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Abstract. This paper focuses on the study of some aspects of the theory of oriented graphs in Bayesian networks. In some papers on the theory of Bayesian 

networks, the concept of “Generation of vertices” denotes a certain set of vertices with many parents belonging to previous generations. Terminology for 
this concept, in our opinion, has not yet fully developed. The concept of “Generation” in some cases makes it easier to solve  some problems in Bayesian 

networks and to build simpler algorithms.   

In this paper we will consider the well-known example “Asia”, described in many articles and books, as well as in the technical documentation for various 

toolboxes. For the construction of this example, we have used evaluation versions of AgenaRisk. 

Keywords: Bayesian networks, AgenaRisk, oriented graphs, vertices generation 

GENERACJE W SIECIACH BAYESOWSKICH 

Streszczenie. Niniejszy artykuł koncentruje się na badaniu pewnych aspektów teorii zorientowanych grafów w sieciach bayesowskich. W niektórych 

artykułach na temat teorii sieci bayesowskich pojęcie „generacji wierzchołków” oznacza pewien zestaw wierzchołków z wieloma rodzicami należącymi do 

poprzednich generacji. Terminologia tego pojęcia, naszym zdaniem, nie została jeszcze w pełni rozwinięta. Koncepcja „Generacji” w niektórych 
przypadkach ułatwia rozwiązywanie niektórych problemów w sieciach bayesowskich i budowanie prostszych algorytmów. 

W tym artykule rozważymy dobrze znany przykład „Azja”, opisany w wielu artykułach i książkach, a także w dokumentacji technicznej różnych zestawów 

narzędzi. Do budowy tego przykładu wykorzystaliśmy wersje testowe AgenaRisk. 

Słowa kluczowe: sieci bayessowskie, grafy zorientowane, generacja wierzchołków 

Introduction 

Nowadays artificial intelligence is widely used in different 

fields of science. Since the beginning of 2000 Bayesian Networks 

is the most popular tool of artificial intelligence in different 

researches. For the correct use of Bayesian Networks, the 

corresponding mathematical tools were developed. There are 

ample opportunities to study problems in various fields of science. 

However, massive, complex computations in the process of work 

with Bayesian networks required the involvement of both good 

computing equipment and the availability of good software that 

ensure convenient work with Bayesian networks. 

The most popular software products for work with Bayesian 

Networks are BayesiaLab, AgenaRisk, Bayes Server, Netica, 

Hugin Expert, BayesFusion. Even though some packages are over 

15 years old, there is still an issue with interaction between 

mathematicians working on the theoretical basis of Bayesian 

networks, algorithm developers and programmers, as well as 

researchers in applied science. 

In this paper, we will consider one of the theoretical directions 

in the theory of Bayesian networks – partition of the vertices of 

the Bayesian network into generations. In our opinion, the theory 

of Bayesian networks is rather poorly represented in the literature; 

however, in some cases, partition vertices into generations may 

allow you to take a fresh look at the general theory of Bayesian 

networks, and make it easier to develop algorithms for some 

problems. 

In this paper we will consider the well-known example 

“Asia”, described in many articles and books, as well as in the 

technical documentation for various toolboxes. For the 

construction of this example, we have used evaluation versions of 

AgenaRisk. For the basic knowledge about Bayesian networks 

reader can use the literature [2, 4, 6–13] and the literature [1, 5] to 

get the basic knowledge about the capabilities of AgenaRisk. 

1. Main definitions 

Bayesian Networks are a handy tool for describing complex 

processes with uncertainties. 

Below we list the basic concepts associated with Bayesian 

networks. 

Definition 1. A Bayesian network is an acyclic oriented graph 

with Markov condition. The vertices of the graph are often called 

nodes. Nodes represent some variables that reflect the main 

entities in the developed model.  

Definition 2. A Bayesian network is called discrete if the 

variables representing nodes are discrete. 

Definition 3. A Bayesian network is called continuous if the 

variables representing the nodes are continuous. 

Definition 4. A Bayesian network is called hybrid if there are 

nodes in the Bayesian network that represent both discrete and 

continuous variables. 

Definition 5. A Bayesian network is called dynamic if the 

variables representing the nodes change over time. 

Some nodes of the Bayesian network may be interconnected 

by directed arcs (edges). Arcs define some probabilistic 

connection between corresponding nodes. Sometimes such a 

relationship is causal. The reason is the node where the oriented 

arc comes from, the consequence is the node where the oriented 

arc comes  

Definition 6. The edges are arcs without direction.  

Definition 7. If the nodes are not connected by an arc, then 

these nodes are considering as conditionally independent.  

Definition 8. A skeleton of a Bayesian network is a graph 

obtained from a Bayesian network by replacing arcs with edges.  

Definition 9. If an arc goes from the vertex A to the vertex B, 

then A is called the parent of B, and B is called the child vertex of 

the vertex A.  

Definition 10. Let Y be some subset of vertices of a Bayesian 

network. P (Y) is often denoted as the set of all parents belongs to 

Y. C (Y) is often denoted as the set of all children belongs to Y. 

Definition 11. A node x and an arc e are called incident if e 

enters or comes from x. 

Definition 12. Nodes are called supplementary if they are 

incidents of one arc, i.e. if one of them is the parent of the other 

one.  

Definition 13. The route from vertex a0 to vertex an in an 

oriented graph (in a Bayesian network) is an alternating sequence 

of vertices and arcs of the form a0, {a0 a1}, a1, {a1 a2}, a2, {a2 a2}, 

, an. 

Definition 14. The path is a route without repeating arcs. 

Definition 15. If there is an oriented path from the vertex A to 

the vertex B, then A is called the ancestor of B, and B is called the 

descendant of A. 

Definition 16. Two nodes are called connected if there is a 

route between them. 

Definition 17. If a vertex has no ancestors, then its local 

probability distribution is called unconditional, otherwise 

conditional. 
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Definition 18. The topological numbering of nodes of a 

Bayesian network is called such a numbering of nodes, in which 

the number of any node is greater than its parent number. 

Definition 19. Sometimes it is convenient to part nodes into 

generations to develop Bayesian network calculation algorithms. 

Generations can be of two types: generations of descendants and 

generations of ancestors. Generations of descendants are defined 

as follows: 

 Nodes without parents belong to the 0 generation of 

descendants. 

 Nodes with only 0 generation of parents belong to 1 

generation of descendants. 

 Nodes with only 0 and 1 generation of parents belong to 2 

generation of descendants. 

 …………. 

 Nodes with 0, 1, 2, … K generation of parents belong to K+1 

generation of descendants 

 …………. 

Definition 20. Generations of ancestors are defined as 

follows: 

 Nodes with no children belong to the 0 generation of 

ancestors. 

 Nodes with only 0 generation of children belong to 1 

generation of ancestors. 

 Nodes with only 0 and 1 generation of children belong to the 2 

generation of ancestors. 

 …………. 

 Nodes with only 0, 1, 2, … K generation of children belong to 

the K+1 generation of ancestors. 

 ………….. 

2. How can we use the definition “Generation”? 

We can distinguish two types of generations – generations of 

descendants and generations of ancestors. Generations of 

descendants are built, starting from vertices without parents. 

Generations of descendants are built, starting from vertices 

without children. In most cases, we obtain completely different 

partitions that have a different number of generations. However, it 

is easy to build a graph (Bayesian network) which partition into 

generations of descendants and generations of ancestors are 

completely identical. 

The expediency of partition vertices of a Bayesian network 

into one or another type of generation is determined by a specific 

task. To solve some problems, sometimes we need to do two 

partitions at once: into generations of descendants and generations 

of ancestors. 

The algorithm for partition vertices of a Bayesian network into 

generations is quite simple. Let’s consider the both variants. 

 

Partition into generations of descendants 

First, we search and select vertices without parents. We assign 

such vertices to zero generation and mark selected vertices. Next, 

we look through the remaining unmarked vertices and select only 

those vertices whose parents belong only to the zero generation. 

We obtain the first generation of descendants, and mark the newly 

selected vertices of the first generation. Again, we look through 

the remaining unmarked vertices and select only those vertices 

whose parents belong only to either zero or first generation. We 

obtain the second generation of descendants and mark the selected 

vertices. We continue that way until all vertices are marked. 

 

An example of the partition into generations is shown in 

Figure 1.  

Generations of descendants for this Bayesian network: 

 Vertices Age and VisitAsia will be referred to the zero 

generation.  

 Vertices Smoker and Tuberculosis belong to the first 

generation.  

 Vertices Cancer and Bronchtis belong to the second 

generation.  

 The only vertex TbOrCa belong to the third generation.  

 Vertices XRay and Dyspnea belong to the fourth generation. 

 

Partition into generations of ancestors 

First, we search and select vertices without children. We 

assign such vertices to zero generation of ancestors and mark 

selected vertices. Next, we look through the remaining unmarked 

vertices and select only those vertices whose children belong only 

to the zero generation of ancestors. We obtain the first generation 

of ancestors, and mark the newly selected vertices of the first 

generation. Again, we look through the remaining unmarked 

vertices and select only those vertices whose children belong only 

to either zero or first generation of ancestors. We obtain the 

second generation of descendants and mark the selected vertices. 

  

 

Fig. 1. Example of the partition intogenerations 
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We continue that way until all vertices are marked. 

Generations of ancestors for this Bayesian network: 

 Vertices XRay and Dyspnea will be referred to the zero 

generation.  

 Vertices TbOrCa and Bronchtis belong to the first 

generation.  

 Vertices Cancer and Tuberculosis belong to the second 

generation.  

 Vertices Smoker and VisitAsia belong to the third generation.  

 The only vertex Age belong to the fourth generation. 

We can use both partitions into generations: into generations 

of descendants or generations of ancestors to prove the following 

theorem. 

Theorem 1. If at some stage of generation’s construction, some 

generation is empty, but we still have unmarked vertices, there are 

oriented cycles in the graph. 

Proof.  

If at some stage among unmarked vertices there were no 

vertices that have parents from previous generations, then 

considered node can only have as parents the nodes from the 

current generation. We choose any parent whose parents also do 

not belong to previous generations. As a result, we have an 

unlimited path with a limited number of nodes, that is, a cycle. 

Thus, we have a fairly simple way to find out if an oriented 

graph has a cycle and find where this cycle is. 

Below are a few standard, previously proven, theorems from 

graph theory and the theory of Bayesian networks, as well as their 

new proofs with using the concept of "Generation". In our 

opinion, the proofs of these theorems are simpler.  

Theorem 2. Two isomorphic Bayesian networks have the same 

partition into generations of descendants and generations of 

ancestors. 

Proof. 

1. If the partition of the vertices of the two Bayesian networks 

into generations of descendants have done, and the 

partitioning data for these networks are different, then in the 

generation where there is a difference, there are vertices which 

have a different number of parents in each network. This fact 

contradicts the isomorphism condition of two networks. 

2. If the partition of the vertices of the two Bayesian networks 

into generations of ancestors have done, and the partitioning 

data for these networks are different, then in the generation 

where there is a difference, there are vertices which have a 

different number of children in each network. This fact 

contradicts the isomorphism condition of two networks. 

The problem of verifying the isomorphism of two Bayesian 

networks is greatly simplified by using the concept of 

“Generation”. 

Theorem 3. Bayesian network allows topological numbering. 

Proof.  

Let the vertices of the Bayesian network be partitioned into 

generations of descendants. 

 

The first method of numbering 

First, we randomly number the nodes of the zero generation, 

then continue the numbering for the nodes of the first generation, 

then for the nodes of the second generation, etc. 

Since the parents of each node are in previous generations, the 

numbering will be topological. 

 

The second method of numbering 

Let’s consider all nodes of zero generation. We take 

an arbitrary node of the zero generation and consider the set M1 

of all descendants of this node on all generations. We number 

the nodes of the set M1 as follows. We assign the number 1

to the node from the zero generation. Next, we number the nodes 

of the first generation on set M1, then the nodes of the second 

generation on set M1, etc. Then we mark all the numbered nodes. 

Next, we take the next node of the zero generation and assign 

the next number to it. We consider the set M2 of all descendants 

of a given node which was not previously marked. Next, we 

number the nodes of the first generation on set M2, then the nodes 

of the second generation on set M2, etc. Then we mark all the 

numbered nodes. 

We do the same with all the remaining nodes of zero 

generation. We number these nodes in the same way. 

Since the parents of each node are from previous generations, 

the numbering will be topological. 

Theorem 4. The Bayesian network allows such a topological 

numbering, in which the number of any node X will be greater 

than the numbers of any node from an arbitrary set of nodes M 

that do not contain node X, as well as descendants of node X. 

Proof.  

Let the vertices of the Bayesian network be partitioned into 

generations of descendants. 

Let's slightly change the second numbering method from 

Theorem 3. 

Let MX be the set of nodes of the considered Bayesian 

network, consisting of the node X and its descendants. Let L be 

the number of nodes in the considered Bayesian network. We will 

do the topological numbering of network nodes by the second 

method described in Theorem 3. 

We add the number L to all numbers of nodes of the set MX. 

Continuous numbering of Bayesian network nodes will be broken. 

However, the number of any node will remain still greater than the 

number of its parent. Now we need to restore the numbering 

continuity of the Bayesian network. 

We arrange in ascending order the obtained node numbers of 

the Bayesian network. Let's number these node numbers. If we 

take the numbering of node numbers for new node numbers, then 

this numbering will remain topological numbering. In addition, 

the node numbers of the MX array will be greater than the 

numbers of all remaining nodes of the network, and therefore 

greater than node numbers of the array M. 

Theorem 5. The Bayesian network allows such a topological 

numbering, in which the number of any node X will be less than 

the numbers of any node from an arbitrary set of nodes M that do 

not contain node X, as well as ancestors of node X. 

Proof.  

Let the vertices of the Bayesian network be partitioned into 

generations of ancestors. 

Let's slightly change the second numbering method from 

Theorem 3. 

Let MX be the set of nodes of the considered Bayesian 

network, consisting of the node X and its ancestors. Let L be the 

number of nodes in the considered Bayesian network. We will do 

the topological numbering of network nodes by the second method 

described in Theorem 3. 

We add the number L to all numbers of nodes of the set MX. 

Continuous numbering of Bayesian network nodes will be broken. 

However, the number of any node will remain still less than the 

number of its child. Now we need to restore the numbering 

continuity of the Bayesian network. 

We arrange in ascending order the obtained node numbers of 

the Bayesian network. Let's number these node numbers. If we 

take the numbering of node numbers for new node numbers, then 

this numbering will remain topological numbering. In addition, 

the node numbers of the MX array will be less than the numbers 

of all remaining nodes of the network, and therefore less than node 

numbers of the array M. 
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3. Conclusion 

This paper shows some possibilities of using the concept of 

“Generation” in the process of proof of some standard theorems in 

the theory of Bayesian networks. Use of this concept also 

simplifies some algorithms for problems in Bayesian networks, for 

example, searching for loops or checking the isomorphism of two 

networks. 

Here we have presented only a small part of the possibilities of 

using the concept of “Generation”. 
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