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Abstract. The paper is dedicated to algorithms for constructing a logical tree of classification. Nowadays, there exist many algorithms for constructing 

logical classification trees. However, all of them, as a rule, are reduced to the construction of a single classification tree based on the data of a fixed 

training sample. There are very few algorithms for constructing recognition trees that are designed for large data sets. It is obvious that such sets have 
objective factors associated with the peculiarities of the generation of such complex structures, methods of working with them and storage. In this paper, 

we focus on the description of the algorithm for constructing classification trees for a large training set and show the way to the possibility of a uniform 

description of a fixed class of recognition trees. A simple, effective, economical method of constructing a logical classification tree of the training sample 
allows you to provide the necessary speed, the level of complexity of the recognition scheme, which guarantees a simple and complete recognition 

of discrete objects.  

Keywords: pattern recognition problems, logical tree, graph-scheme models, recognition system 

LOGICZNE DRZEWA KLASYFIKACJI W ZADANIACH ROZPOZNAWANIA 

Streszczenie. Artykuł poświęcono algorytmom konstruowania logicznych drzew klasyfikacji. Większość tych algorytmów z reguły sprowadzają się 

do zbudowania jednego drzewa klasyfikacyjnego na podstawie stałej próby uczącej. Należy zauważyć, że niewiele algorytmów budowania drzew 
klasyfikacyjnych dla prób treningowych o dużej objętości. Oczywiste jest, że mają one obiektywne czynniki związane ze specyfiką generowania takich 

struktur, metodami pracy z nimi i ich przechowywania. W niniejszym artykule autorzy skupiają się na opisie algorytmu konstruowania drzew 

klasyfikacyjnych dla dużego zbioru uczącego i wskazują możliwość jednolitego opisu stałej klasy drzew rozpoznawczych. Prosta, skuteczna i ekonomiczna 
metoda budowy logicznego drzewa klasyfikacyjnego dla danej próby uczącej pozwala na zapewnienie niezbędnej szybkości i stopnia złożoności schematu 

rozpoznawania, co gwarantuje proste i kompletne rozpoznawanie obiektów dyskretnych. 

Słowa kluczowe: zadania rozpoznawania obrazów, logiczne drzewo, schematy modeli rozpoznawania, system rozpoznawania 

Introduction 

As of today, various algorithms for constructing logical 

classification trees are known [7]. However, all of them, as a rule, 

are reduced to the construction of a single classification tree from 

the data of a fixed training sample. Note that in the literature there 

are very few algorithms for constructing logical trees for training 

samples of large volume. It is clear that this is based on objective 

factors associated with the features of the generation of such 

complex structures, methods of working with them and storage 

[5]. Even using the tools of Java or C#, it is necessary to provide 

the implementation of special data structures for working with 

logical trees, and ready-made libraries (LightGBM, XGBoost), 

although close ideologically (logical tree scheme), do not allow to 

implement the concept of an algorithmic classification tree, which 

consists of a set of vertices – different types of Autonomous 

classification algorithms. However, the main drawback in the 

construction of logical trees is the lack of algorithms and methods 

that would allow uniformly describe different algorithms for 

pattern recognition in the form of tree structures.  

The ability to represent the recognition function as a logical 

tree has great advantages over other representations of 

classification schemes [4]. It should be noted that the algorithms 

for generating classification trees according to the training sample 

complement the methodology of the branched feature selection 

approach and allow to build simple and effective rules for the 

classification of discrete objects [1]. 

In this paper, we will focus on the description of the algorithm 

for constructing logical training samples for a large volume and 

show the way to the possibility of a uniform description of a fixed 

class of logical trees. 

1. Statement of the recognition problem  

In fact, the central task of pattern recognition is to build such 

a system that for each object that will be presented to it, would 

give the number of the class to which the object belongs [3, 4, 5]. 

The general problem of pattern recognition (classification) can be 

formulated in the following simplified form. Let on some set M of 

objects w a given partition R into a finite number m of subsets 

(classes, images) Hi (i = 0, ..., m): 

 

1

m

i

i

M H



 (1) 

The corresponding sets H0, H1, ..., Hm will be called images, 

and the elements of the set – M images or representatives of 

images H0, H1, ..., Hm. If the condition is met (1), then this split 

will be called complete. Objects (images) w are defined by sets of 

values of some features , 1,...,jx j n . If 
iw H  we assume 

that this object belongs to the image 
iH . In general, images 

H0, H1, ..., Hm can be specified by probability distributions 

0 1( / ), ( / ),..., ( / )mp H w p H w p H w , where ( / )ip H w  – the 

probability (or in the continuous case, the probability density) 

( )w w M  of belonging to the image 
iH . 

As a rule, in the problems of pattern recognition at the 

beginning is given some a priori information about R the nature of 

the partition and, depending on the nature of this information, it is 

customary to consider the following recognition tasks with 

training, without training, with self-learning. In this paper, the 

main attention will be paid to the problems of recognition with the 

previous training. 

It should be noted that the fixed set of features that are 

characterized w, is always the same for all objects that are 

considered in solving this problem. Each feature can take values 

from different sets of valid feature values. For example, very often 

signs take values from a set {0,1}  or a sign takes a finite number 

of values – 
1 2{ , ,..., }da a a  the value of a sign can be a 

distribution function of some random variable. Objects that belong 

to one class are characterized by a certain commonality of their 

features, and objects from different classes do not have such a 

commonality, therefore the solution to the problem of recognition 

is to somehow highlight and describe this commonality or its 

absence. 

When recognizing images, the most important, and sometimes 

the only given information about the partition is the training 

sample:  

 
1 ,1 2 ,2 ,( , ),( , ),..., ( , )s s z s zA H A H A H  (2) 

where 
`kA  – certain objects (vectors), 

,z kH  are the numbers 

of classes that contain objects 
kA . Belonging of the object to 

a particular class is determined, as a rule, as a result of 

experimental studies, during which the training sample is formed. 
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It is on the basis of it in the problems with the previous training 

that the classification rule is built, and the solution is to determine 

the class to which the object that is being studied belongs. 

The main requirement that is imposed on the training sample 

is the most complete and adequate description of the nature 

of the breakdown H0, H1, ..., Hm. In real tasks to fulfill 

this requirement is not only difficult, and sometimes impossible, 

because the nature of the partition may not even know 

the experimenter, and its full description will lead to a significant 

increase in the amount of training sample, and therefore – and 

the time spent on the learning process of the system. Therefore, 

the process of “error accumulation” begins at this stage, 

and even the most perfect recognition system in this case will be 

ineffective and powerless. 

Each partition H0, H1, ..., Hm can be implemented using some 

finite-valued function ( )rf w  whose argument takes values from 

the set M . For example, H0, H1, ..., Hm it is possible 

to use a function ( )rf w i  to split, if w necessary Hi, i = 0, ..., m.  

It should be noted that the function ( )rf w , where w M , 

determines, in turn, some partition of the set M . Furthermore 

( )rf w , then is only then everywhere defined in set M  

the plural when the corresponding partition R  is complete. 

Thus, each partition H0, H1, ..., Hm can be set using a finite-valued 

function ( )rf w , and – each finite significant function ( )rf w  

sets some partition. 

For example, M  – let the set of real numbers 

and 
0 { | 0 2}H w w   , 

1 { | 2 1}H w w     , 

3 { | 3 5}H w w   . Moreover, { | ( )}w P w  there is a set w  

for which the predicate ( )P w  will be true. This partition 

can be set using an arbitrary function of the form: 

0

1

2

, 0 1

( ) , 2 1

, 3 5

r

if w

f w if w

if w







 


    
  

 

Note that here 
0 1 2, ,    – arbitrary pairwise different real 

numbers. Thus, the same partition H0, H1, ..., Hm can be specified 

using many functions ( )rf w . 

In general , the task of pattern recognition (classification) 

is to construct a function ( )rf w  that implements the splitting 

R  of the set M , or to calculate the values of some predicates 

( )iP w  (note that the decision about the object belonging 

to a particular class can be encoded as follows: 0 (w not allowed 

iH ) and 1 (w belongs 
iH ). 

Let's define a feature of some object w as a function ( )f w  

whose arguments take values from an arbitrary set G , and ( )f w  

– from a countable set {0,1,.., }k . The function ( )f w  can be 

both deterministic and probabilistic. An arbitrary function ( )f w  

defined on G , and taking a finite number of values, we called a 

sign. Let L  be a class of signs on the lot M , and K  – class 

diagrams. Under the scheme 
1 2( , ,...., )nS f f f  of the class K  we 

understand the operator, which signs 
1 2, ,..., nf f f  with L  puts in 

line some (over significant) function 
1( ) ( ,..., )nx S   , 

defined on the set M . 

As rudimentary signs there may be predicates, that is, 

deterministic characteristics of the host either 0 or 1. From them 

we will demand that they, in a sense, were the simplest (were a 

description of a fixed image). A sign that can be obtained in some 

way from the elementary features 
1 2, ,..., n    we call 

a generalized feature. 

2. The scheme of construction of a logical 

recognition tree 

The main purpose of the algorithms of recognition methods 

based on the logical tree, which will be presented below, is to 

maximize the value of ( )MW f  [2, 5, 7]. The latter means that the 

algorithms of the logical tree should be found for the training 

sample (2) such a generalized sign f  for ( )MW f  which the 

value is the largest possible. 

Note the following, the sample (2) may have a probabilistic 

character, that is ( , ( ))i R ix f x , ( 1,  2,  ...,  )i M  pairs may 

appear in it according to some probability distributions 

0 1( / ),  ...,  ( / )kp x H p x H 
, but the generalized characteristic is 

deterministic. Thus, we pose the problem of optimal 

approximation of the probability sample (2) with the help of some 

deterministic function, which is generally represented by 

a generalized feature f . It is obvious that the problem makes 

sense when the character of images (classes) H0, H1, ..., Hk-1 is 

close enough to deterministic. The latter will mean that the main 

share is occupied by those points (objects) x  for which the value 

0 1max( ( / ),  ...,  ( / ))kp x H p x H 
 is close to one. This value can 

vary significantly only at points (objects) that lie on the boundary 

of several classes H0, H1, ..., Hk-1.  

Note that in practice, they mainly work with tasks where 

images (classes) H0, H1, ..., Hk-1 have a character close to the 

deterministic case (for example, recognition of handwritten 

characters). 

All algorithms that will be presented below have the following 

feature. Each algorithm is a process that consists of certain steps 

0 1,  ,  ...,  id d d . Each step 
jd  here consists in turn of two stages 

(modes) – training and test. 

In the training mode, a generalized feature 
if  is formed 

on the step 
id . In the test mode, the effectiveness of ( )M iW f  [5] 

relative to the training sample (2) is calculated for this generalized 

trait. If ( )M iW f  , then the learning process ends, if 

( )M iW f  , then the transition to the step 
1id 

;   – a number 

that characterizes the evaluation of the effectiveness of training 

that is required by the task. 

Now it is necessary to note the points regarding the nature 

of the sample submission (2) during training. In practice, two 

cases are possible: 

a) The sample (2) is fixed, that is, all of It is supplied at each step 

of training 
id . 

b) Selection (2) depends on the step 
id , which means that each 

step 
id  of the training is fed its own sample. 

The case (a) occurs when the sample (2) is the data of some 

experiment (for example, computer measurements), which are 

recorded in permanent memory. The learning algorithm in this 

case is a multiple sample processing (2). Note that the sample (2) 

can be very large. Therefore, the algorithms of processing of the 

sample should be such that it would be in their work sample (2) 

are not recorded in memory.  

If there is no case (a) and stored data in permanent memory, 

then we have case (b). In this case, all the pairs that are processed 

in the step 
id  are not remembered, and therefore some other 

series of training pairs of the form (2) are supplied in the step 

1id 
. 

Most of the methods presented below are structured so that 

they can be applied in both case (a) and case (b). For certainty, we 

further assume that there is a case (a), that is, at each step 
id  the 

same sample (2) is supplied. 
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At the heart of all recognition methods in the form of a logical 

tree is one schematic diagram, which is called the scheme of the 

tree method. In this scheme, initially selected some elementary 

feature 
1

1 . This characteristic requires that the magnitude 

1

1( )MW   is relatively (2) were possibly the greatest. Let us note 

once 
1

1( )MW   that it is calculated according to the method [5, 6]. 

The following steps of the method of the logical tree, it is 

convenient to interpret with the help of a tree (Fig. 1). 

In each vertex of the tree (Fig. 1) there is either some sign 
j

i  

or a number 
j

im  that belongs to the set {0,  1,  ...,  1}k  . Note that 

the number 
j

im  here defines the image (class) i
jm

H . The vertex in 

which it stands 
j

im  is called the final vertex of the tree. From 

each vertex, in which there is a sign 
j

i , depart two guides 

(arrows) which are marked 0 and 1. Guide, labeled 0, corresponds 

to the value 0j

i   and represents the 1 value 1j

i  . The tree is 

broken conditionally behind tiers. There are signs 
1 2,  ,  ...,j j   

in j – tier. 

 

Fig. 1. Initial recognition tree 

 

Fig. 2. Recognizer tree after three steps of the synthesis 

All the features that are in all tiers, starting from the first and 

ending with the n  – tier are those features that are obtained after 

the n  steps (stages) of the process of building the classification 

tree. Moreover, the signs standing on the n – tier are those signs 

that are obtained at the n  step (stage) of the process of building 

a logical tree.  

Suppose that only three steps of the tree method are carried 

out and 
1 2 2 3 3 3

1 1 2 1 2 3,  ,  ,  ,  ,         – all the signs obtained as a 

result of these steps. The logical tree that we get for these three 

steps will have the form shown in (Fig. 2). 

Each related pair ( , ( ))i R ix f x , (1 )i M   of sampling (2) 

is the corresponding defined path of the tree (Fig. 2). This path 

is implemented as follows. First calculated 
1

1 ( )i ix r  . Further 

from the top 
1

1  down the arrow, which is indicated by 
ir . 

Let, for example 
1

1 1( ) 0ix r   . Then go down to the top, which 

is a sign 
2

1 . Then calculate 
2

1 ( )ix r   and go down the arrow 

that comes out of the vertex 
2

1  and marked with the value 
2r  

and so on. 

The path that corresponds to the pair ( , ( ))i R ix f x  

(it is completely determined by the value 
ix ) is denoted by 

iT . 

There are two possible cases: 

a) Let the path 
iT  end with some directional arrow for example, 

if 
1 2 3

1 1 1( ) 0,  ( ) 0,  ( ) 0i i ix x x      the path 
iT  ends with 

an arrow that comes out of the vertex 
3

1  and is denoted 

by a symbol 0 (Fig. 2). 

b) Let the path 
iT  end with some vertex where the value is 

j

im . 

For example, when 
1 2

1 2( ) 1,  ( ) 1i ix x    and path 
iT  ends 

with a vertex containing a value 
3

1m  (Fig. 2). 

The paths in case (a) are called unfinished, and the paths 

in case (b) are finished. 

If the path 
iT  that corresponds to the pair ( , ( ))i R ix f x  

is complete and there is a value ,  ( {0,1,..., 1})j j

i im m k   at the 

end, it means that ( ) j

R i if x m . For example (Fig. 2) for all pairs 

( , ( ))i R ix f x  that satisfy the condition 
1 2

1 2( ) ( ) 1i ix x   , the 

following condition is fulfilled: 
3

1( )R if x m . It can be said that 

for a value 
ix  that corresponds to a complete path 

iT , full tree 

recognition is implemented (Fig. 2). That is, we can say that the 

pair ( , ( ))i R ix f x  belongs to the corresponding path 
iT . 

When carrying out the following steps in the construction 

of a classification tree are considered only unfinished journey. 

Next, each path on the tree under construction will be denoted 

by a binary set 
1 2 3, , ....( {0,1})ir r r r  . For example, a binary set 

010 in a tree (Fig. 2) denotes a path that ends with a final arrow, 

with a vertex 
3

2  and a symbol 0. It is obvious that the set 000, 

001, 010, 011, 100, 101 is a set of all unfinished paths on the tree 

(Fig. 2). 

Let 
1 2 3, ,r r rM  – the number of all sample pairs ( , ( ))i R ix f x  (2) 

that belong to the unfinished tree path 
1 2 3,  ,  r r r  (Fig. 2). Let's 

1 2 3, ,

j

r r rM , (0 1)j k    – say the number of all pairs that belong 

to a path 
1 2 3,  ,  r r r  and also for them the following relation is 

executed: ( )R if x j . For each unfinished tree path (Fig. 2) 

calculate the values: 

 
1 2 3

1 2 3

1 2 3

, ,

, ,

, ,

,  ( 0,  1,  ...,  1)

j

r r rj

r r r

r r r

M
t j k

M
     (3) 

Next, we find such a value 
1 2 3( , , )l r r r  that: 

 1 2 3

1 2 3 1 2 3

( , , )

1 2 3 , , , ,( , , ) {0,1,..., 1},   max
l r r r j

r r r r r r
j

l r r r k t t    (4) 

Substituting at the end of each path 
1 2 3,  ,  r r r  on the tree 

(Fig. 2) the value 
1 2 3( , , )l r r r , we obtain the following tree 

(Fig. 3). 

 

Fig. 3. Modified classification tree 



p-ISSN 2083-0157, e-ISSN 2391-6761      IAPGOŚ 2/2020      15 

3. Verification test stage 

The tree (Fig. 3) implements some generalized trait 
3( )f x  

which is defined on the set G  and takes values from the set 

{0,1,..., 1}k  . The sign 
3( )f x  is calculated as follows. First find 

for x  the entire path 
xT , which corresponds to this element. For 

example, if 
1

1 ( ) 0x  , 
2

1 ( ) 1x  , 
3

2 ( ) 1x  , then 011xT  . 

As values 
3( )f x , take the element {0,1,..., 1}k   that ends the 

path 
xT . For example, if, 011xT   then 

3( ) (011)f x l . If the 

object x  corresponds to the completed path 
xT , at the end of 

which there is a number ,   (0 )x xm m l  , then we assign that 

3( ) xf x m . 

After the feature 
3( )f x  is built, the verification test stage 

begins. In the test mode, the number S  of all the pairs 

( , ( ))i R ix f x  from the sample (2) for which the ratio is performed 

is calculated 
3( ) ( )R if x f x . Next, check the condition 

S

M
  

here (  – a number that characterizes the recognition efficiency 

which is given at the beginning). If this condition is met, the 

process of constructing the classification tree ends, then the 

generalized feature 
3( )f x , which is represented by the tree 

(Fig. 3) is such that provides an approximation of the sample of 

the form (2). If 
S

M
  so, the tree building process continues. 

When building a tree, first select recognition on the tree (Fig. 3) 

all those values 
1 2 3( , , )l r r r  for which the ratio is performed 

1 2 3

1 2 3

( , , )

, , 1
l r r r

r r rt  . Paths 
1 2 3,  ,  r r r  that perform only the specified ratio 

can be considered complete. 

For example let: 
(010) (011)

010 011 1;l lt t   
(000)

000 1;lt   
(001)

001 1;lt   
(100)

100 1;lt   
(101)

101 1.lt   

In this case, you will get the tree view (Fig. 4) where 
4 4

2 3(010),   (011)m l m l  . 

All the ways, 100 and 101, but on the tree (Fig. 4) are 

unfinished. For each of these paths 
1 2 3,  ,  r r r  we consider sets 

1 2 3, ,r r rH , where 
1 2 3, ,r r rH  is the set of all those pairs ( , ( ))i R ix f x  

of the training sample that belong to the path 
1 2 3,  ,  r r r . Sets 

1 2 3, ,r r rH  can be considered as some samples. In the case of a tree 

(Fig. 4) we will have the following samples 
000 001 100 101, , , .H H H H  

 

Fig. 4. General view of the final logical classification tree 

4. Main results 

For each sample 
1 2 3, ,r r rH , an elementary feature 

1 2 3, ,r r r  is 

selected for which the value 
, , 1 2 31 2 3

, ,( )
r r rH r r rW   is the largest 

possible. The value 
, , 1 2 31 2 3

, ,( )
r r rH r r rW   represents the efficiency 

of recognition of the sample 
1 2 3, ,r r rH  using the characteristic 

1 2 3, ,r r r  [1, 6]. After selecting the features 
1 2 3, ,r r r , we get a new 

tree, which is shown in (Fig. 1). Note that here 
4

1 000  , 

4

2 001  , 
4

3 100  , 
4

4 101  . Next to the tree (Fig . 1) apply 

the same process as to the tree (Fig. 2). It is important to note that 

you do not need to create a separate set of training pairs 

to implement each sample 
1 2 3, ,r r rH . All these samples are 

implemented as follows: sample pairs (2) are submitted 

sequentially and only those pairs that belong to the path 
1 2 3,  ,  r r r  

are taken into account. As a result of this process, sampling 

1 2 3, ,r r rH  will be implemented.  

So, summarizing all the above, we can draw the following 

conclusions regarding the construction of logical trees: 

A logical tree provides coverage of an array of educational 

information by fixing the sample objects in its structure. 

Moreover, such an approach of information storage provides-as 

a mechanism for further training (expansion) and error correction.  

To date, in the specialized literature there is no description 

of algorithms and methods that would allow you to build logical 

trees based on large data arrays. 

The use of logical trees in pattern recognition problems allows to 

describe recognition functions simply and compactly, which 

positively affects the complexity and speed of the resulting 

classification system. 

Thus, the paper presents a step-by-step scheme for 

constructing a system of recognition of discrete objects based on 

a logical tree, and the focus of the study was a graph-scheme 

model of the recognition system in the form of a logical tree. Once 

again, we note that the results of this work are relevant for all 

problems of pattern recognition, in which the resulting recognition 

scheme can be represented as a logical tree. 
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