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Abstract. This paper evaluates and compares the performances of three well-known optimization algorithms (Adagrad, Adam, Momentum) for faster 

training the neural network of CTC algorithm for speech recognition. For CTC algorithms recurrent neural network has been used, specifically Long-
Short-Term memory. LSTM is effective and often used model. Data has been downloaded from VCTK corpus of Edinburgh University. The results 

of optimization algorithms have been evaluated by the Label error rate and CTC loss.  
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PORÓWNANIE ALGORYTMÓW OPTYMALIZACJI KLASYFIKATORA CZASOWEGO 

DO SYSTEMU ROZPOZNAWANIA MOWY 

Streszczenie. W artykule dokonano oceny i porównania wydajności trzech znanych algorytmów optymalizacyjnych (Adagrad, Adam, Momentum) w celu 

przyspieszenia treningu sieci neuronowej algorytmu CTC do rozpoznawania mowy. Dla algorytmów CTC wykorzystano rekurencyjną sieć neuronową, 

w szczególności LSTM, która jest efektywnym i często używanym modelem. Dane zostały pobrane z wydziału VCTK Uniwersytetu w Edynburgu. Wyniki 

algorytmów optymalizacyjnych zostały ocenione na podstawie wskaźników Label error i CTC loss. 

Słowa kluczowe: rekurencyjna sieć neuronowa, metody wyszukiwania, akustyka, język modelowania systemów  

Introduction 

There have been many techniques for recognizing speech and 

variety of tasks like voice pattern recognition, which helps to 

identify human by his voice [12]. Considering the fact that speech 

data is complicated in terms of segmentation that is [1], it is 

difficult to build a model with a simple structure. The state-of-the-

art technique for ASR (Automatic speech recognition) is always 

been HMM model [7], which involves other pre-trained models 

like acoustic model, language model etc. However, recent 

researches have shown that by using recurrent neural networks [9], 

we can build such architecture of neural network, which will 

require only speech data (.wav) and transcription (.txt) to train the 

model completely, whereas traditional models (HMM) [7] would 

require data for training language model and acoustic model. This 

advanced algorithm called Connectionist-Temporal-Classifier [8], 

the heart of which is RNN. One of the most common and crucial 

steps in neural network is training. It is important that the model 

will train fast and at the same time does not overfit or underfit, 

especially with speech data. Labelling an unsegmented data is 

very common and often difficult problem in the sequence-to-

sequence models. Straightforward way to solve this problem is to 

label each segment of a sequence (for example wave file) 

manually. However, considering that there are so many words in 

speech, not counting the sentences, which brings a certain 

transformations time-consuming, boring and hard to do. To avoid 

this kind of issues traditional ASR system uses Language model 

like in [4], which predicts the probability of last word given the 

sentence and Acoustic model using a progresses like in [3], which 

gives the phoneme representation of the given speech (Fig. 1). 

 

Fig. 1. Traditional ASR system 

Labelling an unsegmented data is very common and often 

difficult problem in the sequence-to-sequence models. 

Straightforward way to solve this problem is to label each segment 

of a sequence (for example wave file) manually. However, 

considering that there are so many words in speech, not counting 

the sentences, which brings a certain transformations time-

consuming, boring and hard to do. To avoid this kind of issues 

traditional ASR system uses Language model like in [4], which 

predicts the probability of last word given the sentence and 

Acoustic model using a progresses like in [3], which gives the 

phoneme representation of the given speech (Fig. 1). 

Connectionist temporal classifier [8] require only a speech 

data (raw audio) and transcription (txt file) in order to train only 

one model without involving the Language model. Instead of 

Language model, it uses dynamic programming method, which 

called Beam search in [13]. For training the model, any neural 

network structure uses an optimizer that helps to achieve the good 

accuracy fast and with no issues (over fitting, under fitting). 

This paper organized as follows. Section 2 contains the 

information about CTC algorithm, Beam search and optimization 

algorithms, which will be considered in the experiment. Section 3 

contains the experiment itself, which is about building a neural 

network, used optimization algorithms and dataset. Section 4 

illustrates the outcomes of the experiment that shows a result of 

optimization algorithms comparing with each other (Adagrad, 

Adam, and Momentum). Section 5 concludes the whole 

experiment by choosing the best optimizer for CTC algorithm. 

1. Encoder and decoder 

The RNN encoder-decoder is a neural network model that 

directly computes the conditional probability of the output 

sequence given the input sequence without assuming a fixed 

alignment, i.e. P(y1, . . ., yO|x1, . . ., xT) where the lengths of the 

output and the input, O and T respectively, may be different. For 

speech recognition, the input is usually a sequence of acoustic 

feature vectors, while the output is usually a sequence of class 

indices corresponding to units such as phonemes, letters, HMM 

states, or words. The idea of the encoder-decoder approach is that 

for each output yo, the encoder maps the input sequence into a 

fixed-length hidden representation co, which is referred as context 

vector. From the previous output symbols and the context vector, 

the decoder computes. 
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Since the probability 
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conditioned on the previous outputs as well as the context vector, 

an RNN can be used to compute this probability which implicitly 

remembers the history using a recurrent layer. 

Let yo be a vector representation of the output symbol yo, 

where yo is a one-hot vector indicating one of the words in the 

vocabulary followed by a neural projection layer for dimension 

reduction. The posterior probability of yo is computed as 

  (  |               (            

     (               

where so denotes the output of a recurrent hidden layer f(·) with 

inputs yo−1, so−1, and co. g(·) is a softmax function with inputs 

yo−1, so and co. We condition both f(·) and g(·) on the context 

vector to encourage the decoder to be heavily reliant on the 

context from the encoder. The previous output yo−1 is also fed to 

the softmax function g(·) to capture the bigram dependency 

between consecutive words [3]. We have also investigated a 

simpler output function without the dependence on the previous 

output yo−1, i.e. P(yo|y1, ..., yo−1, co) = g(so, co). 

Encoder 

As discussed above, the computation of the conditional 

probability relies on the availability of the context vector    for 

each output   . The context vector is obtained from the encoder 

which reads the input sequence and generates a continuous space 

representation. The context vector co is obtained by the weighted 

average of all the hidden representations of a bidirectional RNN 

(BiRNN) [8]: 

    ∑        
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denote the hidden representations of xt from the forward and 

backward RNNs respectively. The context vector    is global, for 

instance,       . This means the context vector does not depend 

on the index o, meaning that the whole input sequence is encoded 

into a fixed vector representation. This approach has produced 

state-of-the-art results in machine translation when the dimension 

of the vector is relatively large [14]. When the model size is 

relatively small, however, the use of a dynamic context vector has 

been found to be superior, especially for long input sequences. 

The weight     is computed by a learned alignment model for 

each co, which is implemented as a neural network such that 
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where a(·) is a feedforward neural network that computes the 

relevance of each hidden representation ht with respect to the 

previous hidden state of RNN decoder so−1. The alignment model 

is a single-hidden-layer neural network: 

  (               (           

where W and U are weight matrices, and v is a vector so that the 

output of a(·) is a scalar. More hidden layers can be used in the 

alignment model. 

In the case of using a fixed context vector using an RNN to 

map the whole input sequence into the context vector is necessary 

because this vector must represent all the relevant information in 

the input sequence. 

2. Connectionist temporal classifier 

The CTC algorithm considers the order of the output labels of 

RNNs with ignoring the alignments by introducing a blank label, 

b. For the set of target labels, L, and its extended set with the 

additional CTC blank label, L′ = L ∪ {b}, the path, π, is defined as 

a sequence over L′, that is, π∈ L ′T, where T is the length of the 

input sequence, x. Then, the output sequence, z ∈ L ≤T, is 

represented by z = F(π) with the sequence to sequence mapping 

function F. F maps any path π with the length T into the shorter 

sequence of the label, z, by first merging the consecutive same 

labels into one and then removing the blank labels. Therefore, any 

sequence of the raw RNN outputs with the length T can be 

decoded into the shorter labelling sequence, z, with ignoring

timings. This enables the RNNs to learn the sequence mapping, 

z = G(x), where x is the input sequence and z is the corresponding 

target labelling for all (x, z) in the training set, S. More 

specifically, the gradient of the loss function L(x, z) = − ln p(z/x) 

is computed and fed to the RNN through the softmax layer, of 

which the size is |L′|. 

The CTC algorithm employs the forward-backward algorithm 

for computing the gradient of the loss function, L(x, z). Let z′ be 

the sequence over L′ with the length of 2|z|+1 where z′u = b for 

odd u and z′u = zu/2 for even u. Then, the forward variable, α, and 

the backward variable, β, are initialized by 
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where   
  is the soft max output of the label k ∈ L′ at time t. The 

variables are forward and backward propagated as 
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With boundary conditions: 
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Then, the error gradient with respect to the input of the 

softmax layer at time t, at
k     

     
 , is computed as 
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Beam search 

This algorithm iterates through the NN output and creates text 

candidates (called beams) which are scored. Figure 2 shows an 

illustration of the evolution of beams: we start with the empty 

beam, then add all possible characters (we only have “a” and “b” 

in this example) to it in the first iteration and only keep the best 

scoring ones. The beam width controls the number of surviving 

beams. This is repeated until the complete NN output it processed. 

 

Fig. 2. Beam search 

3. Optimization algorithms  

Gradient descent [14] is one of the most popular algorithms to 

perform optimization and by far the most common way to 

optimize neural networks. At the same time, every state-of-the-art 

Deep Learning library contains implementations of various 

algorithms to optimize gradient descent. These algorithms, 

however, often used as black-box optimizers, as practical 

explanations of their strengths and weaknesses are hard to come 

by. 

Gradient descent is a way to minimize an objective function 

 (   parameterized by a model’s parameters      by updating the 

parameters in the opposite direction of the gradient of the 

objective function     (   w.r.t. to the parameters. The learning 

rate  determines the size of the steps we take to reach a (local) 

minimum. In other words, we follow the direction of the slope of 

the surface created by the objective function downhill until we 

reach a valley.  
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Stochastic Gradient Descent 

SGD in [10] updates model parameters   in the negative 

direction of the gradient (g) by taking a subset or a mini-batch of 

data of size (m): 
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Adagrad 

This method simply allows the learning Rate - -  to adapt 

based on the parameters. Therefore, it makes big updates for 

infrequent parameters and small updates for frequent parameters. 

For this reason, it is well suited for dealing with sparse data. 

Adagrad uses a different learning rate in [5] for every 

parameter (i)  (   at every time step t  , we first show Adagrad’s 

per-parameter update, which we then vectorise. Briefly, we set g(t, 

i)  (     to be the gradient of the loss function w.r.t. to the 

parameter (i)  (    (   at time step t . 
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Momentum 

SGD has trouble navigating ravines, i.e. areas where the 

surface curves much more steeply in one dimension than in 

another, which are common around local optima. In these 

scenarios, SGD oscillates across the slopes of the ravine while 

only making hesitant progress along the bottom towards the local 

optimum. 

Momentum in [2] is a method that helps accelerate SGD in the 

relevant direction and dampens oscillations. It does this by adding 

a fraction γ  of the update vector of the past time step to the 

current update vector. 

               (   

        

The momentum term γ is usually set to 0.9 or a similar value. 

Essentially, when using momentum, we push a ball down a hill. 

The ball accumulates momentum as it rolls downhill, becoming 

faster and faster on the way (until it reaches its terminal velocity, 

if there is air resistance, i.e. γ < 1). The same thing happens to our 

parameter updates: The momentum term increases for dimensions 

whose gradients point in the same directions and reduces updates 

for dimensions whose gradients change directions. As a result, we 

gain faster convergence and reduced oscillation. 

Adam 

Adam stands for Adaptive Moment Estimation. Adaptive 

Moment Estimation (Adam) is another method that computes 

adaptive learning rates for each parameter [15]. In addition to 

storing an exponentially decaying average of past squared 

gradients, Adam also keeps an exponentially decaying average of 

past gradients M (t) (  , similar to momentum: 

           (        

           (       
  

   and    are estimates of the first moment (the mean) and the 

second moment (the uncentered variance) of the gradients 

respectively, hence the name of the method. As    and    are 

initialized as vectors of 0’s, the authors of Adam observe that they 

are biased towards zero, especially during the initial time steps, 

and especially when the decay rates are small (i.e. β1 and β2 are 

close to 1). 
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They then use these to update the parameters: 

         
 

√  ̂  
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The authors propose default values of 0.9 for β1, 0.999 for β2, 

and 10−8 for  . They show empirically that Adam works well in 

practice and compares favourably to other adaptive learning-

method algorithms. 

4. Results 

After training the model three times with different 

optimization algorithms, we see the following outcomes (Table 1): 

Table 1.  Result of each optimizer 

Name 
Training 

cost 

Validation 

cost 

Training 

LER 

Validation 

LER 

Adagrad 166.774 242.164 0.970 0.980 

Momentum 2.405 71.289 0.000 0.500 

Adam 166.774 242.164 0.970 0.980 

 

 

Fig. 3. CTC loss and LER of Adagrad 

As we can see in Figure 3 CTC loss at the beginning of each 

iteration starts to decrease as it should, but after that, the loss value 

starts to hesitate drastically between 500 and 50 (approximately). 

At the same time, LER right from the beginning start to hesitate 

between 1 and 0.9 (approximately), which does not allow the 

model to learn. 

 

 

Fig. 4. CTC loss and LER of Momentum 
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The visualization we see in Figure 4 shows that Momentum 

works a lot better than Adagrad. LER and CTC loss are 

continuously decreasing for training and validation sets. Because 

of learning rate is equal to 0.005 decreasing process slows down 

little bit. Other than that, learning process is doing well. 

 

 

Fig. 5. CTC loss and LER of Adam 

As shown in Figure 5 CTC loss decreases at the beginning 

of the gradient steps and once again as in Adagrad optimizer starts 

to hesitate between two numbers with a big difference. LER 

on the other hand decreases to 1 after few iterations and after that 

does not change for a long gradient steps. Right after it reaches 

about 750 iteration LER starts to hesitate between 1 and 0.5 

(approximately), which is not a well performance.  

5. Conclusion 

This paper shows a clear benefit of Momentum optimizer over 

Adam and Adagrad for CTC algorithm for speech recognition. 

The experiment showed that model with Momentum optimizer 

learns faster decreasing the CTC loss and LER after each gradient 

step, whereas Adagrad and Adam optimizers performed very 

poorly, showing a hesitation of errors from big number to small. 

Other than that, this paper shows the advanced algorithm called 

Connectionist Temporal Class for speech recognition in action. It 

also describes the clear benefits of this algorithm over the 

traditional method, which is HMM based model, which is the 

simplicity and effectiveness. 
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