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Abstract. Global maritime transport is one of the causes of air pollution. Annex VI of the International Maritime Organisation’s (IMO) International 

Convention for the Prevention of Pollution from Ships (MARPOL) refers to air pollution. Air pollution is mainly caused by the conversion of energy 
in internal combustion engines, in particular in the case of transient engine operation. The main pollutant is soot. It is an impure carbon substance 

of various sizes, resulting from incomplete combustion of hydrocarbons. This document concerns data-based modelling of soot emissions – the main 

component of exhaust particles – in transient engine operation. In a unique manoeuvring aid system, the prediction of exhaust emissions will become a new 
element. If the navigator knows the consequences of his actions, the human role will be strengthened in relation to the decision making on energy-efficient 

and emission-poor vessel traffic, in particular during manoeuvres. Thanks to the mathematical model, the soot formation process during stationary engine 

operation – at constant speed and load – will be mapped first. The model will then be extended to simulate engine operation and soot formation 
in the transition phase. 
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PRZEWIDYWANIE EMISJI SADZY W PRZYPADKU PRZEJŚCIOWEJ PRACY SILNIKA 

W OPARCIU O DANE 

Streszczenie. Globalny transport morski jest jedną z przyczyn zanieczyszczenia powietrza. Załącznik VI do Międzynarodowej konwencji o zapobieganiu 
zanieczyszczeniu morza przez statki (MARPOL) Międzynarodowej Organizacji Morskiej (IMO) odnosi się do zanieczyszczeń powietrza. Zanieczyszczenie 

powietrza jest głównie powodowane przez konwersję energii w silnikach spalinowych, w szczególności w przypadku przejściowej pracy silnika. Głównym 

zanieczyszczeniem jest sadza. Jest to zanieczyszczona substancja węglowa różnej wielkości, będąca wynikiem niepełnego spalania węglowodorów. 
Niniejszy dokument dotyczy modelowania emisji sadzy – głównego składnika cząstek spalin, w pracy silnika w warunkach przejściowych w oparciu o dane. 

W unikalnym systemie wspomagania manewrów, przewidywanie emisji spalin stanie się nowym elementem. Jeżeli nawigator zna konsekwencje swoich 

działań, to rola człowieka zostanie wzmocniona w odniesieniu do podejmowania decyzji o energooszczędnym i ubogim w emisje spalin ruchu statków, 
w szczególności podczas manewrów. Dzięki modelowi matematycznemu,w pierwszej kolejności zostanie odwzorowany proces powstawania sadzy podczas 

stacjonarnej pracy silnika – przy stałych obrotach i obciążeniu. Następnie model ten zostanie tak rozszerzony, aby umożliwić symulację pracy silnika 
i powstawania sadzy w fazie przejściowej. 

Słowa kluczowe: emisje ze statków, przetwarzanie danych, modele predykcyjne 

Introduction 

During ship manoeuvres the ship’s longitudinal, transversal 

and rotational velocities are changing continuously. The cause of 

these changes are newly set rudder, engine or thruster commands 

or environmental influences as wind or current. All the external 

and internal impacts on the ship’s motion have influence on the 

behaviour of the ship’s engines. The ship’s exhaust gas 

composition depends on the transient engine operation. They have 

to adapt rotational speed and torque in order to fulfil the required 

settings. The engine command sets the required engine speed 

(engine revolutions) or the propeller pitch. New thruster 

commands or rudder angle settings lead to a new resistance of the 

ship’s hull and thus to a different propeller inflow and counter 

torque for the engine. To fulfil the required engine settings, the 

engine control unit (ECU) adapts the amount of injected fuel. The 

engine speed is the time-dependent integration of the difference 

between engine and propeller torque divided by the inertia of the 

powertrain (1).  

 

(1) 

A disequilibrium between propeller and engine torque is the 

indicator of transient engine operation. The engine control unit has 

to act on the fuel injection in order to comply with the given order. 

During the transient engine operation when the load increases the 

air-fuel ratio becomes too small. This is the main cause which 

leads to an incomplete combustion of the injected fuel. Thus soot 

particles in different sizes arise [9]. This issue is widely described 

in literature, e.g. in [2], [8] and [11]. Whilst [2] reflects a forum on 

soot formation with various discussions on chemical and 

thermodynamic approaches, the latter two authors focussed on the 

application and improvement of existing thermodynamic soot 

models. Isermann et al. [11] considers the data-based emission 

modelling for high-speed diesel engines. One of those approaches 

was adopted for medium-speed ship diesel engines and is 

presented in this paper.  

1. General Conditions 

1.1. Regulations regarding particulate matters 

Annex VI of the International Convention for the Prevention 

of Pollution from Ships (MARPOL) of the International Maritime 

Organisation (IMO) regulates the ship’s air pollution. Regulations 

13 and 14 [4] concern the nitrogen oxides (NOX), the particulate 

matters (PM) as well as sulphur oxides (SOX). For sea-going 

vessels built since 1st January 2016 with more than 130 kW 

per engine and sailing within Emission Control Areas (ECA) 

the nitrogen oxides must not exceed the requirements defined 

in TIER III. 

Sulphur oxides are restricted by mass fraction of the used fuel 

oil whereas particulate matters, of which soot forms the significant 

part, are only mentioned in the regulation’s header. A reduction 

of sulphur in the fuel oil leads to less PM. But nevertheless, low 

sulphur diesel still produces PM in rough amounts when 

combustion is incomplete.  

The formation of the greenhouse gas CO2 essentially depends 

on the total fuel oil consumption and on the type and carbon 

content of the used fuel oil. The Energy Efficiency Design Index 

(EEDI) should enable to monitor the CO2 emissions. Most of the 

world’s ocean-going vessels obtain their propulsion energy from 

diesel fuels of different quality. The presented method focusses on 

this kind of ships and takes the formation of PM to demonstrate 

the research work in an exemplary way. With little adaptation, 

the method can also be applied to NOX emissions, for example. 

1.2. Test bed engine and measurement equipment 

An MAN 6L23/30 engine serves as test bed. The machine 

is located on the campus of Wismar University. It is a 4-stroke 

marine diesel engine. Its specification is shown in Table 1. 

The MAN 6L23/30 engine is mostly assigned for education 

of marine engineers.  
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Table 1. Test bed engine specification 

Parameter 
Test bed engines 

MAN B&W 6L23/30 

Type 
medium speed 4-stroke 

marine diesel engine 

Bore 225 mm 

Stroke 300 mm 

Rated output 1050 kW 

Rated speed 900 min-1 

Compression Ratio 13.5 : 1 

Fuel injection system Unit injector System 

 

For research purpose the fixed measurement equipment was 

enhanced by a portable Pegasor Mi3 particle sensor in order to 

measure PM during transient engine operation. The measuring 

principle is based on determining the number of particles smaller 

than 2.5 µm. By calibrating the equipment with a mean particle 

size, the corresponding mass in mg/m3 is calculated. [10] 

1.3. Ship model and engine module 

For the integration of the data-based model an already existing 

simulation environment, called SAMMON, is used. SAMMON 

stands for Simulation Augmented Manoeuvring Design & 

Monitoring System [5]. The mathematical ship model represents 

movements with 3 degrees of freedom (DOF): longitudinal, 

transversal and rotational speeds around the vertical axis. It is 

based on a system of highly non-linear equations for representing 

the ship’s hydrodynamic behaviour. Fig. 1 shows the online-

prediction from a ferry ship entering a port. Even though the ship 

is still in straight forward motion, the prediction immediately 

reacts on changed rudder or engine settings.  

 

Fig. 1. Manoeuvring assistance software SAMMON for predicting and monitoring 

ship’s behaviour in confined waters [10] 

SAMMON Software allows to parameterize several ship 

types. It can be used for pre-planning of manoeuvre sequences, 

for online-monitoring or for debriefing after having completed 

manoeuvres.  

The ship model is equipped with an engine interface. 

Currently, the engine module only consists of a lookup table 

where the target-actual-difference of engine speed enters. A new 

engine torque derives from it which is accurate enough to only 

simulate the ship’s motion. To calculate fuel consumption 

and emissions, the calculated engine torque fails to be useful. 

Therefore, a PI controller algorithm is implemented which 

determines the amount of fuel injected in one time step. This is the 

basis for the calculation of soot emissions. 

The proposed data-based modelling of soot will extend 

the SAMMON software in the future. 

1.4. Rapid Advanced Prediction & Interface 

Technology (RAPIT) 

The kernel of the above mentioned manoeuvring assistance 

software SAMMON is formed by a technology called Rapid 

Advanced Prediction & Interface Technology (RAPIT). RAPIT 

is a kind of fast-time simulation which enables to calculate 

up to 24 minutes of the simulation process ahead in only one 

second of real time and to display the results in a sophisticated 

interface.  

The data-based soot model shall fulfil these requirements. This 

is one of the reasons why an empirical, data-based model was 

chosen instead of a theoretical model. While a theoretical model 

must calculate every degree of crank angle and take into account 

mechanics, thermodynamics and reaction kinetics, an empirical 

data-based model can save a lot of computing time being a black- 

or greybox model. The disadvantage, however, is the high effort 

required to obtain sufficient data in a good quality.  

2. Data acquisition for data-based modelling 

2.1. Data origin 

Soot is the main part of particulate matters (PM). PM are solid 

components of engine exhaust gas emissions, e.g. hydrocarbons 

and soot as well as inorganic sulphates. The diameter varies 

between less than 10 nanometers and more than 1 μm.  

A chemical reduction takes place at the beginning of soot 

formation followed by a planar growth of polycyclic aromatic 

hydro-carbons. Van der Waals forces lead to soot nucleation 

which is followed by coagulation, accumulation and addition 

of sulphates. These formation steps are superimposed by soot 

oxidation. Soot oxidizes with OH radicals and O2 at high 

temperatures in competition with carbon monoxide [3]. 

The difference between reduction and oxidation can be measured 

in the exhaust gas duct with a standard sampling rate of one 

second. By means of the already introduced Pegasor Mi3 particle 

sensor (see section 1.2), the measurements for particles took place. 

The measurement for the other relevant engine data was taken 

from the fixed measurement system of the machine laboratory. 

Even though for reasons of better understanding theoretical, 

but time-consuming models are more substantiated, they are not 

applicable for the present studies. Apart of not being completely 

described and understood, they would still need too much 

computing time than RAPIT would allow for (see section 1.4). 

2.2. Experimental design 

For these studies, the test bed engine is not a shipborne diesel 

engine. Nevertheless, the experimental setup was designed with 

real ships in mind.  

 

Fig. 2. Engine map with measurement points on two propeller curves 

(100% and 85%) and generator curve 

First of all, the distinction between generator and propeller 

mode is of great importance: 

 Propeller mode means that the torque/speed relation follows 

the propeller curve within the engine map. A load change 

leads to a change in torque and engine speed simultaneously.  

 Generator mode requires a constant or nearly constant engine 

speed whereas load changes only affect the engine torque.  
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At a first step, these stationary measurements serve for 

establishing a stationary model, which can then be extended by 

transient parts. Attention is to be payed to numerous data of high 

quality covering as many input/output combinations as possible 

(Fig. 2). 

The experimental design also provides for load changes of 

varying magnitude on each of the two propeller and the one 

generator curves as will be shown in Fig. 7. 

2.3. Determination of model input and output 

During the data analysis, existing measurement data were 

searched for which have a clear influence on the soot formation. 

Finally, the decision was made on the injected fuel mass (mB) and 

current engine speed (nact). Fig. 3 shows the combustion chamber 

in which soot is formed by the above described reduction and 

oxidation process. This process depends mainly on the currently 

injected fuel mass and the dwell time in the combustion chamber 

represented by the engine speed.  

 

Fig. 3. Model sketch of combustion chamber and adjacent systems 

These findings lead to the conclusion that a MISO (multiple 

input, single output) model with two inputs and one output will be 

necessary. 

3. Static Artificial Neural Network (ANN) 

3.1. Decision to implement an ANN  

Data-based models do not need any information about 

physical, chemical or other laws and relationships that determine 

the processes to be modelled if they are purely black-box models. 

There are many data-based model architectures to be considered 

when facing a problem as the one described above [6].  

An Artificial Neural Network (ANN) architecture has been 

chosen due to its relatively good interpolation characteristic and 

its flexibility regarding input dimensions. For a first approach to 

create a static network, the Multilayer Perceptron (MLP) being a 

widely known ANN architecture, has been implemented. Fig. 4 is 

a sketch of the ANN architecture used for calculating PM by 

entering the two inputs fuel mass and engine speed.  

The q neurons of the hidden layer (h1 to hq) are called 

perceptrons. The two inputs mB and nact are each multiplied by one 

synapse weight when entering a perceptron in order to intensify or 

attenuate the effect on the neuron. All input signals are summed 

up and enter a nonlinear sigmoidal activation function. Therein, a 

transformation takes place which result is forwarded to the output 

layer, where the amount of PM is calculated out of the sum of all 

the perceptron outputs.  

 

Fig. 4. MLP network with two inputs and one output. The number of neurons 

in the hidden layer (h) is to be determined 

3.2. Determination of number of hidden neurons 

The present MISO problem is only three dimensional for 

the static observation. The ANN must fit the measurement points 

in Fig. 5 as good as possible. The training of the ANN is done 

by backpropagation using the Levenberg-Marquardt algorithm. 

 

Fig. 5. Distribution of measurement data for input (mB, nact) and output variables 

(PM/soot) 

 

Fig. 6. Trained ANN with 6 neurons in the hidden layer 

A k-fold cross validation took place in order to determine 

the necessery number of neurons. The smallest modell error could 

be reached with 6 up to 15 neurons in the hidden layer. The 

absolute error in this range is about 0.3 mg/m3 which corresponds 

with the scattering of measurement data, see Fig. 5. Fig. 6 shows 

the shape of the ANN with 6 neurons. More neurons mean also 

more curvature in the ANN and possibly more distance from 

a physically interpretable model.  
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3.3. Application for transient engine operation 

A static ANN with 6 neurons has been used for simulation 

of the transient engine operation. The result shows the big 

difference between the development of PM in stationary and 

transient engine operation. The zoomed section in Fig. 7 is an 

example to show how close the stationary operation would be 

approached by the ANN and how dynamics are not yet 

implemented.  

 

Fig. 7. Trying to simulate measured load changes by means of a static ANN 

4. ANN with external dynamics – a lookout 

In a first step, the external dynamics approach was chosen to 

simulate soot formation during transient operation. External 

dynamics means that the dynamic is generated by extension of the 

input space [7]. Each of the input parameters (herein mB and nact) 

needs a certain time history which is also entering the ANN. The 

following example takes into account each input parameter's 

values up to 100 seconds in the past, but only every second value 

is taken as additional input. Consequently, the number of inputs 

rises to one hundred considering mB and nact. 

 

Fig. 8. Validation data set (light grey solid line) and simulation of this same data 

with trained ANN (dark grey dotted line) 

The increased input number also requires an increased number 

of hidden neurons and training data. The optimum for the three 

setting parameters – the past values and their intervals as well as 

the number of hidden neurons – is still to be investigated for the 

present problem. So far, the following example shows an ANN 

with external dynamics taking the above described number 

of input values and 20 hidden neurons. The training data set 

comprises 75% of the available data in generator mode. 

The remaining 25 % of measurement data was used for validation 

(Fig. 8). For a first attempt the ANN with external dynamics 

is able to identify the instationarities and to follow the 

characteristics of the soot peaks. By using different parameter 

settings, even better results might be expected.  

5. Summary 

In this paper, it was shown that soot produced during 

the transient operation of a 4-stroke marine diesel engine can 

be reproduced very well with the help of a stationary ANN 

that contains 6 up to 15 neurons in the hidden layer. Investigations 

on the use of an ANN with external dynamics for the simulation 

of transient engine operation are currently in progress and appear 

to be promising as suggested in the work of [6] for the application 

for high-speed diesel engines. Besides the different dynamic 

behaviour of a passenger car and a ship diesel engine, the biggest 

difference between the two engine types are the availability 

and the operational costs of testbed engines.  

The next step will be the integration of the ANN into 

a suitable ship model and its use within the SAMMON software 

for verification of the entire method from testbed trials until 

the application in the prediction software. The perspective is to 

take measurement data from a real ship in order to simulate both, 

the ship’s motion as well as its fuel consumption and emissions 

within the assistance software SAMMON.  
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