
40 IAPGOŚ 2/2020 p-ISSN 2083-0157, e-ISSN 2391-6761

artykuł recenzowany/revised paper IAPGOS, 2/2020, 40–43

http://doi.org/10.35784/iapgos.923

SOFTWARE DEVELOPMENT FOR SMART HOME PROCESS CONTROL

Vitalii Kopeliuk
1
, Vira Voronytska

1
, Volodymyr Havryliuk

2

1Rivne State University of Humanities, Department of Applied Math and Computer Science, Rivne, Ukraine, 2International University of Economics and Humanities

Academician Stepan Demianchuk, Department of Information Systems and Computing Methods, Rivne, Ukraine

Abstract. Here we make an overview of the main stages of software development for server management system of "smart" building with a central

controller via a mobile device. We have developed our own version of the concept.

Keywords: Arduino, Internet of things, microcontroller, smart home, client-server architecture, sensors

OPRACOWANIE OPROGRAMOWANIA DO STEROWANIA PROCESAMI

W BUDYNKU INTELIGENTNYM

Streszczenie. Rozpatrzono etap podstawowy opracowania oprogramowania dla systemu sterowania inteligentnym budynkiem z centralnym kontrolerem,

przez urządzenie mobilne. Zaproponowano własną wersję rozwiązania.

Słowa kluczowe: Arduino, Internet rzeczy, mikrokontroler, inteligentny budynek, architektura klient-serwer, czujniki

Introduction

Smart Home (Home automation, smart home) is one of the

most promising areas of information and communication

technologies. Such type of systems connects all of the electrical

devices of the house in one functional system which can be

operated by a user with display-controller or with certain

algorithms. Optimizing energy consumption today is one of the

key objectives of the Smart Home systems.

Number of system types in this area is increasing: there are

wireless technologies for the integration of devices into a single

network, new kinds of sensors. At the same time, increased

demand for Smart Home product makes the following problems

extremely relevant:

 insufficient standardization and compatibility of different

protocols;

 system reliability;

 safety and security systems from unauthorized access;

 costs and complexity of deployment.

This paper examines the main existing approaches to building

Smart Home systems, analyzes network protocols and

technologies used to build local networks, describes their

advantages and disadvantages. In addition it investigates ways to

improve existing solutions in this area. It justifies the choice of

protocols, technologies and approaches for building Smart Home

systems that are capable of solving main disadvantages.

The aim of this work is to build a device management system

for the smart home, that will consist of the following elements:

 monitoring and controlling device (Smart Monitor),

 server that collects data from all devices in the local network

and makes decisions regarding changes in the configuration of

the network and switching devices on and/or off depending on

the current state of the system.

1. Internet of things and cloud computing

At present time the vast majority of smart home systems do

not have the function of remote control via the Internet.

Meanwhile, mobile devices with constant network access have

now become commonplace, they are practically everywhere. In

1999, the founder of the Research Center of Auto-ID Center at

MIT Kevin Ashton proposed the term Internet of Things (Internet

of Things). The basic idea is that the way a new generation of

things will not only be "intelligent", but also will be connected in

a network – Internet of Things [6]. The concept implies that

devices such as smartphones, tablets, TVs, and various sensors

and controlled devices with wireless modules, such as Wi-Fi and

Bluetooth, can interact with each other as well as with users by

using these modules. Due to the massive proliferation of mobile

devices, the remote control of such systems as Internet of things,

has become possible. Remote control has obvious advantages. The

main one is of course security. When all of the inhabitants are not

in the house, it is possible to remotely monitor the state of the

house using cameras together with sensors and controllers.

Equally important is to increase user comfort when using

smart home system. Often smart home control systems use scripts

to manage light and heat automatically. However, some users

prefer not to use these options. And the presence of the remote

control option, for example, may himself at the approach to the

house he needs to include devices (turn on lights, appliances, and

include pre-heating or air conditioning). Implementation of remote

access is possible through the use of cloud computing, where users

are provided with universal access network computing resources,

services and applications. There are several models of cloud

computing. The most suitable model for a given problem

definition is SaaS (software as a service). This model is based on

providing customers access to software over the Internet. The

main advantage of the SaaS model for end users is the absence of

a need to install and update software, and caring about

performance equipment, which operates the application. When

using cloud computing systems smart home there are two options.

First one is when the controller (server) for managing smart home

devices is located not in the house, but on a cloud. In this case

smart home system can be accessed from any point where internet

access in available. As for the second option, controller can be

located in the building, and the software is installed on a cloud.

Also, in the second case, only additional modulus, that provide

access to the internet are required, which reduces the requirements

to the system. Also in the case of implementing remote control to

the already existing system of smart home, there is no need to

replace any equipment, it is enough to provide access for the

controller to the cloud server. Direct remote control of the smart

home systems can be done either via a web browser or through a

special mobile application. One more important thing. Many

modern devices that are used in smart homes, have their own

specific protocols of the data transmission and can interact with

internet services only via their own specific API’s. So often it is

impossible to expand the system of a smart home by adding extra

devices, such as smart refrigerator, for example, since they are

requiring completely different data transmission system. However,

cloud-based system gives a general interface for controlling all of

the devices via cloud. In this case all the devices interact with each

other via cloud. The application of cloud technologies in the smart

home will make them much more flexible, and will reduce

maintenance costs and system expansion with any smart

refrigerator, or other devices working on other data transmission

protocols. However, with cloud service that will provide a

common interface management of all systems and different

devices will interact with each other through the cloud, it is

possible to use devices from different manufacturers with different

data transmission protocols. The application of cloud technologies

in smart home will make them much more flexible, and will

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 2/2020 41

reduce maintenance costs and system expansion. which any smart

refrigerator, or add the devices working on other data transmission

protocols. However, with cloud service that will provide a

common interface management of all systems and different

devices will interact with each other through the cloud, it is

possible to use devices from different manufacturers with different

data transmission protocols. The application of cloud technologies

in smart home will make them much more flexible, and will

reduce maintenance costs and system expansion. Is the ability to

use devices from different manufacturers with different data

transmission protocols.

2. Microservices

Microservice style of architecture [5] is an approach to

developing a holistic applications as a set of small services, each

of which runs on its own process and connect with others through

lightweight mechanisms such as RPC or HTTP. Services are built

according to a specific task and can be independent to be deployed

by automated systems. There is some minimum centralized

management of such services.

Traditional server systems are usually built as monoliths –

logically separate executable programs. And this approach is

natural: the whole logic of request processing works in a single

process that allows you to use existing tools programming

languages to divide an application into classes, functions, and

namespaces. The monolith can be scaled horizontally by running

multiple instances outside the load balancer.

Monolithic software is quite successful, but it has its

disadvantages. Change cycles monoliths are bound together, that

is, changing a small part of the system requires reassembly

(compilation) and deployment. Over time, it becomes difficult

maintain a good modular structure while keeping changes relevant

specific module, only inside it. It is necessary to scale everything

monolith instead of individual parts that require more resources.

Microservices can also be deployed and scaled independently.

They also provide clear boundaries between modules, even

allowing implement separate subsystems in different programming

languages. That's it delimiting helps to manage the complexity of

the codebase, as each the module will have a public API that will

contain only the required functionality, and everything else will be

encapsulated and not relevant for the development of other

services, which depend on it.

The main disadvantage of microservice architecture is the

increase in complexity error handling. Unlike a monolith, every

call to a service can fail. Therefore, it is necessary to develop

mechanisms for monitoring the condition services, check the

various metrics of their functioning as well automate the

restoration of the microservice if it fails.

The positive thing is that there are failures in microservice

architecture largely isolated. If meeting the request requires a call

many services and some of them are unavailable, perhaps less

complete response (graceful degradation).

Difficulties can also be caused by providing consistency the

deployment of dependent microservices, and the need for

management transactions that interact with multiple subsystems.

Internal communication between servers occurs in binary TCP

format for performance reasons, but from the point code view,

each service provides a public API that encapsulates the creation

messages to the corresponding service [4].

Apart from the division of responsibilities, the main advantage

is the opportunity horizontal scaling of each service separately.

For example, if the flow of operational data is greatly accelerated

without increasing the flow administrative data, you can scale the

corresponding DBMS (Database Management System) separately.

3. Cloud server interaction with smart home

devices

In order to interact with the cloud server, smart home devices

need to select protocol for sending messages. Currently there are

several dozens of data transfer protocols that allow

communication IoT devices. In our implementation we preferred

protocol MQTT (Fig. 1).

MQTT (Message Queue Telemetry Transport) - Simplified

network protocol that runs on top of TCP/IP. It is used to

exchange information between devices on the basis of publish-

subscribe. The first version of the protocol was developed by Dr.

Andy Stanford Clark (IBM) and Arlen Nipper (Arcom) in 1999

and published under license royalty-free. MQTT 3.1.1

specification was standardized OASIS consortium in 2014.

The main advantages of the protocol are:

 the pattern of interaction on the basis of publish-subscribe

solutions most suitable for working with different kinds of

sensors,

 easy to use. This software unit does not contain any

unnecessary functionality and can be easily embedded into

any complex system,

 it is easy to administer,

 provides work in constant communication loss or other

problems on the line,

 there are no restrictions on the format of the data.

MQTT requires broker messages. The broker is responsible

for distributing messages to all devices that are signed in this

newsletter. MQTT defines methods (so-called "verb") to indicate

the desired action that should be performed on the identified

resource, which can be either existing data or data that is

generated dynamically, depending on the server implementation.

Often resource corresponds to a given file or it is a result of a file

processing on a server.

Fig. 1. MQTT broker scheme

Here are examples of the following methods:

Connect. Connect: Waiting for a connection to the server.

Disconnect. Disconnect: Waiting until the customer MQTT

finish any work that must be done, and the session TCP/IP is

broken.

Subscribe. Subscribe: Pending completion of Subscribe

method.

UnSubscribe. Unsubscribe: server asks the client to

unsubscribe from one or more topics.

Publish. Post: immediately returns to the application flow after

customer requests pass MQTT.

Currently there are several open Brokers MQTT: Emqttd,

ActiveMQ, Apollo, Mosquitto, RabbitMQ and others. They differ

only in their feature set, and some add-ons over the standard

version of the protocol MQTT.

42 IAPGOŚ 2/2020 p-ISSN 2083-0157, e-ISSN 2391-6761

4. The operating data reception subsystem

Because data arrives at high speed and can occur bursts of

traffic, you need to have a buffer between the database and the

front servers for provide load balancing. For this platform

architecture involves using a message queue.

Message queues define an asynchronous communication

protocol. this is means that the sender and recipient of the message

should not interact with message queue at the same time.

Messages that are queued stored until received by the receiver.

An important feature of the message queue is to ensure

resilience and reliability, which are implemented using various

data storage strategies. To increase the reliability of message

delivery, it is possible to save them on drive before they are

received by the recipient. Even if the receiver program or message

queue will stop working due to failure, messages will be safe and

will be available to recipients, only the system will be operational

again.

Using Message Queuing can support much more messages. In

general, applying queue architecture is a good strategy for

organizing asynchronous processing of big data.

We formulate the requirements for the message queue:

 High performance. Need to provide high speed writing

messages to the queue.

 Horizontal scalability. Increase through put system ability by

increasing the number of servers.

 Ability to save messages to disk. Need to reduce the amount

of data lost when the message queue server is down. This is

very necessary when reading data from the queue in large

packets with large intervals - in this case, in the absence of

permanent storage You can lose a lot of data.

 Replication. For some increase in data storage guarantees and

maintaining the availability of the message queue for

recipients in case of shutdown part of the servers.

 Ability to configure storage reliability messages. That is,

how many servers are replicated and how often saved to disk.

Needed in order to adjust the system so that it is more reliable

to store messages from devices that have a long period

between data transfer operations. With a heavy load, it should

be possible to loosen such guarantees.

 The ability to divide messages into groups by topic. In this

way, can send recipients of messages that implement a

specific for a certain type of device logic, to receive messages

with a specific queue in which the relevant data is placed.

5. Software smart home central controller

The system of interaction between devices in the "smart"

house built (Fig. 2) on the architecture of the central controller

(server). Therefore all requests coming from client applications

are added to the message queue and only then turn to the

commands that will be distributed to the microcontroller (in the

case of multiple rooms/facilities).

Also, for the additional reliability, all the data is synchronized

with cloud server, which helps to easily track errors. Such

architecture has many advantages:

 Prior processing of user requests; only those requests that have

been processed on a server will be sent to the

microcontrollers; this helps to enable multi-user mode as well

as organize all of the commands in a queue without any errors.

 Removing the burden of the microcontroller since it has a

limited set of memory, saving a large amount of requests on it

might influence the quality of the performance. When server is

used microcontroller receives only a final command to

execute, which are of a type ON-OFF.

 Scalability. When microcontroller-application system is used,

we are having a problem with switching between the tasks for

different devices in different rooms of the house. When a

central server is used, it will take care of this problem by

statically describing all of the controllers. Final user only has

to define desired settings.

 Enhanced security system. Given the low processing power of

microcontroller, in order to organize more or less reliable

encryption on it is impossible. Unlike microcontrollers server

has sufficient resources to perform encryption/decryption

information.

Despite the obvious advantages, systems of this kind have also

a number of disadvantages:

 Need of an extra device to perform the functions of the server.

That adds complexity to the system and its maintenance.

 Need of an additional software for the organization of the

server.

Fig. 2. An example of the finished system

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 2/2020 43

6. Conclusion

We developed our own software for server management

system of "smart" building via mobile device with a central

controller, which is the main module of communication between

the application and domestic electronic devices. We also

developed basic functions such as storage configuration and

information link between devices, encryption system,

communication with cloud storage, energy forecasting, and more.
The developed platform meets the set functional and non-

functional requirements and contains the implementation of the

following subsystems: acceptance, storage, processing of

operational data; authentication and security; work with

administrative data; monitoring. This allows it to be used as such

dedicated user groups: devices, administrators, analysts, and

security administrators.

Such distributed service oriented service has been proposed

and implemented (microservice) platform architecture that

delivers high performance and almost endless scalability. This

allows you to increase power systems for servicing device

networks of all sizes and for increasing the capabilities of the data

analytics subsystem. Effective implementation system components

to optimize hardware costs platform.

The platform also guarantees a significant level of resiliency,

which reduces the probability of losing operational data and

providing a high level of it availability. The investigated and

implemented aspects of security provide sufficient level of data

protection during transmission and protect the system from the

various information attacks.

During the development, the platforms were properly and

properly selected modern systems, protocols, data formats,

libraries and databases are applied data. Third-party solutions have

open source that simplifies system expansion, has economic and

other benefits.

Various aspects of the chosen architectural features were

described in detail solutions: from justifying high-level division

into functional modules to features of effective implementation of

I/O and the influence of the selected scheme authentication for

scalable platform architecture.

Unlike existing platforms, the solution developed is good

expandable in the sense that it can be easily adapted to analytics

data coming from different devices and sensors, setting the chains

data processing. Data protocols and formats were chosen not only

in light of them efficiency, and also given the convenience and

ease of extending the platform.

Other key features of the platform are monitoring and the

functionality of securely transferring service information between

devices and by administrators. These capabilities allow you to

effectively manage your network devices, and flexibly configure

alerting tools possible problems and promptly respond to them.

There are architectural and technical solutions proposed and

applied in the work versatile enough to allow them to be built

various big data processing systems and other platforms for the

Internet things specializing in narrower areas.

References

[1] Aberer K.: Smart Earth: From Pervasive Observation to Trusted Information.

International Conference on Mobile Data Management, Mannheim, 2007, 3–7

[2] Darianian M., Michael M.P.: Smart Home Mobile RFID-Based Internet-of-

Things Systems and Services. International Conference on Advanced Computer

Theory and Engineering, Phuket, 2008, 116–120.

[3] EPCglobal.EPC information services (EPCIS) version 1.0.1 specification.

EP-Cglobal, Lawrenceville 2007.

[4] Garg V.K.: Elements of Distributed Computing. John Wiley & Sons, New York

2002.

[5] Marz N., Warren J.: Big Data: Principles and best practices of scalable realtime

data systems. Manning, Shelter Island 2015.

[6] Sathi A.: Big Data Analytics: Disruptive Technologies for Changing the Game.

Mc Press, Boise 2012.

[7] Tamer Özsu M., Valduriez P.: Principles of Distributed Database Systems.

Springer, New York 2011.

[8] Tel G.: Introduction to Distributed Algorithms. University Press, Cambridge

2000.

Vitalii Kopeliuk

e-mail: vkopeluk@gmail.com

Master Student at the Department of applied math and

computer science of Rivne State University of

Humanities, Rivne, Ukraine.

Robotics, computer technology and computer

technology, programming, programming of

microcontrollers, artificial intelligence.

http://orcid.org/0000-0002-3538-7028

M.Sc. Vira Voronytska

e-mail: vera.voronitska@gmail.com

Senior Lecturer at the Department of applied math and

computer science of Rivne State University of

Humanities, Rivne, Ukraine.

Development of sites, development of multimedia

courses, computer science and computer technologies,

programming.

http://orcid.org/0000-0003-0014-1121

Ph.D. Volodymyr Havryliuk

e-mail: V.i.Havrilyuk@gmail.com

Associate professor at the Department of Information

Systems and Computing Methods International

University of Economics and Humanities

Academician Stepan Demianchuk, Rivne, Ukraine.

Engaged in applied and computational mathematics,

mathematical modeling of technological processes,

numerical modeling and analysis, differential

equations in applied mathematics, physics and

engineering, computer science and computer

technologies, programming.

http://orcid.org/0000-0003-3377-6465

otrzymano/received: 21.12.2019 przyjęto do druku/accepted: 26.06.2020

