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Abstract. This paper shows the relevance of the task of assessing the structural reliability of networks with undetermined topology. Proposed is a method 
for assessing the structural reliability of networks of undetermined topology based on taking into account the basic structural characteristics of the 

network (the number of nodes and branches, the degree of network connectivity, the maximum allowable rank of paths, and others). To obtain an estimate 

of the structural reliability for a network of any dimension and any topology, expressions are proposed in the scientific research to determine the number 
of paths of various ranks, which must be taken into account when calculating the structural reliability index by the upper and lower bounds method. 
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METODA OCENY STRUKTURALNEJ NIEZAWODNOŚCI SIECI 

O NIEOKREŚLONEJ TOPOLOGII 

Streszczenie. Ten artykuł pokazuje znaczenie zadania polegającego na ocenie niezawodności strukturalnej sieci o nieokreślonej topologii. Proponowana 

jest metoda oceny niezawodności strukturalnej sieci o nieokreślonej topologii, która oparta jest na uwzględnieniu podstawowych cech strukturalnych sieci 
(liczba węzłów i rozgałęzień, stopień połączenia z siecią, maksymalna dopuszczalna ranga ścieżek itp.). Aby oszacować strukturalną niezawodność sieci o 

dowolnej wielkości i dowolnej topologii, badania naukowe proponują wyrażenia algebraiczne, które określają liczbę ścieżek o różnych rangach, które 

należy wziąć pod uwagę przy obliczaniu wskaźnika niezawodności strukturalnej, używając do tego metody opartej na kresach górnych i dolnych 
wskaźnika. 

Słowa kluczowe: sieć o nieokreślonej topologii, niezawodność strukturalna, ranga ścieżki, liczba ścieżek o określonej randze, górne i dolne kresy  

Introduction 

The development strategy of modern communication networks 

is currently aimed at meeting the growing needs of users and 

ensuring the required quality of the services. In this regard, there 

is a tendency to a constant increase in the volume of transmitted 

data and the complexity of the network structure. The 

characteristic features of modern networks are the priority use of 

wireless access and the introduction of self-organization 

mechanisms into the network. Communication networks are 

increasingly becoming decentralized, wireless, do not have a 

constant structure, and the number of nodes and connections 

between nodes are random variables in time. Each node of such a 

network can forward data destined to other nodes. The data 

transfer route is determined dynamically, based on the 

connectivity of the network at a certain point in time [10]. 

Moreover, in networks with an undetermined topology, multi-path 

routing is often used, the aim of which is to provide the source 

node with the ability to select one of several possible routes to a 

specific destination node. This approach allows one to optimally 

use the capacity of the communication channel and increase the 

overall network bandwidth [8]. Additionally, network fault 

tolerance and transmission reliability are provided. 

A number of scientific papers by A. Ye. Kucheryavy [10], 

A. V. Roslyakov [15], A. V. Prokopyev, Ye. A. Kucheryavy [9], 

A. Goldsmith [3], Neha Rathi and others are devoted to the study 

of modern communication networks with an undetermined 

topology and elements of self-organization. Most researches note 

that the use of networks with an undetermined topology has 

several advantages over networks of a traditional (certain) 

topology due to the possibility of self-configuration, self-

optimization and self-healing. Such network characteristics allow 

the adaptation of devices when changing network parameters (for 

example, the number of users, signal level, level of external 

interference, etc.) and provide redistribution of functions between 

devices in the event of failure of any network nodes to increase its 

reliability and fault tolerance [7]. The introduction of self-

organization mechanisms can significantly expand the client base 

and the range of services provided to network users [10]. 

Reliability remains one of the network requirements presented 

in the recommendations of the International Telecommunication 

Union (ITU-T). So, according to ITU-T Recommendation X.120, 

the network must be safe, reliable and accessible at any time [16]. 

The issue of reliability is especially relevant for networks with an 

undetermined topology. Due to the dynamically changing 

structure and the lack of centralized management, this type of 

network is more vulnerable in comparison with fixed topology 

networks. 

The term “network reliability” is understood to mean the 

property of the network to keep in time within the established 

limits the values of all parameters characterizing the ability to 

perform the required functions in the given modes and conditions 

of use [17]. Network reliability characteristics should provide 

users with the opportunity to continuously receive services in the 

conditions of technical failures, operational errors, and also take 

into account possible threats and risks. 

Reliability of networks is ensured by the use of reliable 

equipment and the introduction of redundancy in the network 

structure to increase its fault tolerance. Since communication 

networks with an undetermined topology and elements of self-

organization belong to complex structural systems, issues of 

assessing structural reliability are of particular importance for such 

networks.  

Currently, there are works devoted to the problem of 

reliability of complex communication systems. These are the 

works of V. A. Netes [12], N. N. Egunov and V. P. Shuvalov [5], 

A. V. Kharybin. The structural reliability of self-organized 

networks is the subject of a number of works by Rudenko and 

D. A. Migov [11]. In these works, the object of reliability 

assessment are networks of an initially given structure described 

by adjacency matrices and other network characteristics. The goal 

of the classical network analysis problem of a certain topology is 

to determine the structural reliability of a functioning network or 

the resulting design solution, presented in the form of some 

structure [6]. However, in the case where the scale of the network 

is known, however, the network topology has not yet been 

determined (at the design stage, for example) or is constantly 

changing (at the operation stage), for a given (known) set of 

nodes, the set of branches is unknown. In this case, the network is 

characterized only by the number of nodes and branches. 

Therefore, the existing methods for assessing structural reliability, 

focused on applications for networks with a previously known 

topology, in cases of networks with an undetermined topology, are 

of little use. 

When considering problems related to the analysis of the 

structural reliability of communication networks, a random graph 

is usually used as a network model [1, 2, 11, 13]. Among these 

models classical are, first of all, the Erdős–Rényi (ER) model 
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(G (n, p)), proposed and studied by the authors at the turn 

of the 50–60s of the XX century [2], and also its generalization – 

the model G (Hn, p) [13]. 

In addition, various restrictions and refinements of this model 

are introduced and studied: communications or nodes can be 

unreliable, the presence of dedicated network nodes, restrictions 

on the diameter of the network, and others. A large number of 

studies are carried out in the field where the nodes are considered 

completely reliable and do not fail. However, a number of works 

are devoted to the study of the structural reliability of networks 

where it is nodes that are unreliable, for example, [13]. 

As a reliability indicator, usually taken are the connectivity 

probability of the corresponding random graph [13], the average 

connectivity probability of pairs of vertices [14], or the expected 

size of the connected component [4]. For networks with a certain 

topology, a method for obtaining a structural reliability indicator 

based on taking into account the basic structural characteristics – 

the number of nodes and branches of the network – was proposed 

in [6]. However, in the indicated papers [1, 2, 4, 6, 11, 13, 14], the 

issues related to obtaining an estimate of structural reliability for 

networks of a given dimension (with a given number of nodes and 

branches) of an undetermined topology are not resolved. Thus, the 

topic of this work, devoted to the development of a method for 

obtaining an estimate of structural reliability for a network with a 

constantly changing structure, is of particular importance and is 

relevant at present. 

1. Statement of the problem and the methodical 

basis of research 

The structure of the analyzed generalized network of the 

undetermined topology is described by a random ER-graph (model 

G(N, p), ER-network). The set of vertices N of the graph 

corresponds to points (nodes) of the network, |N| = N. The set of 

edges L corresponds to the branches of the network – direct 

connections connecting pairs of nodes, |L| = L. Considered an 

undirected connected network. 

The connectivity between pairs of nodes is provided by routes 

in the form of chains of branches without cycles and loops. The 

degree of connectivity of a pair of nodes is determined by the 

number of routes (in the general case, dependent) connecting these 

nodes. The rank R of the route corresponds to the number of 

branches included in the route. In a network of undetermined 

topology, the set L is not defined, but its cardinality is known L. 

The reliability index of all branches (the probability of failure-free 

operation of the branch βxy – (pxy)) is given (x, y = 1, 𝑛, 

n – number of network nodes, x ≠ y). Network nodes are 

considered absolutely reliable. 

The basis of this paper was the work [7], proposing an 

approach that provides for the estimation of the structural 

reliability of a network of undetermined topology, based on taking 

into account basic structural characteristics. In this paper, to 

determine the upper and lower boundaries of structural reliability, 

proposes a method that allows one to determine the number 

of routes of given ranks that can be used to organize connections 

(i-j). This makes it possible to obtain an assessment of the 

structural reliability of both individual connections and the 

network as a whole. 

The indicator of the structural reliability – PISR for a network 

is defined as the weighted average value according to the 

indicators of the structural reliability– PISR ij of all connections [7]: 

 𝑃𝐼𝑆𝑅 =
∑ ∑ 𝑃𝐼𝑆𝑅𝑖𝑗𝑤𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1

∑ ∑ 𝑤𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1

,  (1) 

here wij is the weight characteristics of individual connections that 

determine the priority of each connection;  

PISRij is an indicator of the structural reliability of a single 

connection (i-j) in the network; 

i, j = 1, 𝑛, n is a number of network nodes, i≠ j. 

Coefficients wij are not normalized and can be represented in 

points, for example, in 10- or 100-point rating systems. 

To assess the structural reliability of an individual connection 

(i-j) PISRij in the network, presented is the calculation 

of the indicator of structural reliability as the weighted average 

of the values of the upper boundary РUBSRij and the lower 

boundary РLBSRij of the structural reliability for a separate 

connection (i-j) [6]: 

 𝑃𝐼𝑆𝑅𝑖𝑗 = 𝑃𝑈𝐵𝑆𝑅𝑖𝑗 · 𝑘𝑈 + 𝑃𝐿𝐵𝑆𝑅𝑖𝑗 · 𝑘𝐿,   (2) 

here kU and kL is the weighted normalized characteristics 

(kU + kL = 1), that determine the importance (significance) for 

finding РISRij indicators РUBSRij and РLBSRij, respectively. 

Thus, the set of defined routes of rank no more than R, 

realizing communication in the (i-j) direction, and considering 

them as independent for a given communication, gives an upper 

bound on the reliability of communication between nodes. 

Calculation of the upper boundary of the structural reliability 

РUBSRij for communication (i-j) in a network with an undetermined 

topology is carried out in accordance with expression (3) [7]: 

 𝑃𝑈𝐵𝑆𝑅𝑖𝑗 = 1 −  ∏ (1 − ∏  𝑝𝑥𝑦) 𝛽𝑥𝑦 𝜖 𝜇𝑖𝑗
𝑘𝜇𝑖𝑗 

𝑘 ∈ 𝑀𝑖𝑗
,  (3) 

here 𝛽𝑥𝑦 is a section of track 𝜇𝑖𝑗
𝑘 ; 

k is a number of the set routes Mij; 

𝑝𝑥𝑦 is the probability of failure-free operation of the 𝛽𝑥𝑦. 

The calculation of the lower boundary of the structural 

reliability of PLBSRij of an individual connection (i-j) in a network 

with an undetermined topology is performed in accordance with 

expression (4) [7]: 

 𝑃𝐿𝐵𝑆𝑅𝑖𝑗 = 1 − ∏ (1 − ∏  𝑝𝑥𝑦),𝛽𝑥𝑦∈ 𝛾𝑖𝑗
𝑙𝛾𝑖𝑗 

𝑙 ∈ 𝛾𝑖𝑗
  (4) 

here 𝛾𝑖𝑗  is a set of separating cross sections, 

l is a number of cross section set 𝛾𝑖𝑗; 

𝛽𝑥𝑦 is a branch in a cross section with the corresponding 𝑝𝑥𝑦   

value – the probability of failure-free operation. 

The set of dividing sections 𝛾𝑖𝑗 is formed on the basis 

of a specific, proposed method using routes between i and j, 

for each l–th section 𝛾𝑖𝑗
𝑙 ∈ 𝛾𝑖𝑗, the number of section β𝑥𝑦 

is determined using the value pxy. 

As follows from the presented expressions (3, 4), one of the 

basic structural characteristics used in this method is the number 

of routes of a certain rank. 

In a network with L branches, the number of routes of rank R 

(more precisely, the mathematical expectation of this number) can 

be obtained according to the following recursive expression 

proposed in [6]: 

 𝑀𝑅,𝐿 = 𝑀𝑅,𝐿+1 (1 −
𝑅

𝐿+1
),  (5) 

Since, to determine the number of routes of rank R in a 

network with L branches, one first needs to calculate the number 

of routes of rank R in a network with (L + 1) branches, recursive 

calculation begins with calculating the number of routes in a fully 

connected network with 𝐿𝑎𝑙𝑙 =
𝑛(𝑛−1)

2
 branches (n is the number 

of network nodes) [6]: 

 𝑀𝑅,𝐿𝑎𝑙𝑙
=

𝑛(𝑛−1)!

2(𝑛−𝑅−1)!
. (6) 

It is important to note that this method assumes uniformly 

random saturation of many nodes with branches and, thus, does 

not take into account the requirements for the formation of a fully 

connected network. As a result of this, it is possible to obtain the 

number of routes ML < 1 for small L and large R. This result is 

consistent with the probabilistic nature of the number of routes in 

ER-networks (as a mathematical expectation) and means that paths 

with given parameters will not be present in all implementations 

of a random graph. 
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The number of routes of rank R per one connection is 

calculated as the ratio of the total number of MR routes to the 

known number t of connections: 

 𝑚𝑅𝑖𝑗 =
𝑀𝑅

𝑡
. (7) 

The number t of connections can be determined in accordance 

with expressions (8, 9) or it can be a given constant indicator for a 

particular network. 

In an oriented network, the total number tо of connections is 

determined on the basis of expression (8): 

 𝑡𝑜 = 𝑛(𝑛 − 1).  (8) 

If the network is non-oriented, then the total number of tn 

connections is defined as: 

 𝑡𝑛 =
𝑛(𝑛−1)

2
 .  (9) 

 

The above analytical method is not the only one route to 

obtain the structural characteristics of the network. The number of 

routes in ER networks of a relatively small dimension can be 

determined by the simulation of ER graphs.  

2. Research results 

In this research, using the proposed expressions (5–6), a series 

of experiments was carried out for ER networks of dimensions 20, 

50, and 100 nodes with a different number of branches: from close 

to minimum Ltree, in which the network is connected (tree), to 

close to maximum based on expressions (5–6), in which the 

network is fully connected. To record large numbers, the decimal 

exponential notation of the form mEn = m·10n, standard for 

computer programs, is used. 

The experimental results of determining the number of routes 

of different ranks by the analytical method are presented in tables. 

Table 1 shows the results of a study for an ER network with a 

dimension of 20 nodes with a different number of branches (20, 

70, 120, and 170 branches). 

Table 1. The number of routes of rank R in an ER-network with N = 20 nodes and L 

branches 

L 
Mа (N = 20) 

R = 1 R = 2 R = 3 R = 4 . . . R = 19 

20 20 36 59 86  3.79E–07 

70 70 460 2829 1.62E+04  1.20E+09 

120 120 1360 14511 1.45E+05  1.11E+14 

170 170 2736 41567 5.94E+05  1.31E+17 

 

The number of routes Mа of the rank R=1 corresponds to a 

given number of branches L. The number of routes of a rank 

higher than 1 increases with the number of branches and the value 

of the route rank. In real networks, for the implementation of a 

single connection, routes of maximum ranks are practically not 

used for a reason of network performance. Constraints are usually 

fulfilled at the level of the third or fourth rank. According to this 

rule, the table shows the calculations of Mа for routes for rank 

R <= 4. 

Tables 2 and 3 show the results of similar calculations for an 

ER network with N = 50 and N = 100 nodes. 

Table 2. The number of routes of rank R in an ER network with N = 50 nodes and L 

branches 

L 
Mа (N = 50) 

R = 1 R = 2 R = 3 R = 4 ... R = 49 

50 50 96 177 314  5.87E-23 

300 300 3518 40285 450384  7.29E+32 

550 550 11841 249371 5134767  4.04E+46 

800 800 25067 768725 2.31E+07  7.68E+54 

Table 3. The number of routes of rank R in an ER network with N = 100 nodes and L 

branches 

L 

Mа (N = 100) 

R = 1 R = 2 R = 3 R = 4 ... R = 99 

100 100 196 377 709 
 

2.00E–50 

350 350 2419 16501 111117  3.27E+37 

600 600 7117 83431 966571 
 

4.44E+63 

850 850 14290 237560 
3.90E+ 

06 

 
5.80E+79 

 

The above tables can be used in practical calculations of the 

reliability of networks of undetermined topology. Using the 

obtained values of the number of routes Mа, given in Table 1, will 

provide an example of calculating indicator of the structural 

reliability for a non-oriented communication network with the 

number of nodes N = 20 and the number of branches L = 20. 

Based on expressions (7) and (9), we determined the average 

number of routes of each rank (R = 1, ..., 4) per one bond (i-j): 

 m1 ij = 2·20 / (20·(20-1)) = 0.105, 

 m2 ij = 0.189, 

 m3 ij = 0.311, 

 m4 ij = 0.453.  (10) 

In real systems, devices with a low reliability value are not 

used. According to statistics, the probability of uptime is usually 

in the range of 0.96 – 0.99. Basing on this, in this example, we 

take the probability of failure-free operation of the network 

branches p = 0.98. 

The upper boundary of the structural reliability PUBSRij is 

determined by expression (4). Transforming it, according to the 

source data, obtains the following expression: 

 PUBSRij = 1 – ((1-p) m1ij · (1-p2) m2ij · (1-p3) m3ij · (1-p4) m4ij). (11) 

Using the given probabilities p of the failure-free operation 

of network sections and the number of routes mRij of each rank 

(R = 1, ..., 4) per one connection (i-j), obtains: 

𝑃𝑈𝐵𝑆𝑅𝑖𝑗
=  1 − ((1 − 0.981)0.105 · (1 − 0.982)0.189 ·

(1 − 0.983)0.311 · (1 − 0.984)0.453) = 0.99999639. 

To obtain the value of the lower boundary of the structural 

reliability PLBSRij, based on the set of routes Mij , one should obtain 

the set of dividing cross sections 𝛾𝑖𝑗. In order to be able to record 

the set of cross sections in disjunctive normal form, the values 

obtained in (10) of the number of routes of each rank per one bond 

to the nearest larger integer should be rounded off. The result 

values are: 

 m1 ij = 1, m2 ij = 1, m3 ij = 1, m4 ij = 1. 

Represented a set of paths Mij in disjunctive normal form: 

 𝑀𝑖𝑗 = 𝑘1 + 𝑘2𝑘3 + 𝑘4𝑘5𝑘6 + 𝑘7𝑘8𝑘9𝑘10.  (12) 

Further, for expression (12), it obtains the dual Boolean 

function in conjunctive normal form: 

 𝛾𝑖𝑗 = 𝑘1(𝑘2+𝑘3)(𝑘4 + 𝑘5 + 𝑘6)(𝑘7 + 𝑘8 + 𝑘9 + 𝑘10). (13) 

Performing the conversion of conjunctive normal form (13) to 

disjunctive normal form obtains a set of cross sections (14): 

 𝛾𝑖𝑗 = 𝑘1𝑘2𝑘4𝑘7 + 𝑘1𝑘2𝑘4𝑘8 + 𝑘1𝑘2𝑘4𝑘9 + 𝑘1𝑘2𝑘4𝑘10 +

𝑘1𝑘2𝑘5𝑘7 + ⋯ + 𝑘1𝑘3𝑘6𝑘10. (14) 

According to (4), we it obtain the expression for calculating 

РLBSRij: 

𝑃𝐿𝐵𝑆𝑅𝑖𝑗
= (1 − (1 − 𝑝1)(1 − 𝑝2)(1 − 𝑝4)(1 − 𝑝7)) · … 

· (1 − (1 − 𝑝1)(1 − 𝑝2)(1 − 𝑝4)(1 − 𝑝8)) · … 

· (1 − (1 − 𝑝1)(1 − 𝑝2)(1 − 𝑝4)(1 − 𝑝9)) · … 

 · (1 − (1 − 𝑝1)(1 − 𝑝3)(1 − 𝑝6)(1 − 𝑝10)). (15) 
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Transforming (15) according to the initial data we obtain the 

following expression: 

 𝑃𝐿𝐵𝑆𝑅𝑖𝑗
= (1 − (1 − 𝑝)4)𝑞 , (16) 

here q defined as:      

𝑞 = ∏ 𝑅𝑚𝑅𝑖𝑗

4

𝑅=1

. 

Using the given values of the number of routes mRij of each 

rank (R = 1, ..., 4) per one connection and the probabilities pxy of 

the network branches to fail we obtain: 

𝑞 = ∏ 𝑅𝑚𝑅𝑖𝑗 = 11 · 21 · 31 · 41 = 24.

4

𝑅=1

 

𝑃𝐿𝐵𝑆𝑅𝑖𝑗
= (1 − (1 − 0.98)4)24 = 0.99999616. 

Based on expression (2) for the values accepted for this 

example, kU = 0.55 and kL = 0.45, the value of the indicator РISRij 

for communication (i-j) is determined: 

𝑃𝐼𝑆𝑅𝑗 = 𝑃𝑈𝐵𝑆𝑅𝑖𝑗 · 0.55 + 𝑃𝐿𝐵𝑆𝑅𝑖𝑗 · 0.45

= 0.99999639 · 0.55 + 0.99999616 · 0.45
= 0.99999629. 

 

Performing calculations for all connections (i-j) makes it 

possible to determine the value of the indicator РISR of the 

structural reliability of the entire network (based on expression 

(1), taking into account the values of weighting coefficients wij). 

3. Conclusion  

The paper shows the relevance of the task of assessing 

the structural reliability of networks of undetermined topology. 

A method for obtaining such an estimate based on the basic 

structural characteristics of the network – the number of nodes 

and branches, the maximum allowable rank of routes, and others – 

is presented. Presented is also a method for determining 

the number of routes of each rank per one connection. 

Calculations were carried out for ER networks of dimensions 

of 20, 50 and 100 nodes with different number of branches: 

from close to the minimum Ltree, at which the network is 

connected (tree), to close to the maximum Lall (fully connected 

network). 

The proposed method for assessing the structural reliability 

of networks with an undetermined topology is based on the 

formation of indicator РISR of the structural reliability, which is 

determined using the lower and upper boundaries of structural 

reliability. Expressions are presented for determining the number 

of routes of different ranks that can be used to service applications 

that enter the network of the undetermined topology. Based 

on the upper and lower boundaries of the structural reliability 

of individual links, presented is an approach that allows one to 

obtain a weighted average estimate of the structural reliability 

of the entire network of the undetermined topology. 

An example of the implementation of the method for 

determining the structural reliability indicator of a network 

of undetermined topology is performed. 

Further development of this work is the solution of issues 

related to the development of approaches to determining 

the values of the probabilities of failure-free operation of network 

branches, as well as the values of weighting coefficients 

for determining the upper and lower boundaries of the structural 

reliability of both individual connections and the entire network 

of the undetermined topology. 
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