duchi J., Hazan E., Singer Y.: Adaptive Subgradient Methods for Online

Learning and Stochastic Optimization. Journal of Machine Learning Research

12/2011, 2121–2159.

[7] Gales M., Young S.: The Application of Hidden Markov Models in Speech

Recognition. Foundations and Trends in Signal Processing 1(3)/2007, 195–304.

[8] Graves A., Fernandez S., Gomez F., Schmidhuber J.: Connectionist Temporal

Classification: Labelling Unsegmented Sequence Data with Recurrent Neural

Networks Proceedings of the 23rd International Conference on Machine

Learning, Pittsburgh, PA, 2006.

[9] Graves A., Jaitly N.: Towards End-to-End Speech Recognition with Recurrent

Neural Networks. Proceedings of the 31st International Conference on Machine

Learning 2014.

[10] Kingma D.P., Ba J.: Adam: A Method For Stochastic Optimization. Proc. 3rd

International Conference for Learning Representations. 2015

arXiv:1412.6980v9.

[11] Loizou N., Richtarik P.: Momentum and Stochastic Momentum for Stochastic

Gradient, Newton, Proximal Point and Subspace Descent Methods. 2017,

arXiv:1712.09677v2

[12] Mussabayev R.R., Amirgaliyev N., Tairova A.T., Mussabayev T.R., Koibagarov

K.C.: The technology for the automatic formation of the personal digital voice

pattern. Application of Information and Communication Technologies AICT

2016.

[13] Schuster M., Paliwal K.K.: Bidirectional recurrent neural networks. Signal

Processing. IEEE Transactions 45(11)/1997, 2673–2681.

[14] Sutskever I., Vinyals O., Le Q.V.: Sequence to sequence learning with neural

networks. Advances in Neural Information Processing Systems 2014, 3104–

3112.

[15] Wiseman S., Rush A.M.: Sequence-to-Sequence Learning as Beam-Search

Optimization. Proceedings of the 2016 Conference on Empirical Methods in

Natural Language Processing 2016.

[16] Yu D., Li J.: Recent Progresses in Deep Learning based Acoustic Models.

Tencent AI Lab, Microsoft AI and Research, 2018.

Ph.D. Yedilkhan Amirgaliyev

e-mail: amir_ed@mail.ru

Doctor of technical sciences, professor, head of the

laboratory of mathematical and computer modelling of

the Institute of Information and computing

technologies of the Science Committee of RK MES.

The Institute is the leading organization in the field of

information technology in the country. The main

directions of the research laboratory is an intelligent

decision-making systems, robotics, wireless sensor

technology, computer modelling of technological

processes, etc.

ORCID ID: 0000-0002-6528-0619

M.Sc. Kuanyshbay Darkhan

e-mail: darkhan.kuanyshbay@sdu.edu.kz

Ph.D. student on a specialty "Information Systems", a

programmer at the Institute of Institute of Information

and Computational Technologies of the Ministry of

Education and Science CS of the Republic of

Kazakhstan. Research interests: mathematical

modelling of discrete systems, evacuation tasks,

operations research, technology design of complex

systems.

ORCID ID: 0000-0001-5952-8609

M.Sc. Aisultan Shoiynbek

e-mail: aisultan.shoiynbek@sdu.edu.kz

Ph.D. student on a specialty "Information Systems", a

programmer at the Institute of Institute of Information

and Computational Technologies of the Ministry of

Education and Science CS of the Republic of

Kazakhstan. Research interests: mathematical

modelling of discrete systems, evacuation tasks,

operations research, technology design of complex

systems.

ORCID ID: 0000-0002-9328-8300

otrzymano/received: 30.05.2019 przyjęto do druku/accepted: 15.06.2019

mailto:darkhan.kuanyshbay@sdu.edu.kz
mailto:aisultan.shoiynbek@sdu.edu.kz

