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Abstract. The article presents a solution based on a cyber-physical system in which data collected from measuring sensors was analysed for prediction 

in the production process control system. The presented technology was based on intelligent sensors as part of the solution for Industry 4.0. The main 

purpose of the work is to reduce data and select the appropriate covariate to optimise modelling of defects using the Cox model for a specific mechanical 
system. The reliability of machines and devices in the production process is a condition for ensuring continuity of production. Predicting damage, 

especially its movement, gives the ability to monitor the current state of the machine. In a broader perspective, this enables streamlining the production 
process, service planning or control. This ensures production continuity and optimal performance. The presented model is a regressive survival analysis 

model that allows you to calculate the probability of failure occurring over a given period of time. 
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ANALIZA DANYCH Z CZUJNIKÓW POMIAROWYCH DO PREDYKCJI W SYSTEMACH 

KONTROLI PROCESÓW PRODUKCYJNYCH 

Streszczenie. Artykuł przedstawia rozwiązanie oparte na systemie cyber-fizycznym, w którym analizowano dane zbierane z czujników pomiarowych 

do predykcji w systemie kontroli procesów produkcyjnych. Przedstawiona technologia została oparta na inteligentnych czujnikach pomiarowych jako 

element rozwiązania dla Przemysłu 4.0. Głównym celem pracy jest redukcja danych i wybór odpowiedniego kowariantu w celu optymalizacji modelowania 
usterek za pomocą  modelu Coxa dla konkretnego układu mechanicznego. Niezawodność pracy maszyn i urządzeń w procesie produkcyjnym jest 

warunkiem zapewnienia ciągłości produkcji. Przewidywanie uszkodzenia, a zwłaszcza jego momentu daje możliwość monitorowania bieżącego stanu 

maszyny. W szerszej perspektywie umożliwia to usprawnienie procesu produkcji, planowania serwisu, czy kontroli. Zapewnia to utrzymanie ciągłości 
produkcji i optymalnej jej wydajności. Przedstawiony model jest regresywnym modelem analizy przeżycia, który pozwala na obliczanie 

prawdopodobieństwa wystąpienia awarii w określonym czasie. 

Słowa kluczowe: model Coxa, predykcja uszkodzeń, sterowanie produkcją, inteligentna platforma 

Introduction 

 The article presents the results of research on the use of 

sensors for the analysis of technological processes using 

measuring devices [17]. Control of production processes and 

advanced automation and play an important role in industry. 

Production lines are an important element of production 

companies, where with the use of measuring and control systems 

it is possible to optimise technological processes that can provide 

high flexibility and quick adaptation of production processes, 

safety and efficiency at optimal costs. The presented concept 

consists in the use of cyber-physical systems and devices of the 

Internet of Things. The integration of business devices and 

processes gives greater opportunities and increases the efficiency 

of technological lines [16]. Modern production systems are based 

on the latest achievements in the field of information and 

measuring technologies (Fig. 1). There are many methods for 

solving optimisation problems [2, 5–12, 13–23]. Autonomy, 

optimisation and integration of analytical approaches is related to 

the operation of sensor networks, large amounts of data, analysis 

and interpretation of information, taking into account security 

aspects [1, 13–15]. 

 

Fig. 1. Industrial automation system 

 An important condition for ensuring continuity of production 

is the reliability of the equipment in the production process. 

Predicting damage time allows you to monitor the current status of 

the device and improve the planning process for inspections and 

service. In order to maintain production continuity and optimal 

production efficiency, the Cox model was used to determine the 

expected failure time. The presented solution is a regressive 

survival analysis model that allows you to calculate the probability 

of failure occurring at a given time or the average time of failure 

occurrence, etc. [3, 4, 24, 25]. 

1. Model of fault prediction 

One of the most popular models for determining the expected 

failure time is the Cox model, which is a regressive model for 

survival analysis. It allows you to calculate the probability of 

failure occurring within a specified time. The main idea of the Cox 

model, the proportional threat is that devices age with time. The 

specific degradation process may depend on many factors that can 

be permanent. 

In the Cox model, the proportional hazard is defined by the 

following terms: 

The survival function is called the function given by: 

                     (1) 

   lifetime distributor,    lifetime density. Specifies the 

probability that the object will live longer than x time. 

The hazard function is defined as the following relationship: 

             
                   

  
 (2) 

Indicates the probability that a given object will live longer than 

the time t. 

Cumulative risk – the cumulative hazard function is expressed by 

the formula: 

           
 

 
   (3) 

For time-dependent hazard function, covariants can be divided 

into time-dependent and constant. 

Then the function is determined by 

                         
  
   

         
  
     (4) 

     time-fixed covariates,         time-varying covariates. 
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A Cox proportional hazard model with time dependent variables is 

described: 

                               (5) 

Where                – model parameter vector (in the Cox 

proportional model it is assumed that this vector is constant in 

time),        baseline hazard function.  

The hazard rate is given 

             
            

            
 (6) 

In the event of a fault occurring at specific time intervals, when 

the failure times are approximate by the same amount, 

determining parameter estimates is complicated. It is helpful to 

use the algorithm proposed by Breslow: 

    
           

                   
 
  

 
    (7) 

   number of objects with survival time     , 

          
 
         

 (8) 

In the PHM model, the estimation of the basic hazard function 

takes place irrespective of the parameter model estimation. The 

most common form of primary threat is Weibull or exponential, 

Gompertz. The Weibull distribution is one of the most frequently 

used distributions in modelling the time of failure occurrence. He 

assumes that the intensity of damage is a monotonic variable. The 

Gompertz distribution is used when the population divides the 

cause of the fault into two parts. Devices or units at a young age 

are primarily prone to random events or diseases, while for 

advanced age natural resistance in people or parts wear in the case 

of machines decreases, which is included in the function in the 

form of parameters. 

The Weibull distribution function looks like this:  

       
    

    
 (9) 

      
 

 
 

 

 
 

   
      

 

 
 

 
  (10) 

                   
 

 
 

 
  (11) 

where α – shape parameter, γ – scale parameter. 

The shape parameter tells us about the change in the 

probability of a fault occurring over time. For γ > 1 the probability 

of occurrence of a fault increases with time, for γ = 1 the 

probability of occurrence of a fault is constant, for γ <1 the 

probability of a fault decreases with time. The scale parameter is 

related to the time the fault occurred. 

Therefore, the hazard function is ensured by: 

       
 

 
 

 

 
 

   
 (12) 

After estimating the model parameters, you can test the 

statistical significance of the parameters. For this purpose, for 

example, the partial probability test or Wald test is used. 

The partial likelihood ratio test statistics are provided by: 

                 (13) 

              
 
    (14) 

where    is the number of objects in the risk set. 

With the null hypothesis that the tested coefficient is equal to 

zero, it is statistics with distribution  . 

Wald's Test: 

This test assumes that the ratio of the estimated ratio to the 

standard error will have a normal distribution 

   
  

       
 (15) 

Partial probability tests are usually recommended. 

The value of the standard deviation of the model parameters is 

estimated based on the inverse of Fisher's information matrix. 

          
     

    
    

  (16) 

On the other hand, the variance and standard deviation of the data 

are given in the formulas: 

               
  

 (17) 

                   (18) 

The model assumptions are tested by verifying four basic 

assumptions: 

 Violation of the proportional threat determination, 

 Appropriate functional form of accompanying variables, 

 Remote observations, 

 Influential observations. 

Testing the correctness of the model is checked by testing the 

probability distribution of so-called Cox-Snell residues. 

Schoenfeld's residuals 

For the vector covariates      calculated at time      

         Schoenfeld's residuals are: 

                                     (19) 

where set     a set of those objects that remain endangered until, 

    In the event that Cox regression model assumptions are met 

rather than asymptotically         . When fixing         instead 

of    we take     

2. Results and data analysis 

 For each covariant, the maximum percentage of significant 

models can be observed depending on the length of the time 

window. Both too short time windows and too long give lower 

percentages of significant models. Optimal values are obtained for 

a time window from 10 sec to 12 sec depending on the type of 

covariant. The least favourable case can be observed for the 

minimum, where the percentages of significant models decrease 

rapidly for all sample sizes. For the maximum, the percentage 

levels decrease in the least significant way, then for the average 

the situation is worse while for the median and for the minimum 

the worst. Based on this criterion, the optimal selection of a 

covariant in terms of choosing a time window is a maximum of 

the 10 seconds RMS time series. 

An analysis of the selection of the covariant was also made 

due to the criterion of the percentage of statistically significant 

models depending on the sample size. The relationships between 

the covariant are presented in the graphs Fig 2–Fig 6. 

In the selection of the covariant that gives the largest percentage 

of significant models depending on the time window length, the 

worst case is the covariant which is the minimum RMS value from 

the time window of the given length. From the graphs it can be 

seen that the larger the window size, the percentage of significant 

models is getting smaller just for the minimum with RMS, while 

the percentage of significant models does not differ significantly 

for other covariant. 

 

Fig. 2. Percentage of relevant models depending on the sample size for a 5-second 

time period 

 

Fig. 3. Percentage of relevant models depending on the sample size for a 10-second 

time period 
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Fig. 4. Percentage of relevant models depending on the sample size for a 15-second 

time period 

 

Fig. 5. Percentage of relevant models depending on the sample size for a 20-second 

time period 

 

Fig. 6. Percentage of relevant models depending on the sample size for a 25-second 

time period 

The quality of model fit depending on the covariant form was 

also analysed by examining the sum of standard parameter errors 

for the covariant. The results are shown in Fig. 7 to Fig 11. 

 

Fig. 7. Graph of the sum of standard errors of the parameter at the covariance in the 

Cox model depending on the sample size at the set time window length       sec 

 

Fig. 8. Graph of the sum of standard errors of the parameter at the covariance in the 

Cox model depending on the sample size at the set time window length        sec 

 

Fig. 9. Graph of the sum of standard errors of the parameter at the covariance in the 

Cox model depending on the sample size at the set time window length d=15 sec 

 

Fig. 10. Graph of the sum of standard errors of the parameter at the covariance in 

the Cox model depending on the sample size at the set time window length d=20 sec 

 

Fig. 11. Graph of the sum of standard errors of the parameter at the covariance in 

the Cox model depending on the sample size at the set time window length d=25 sec 

It can be seen from the graphs that the maximum RMS in a 

given time window generates the largest estimation errors. The 

smallest generates the minimum. The median and average 

generate error values between the maximum and minimum values. 

3. Conclusion 

The article presents the problem of choosing covariates in the 

Cox model and data reduction in order to optimise the quality of 

the obtained models. Data collected from measuring sensors for 

prediction in the production process control system. The presented 

technology was based on intelligent measuring sensors from an 

experiment consisting in introducing a defect in the mechanical 

shaft alignment system. Based on the received data, damage 

simulations were performed. Based on the generated time series 

data, the impact of the length of the data reduction time window 

on the quality of the model was examined. The maximum 

percentage of significant models can be observed depending on 

the time window length. For models where we care about the 

smallest estimation error, the most appropriate covariate will be 

the minimum RMS in the time interval. For 15-element samples, 

99.9 percent of the models appear significant. For 5-element, no 

model turned out to be significant. For 7-element samples, 

significant models are beginning to appear, but this is only a few 

percent of all models. For models in which we are interested in 

maximizing the percentage of significant models, the best 

covariate will be the maximum RMS in the time window. 
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