
12 IAPGOŚ 2/2020 p-ISSN 2083-0157, e-ISSN 2391-6761

artykuł recenzowany/revised paper IAPGOS, 2/2020, 12–15

http://doi.org/10.35784/iapgos.927

LOGICAL CLASSIFICATION TREES IN RECOGNITION PROBLEMS

Igor Povhan
Uzhgorod National University, Department of Software Systems, Uzhgorod, Ukraine

Abstract. The paper is dedicated to algorithms for constructing a logical tree of classification. Nowadays, there exist many algorithms for constructing

logical classification trees. However, all of them, as a rule, are reduced to the construction of a single classification tree based on the data of a fixed

training sample. There are very few algorithms for constructing recognition trees that are designed for large data sets. It is obvious that such sets have
objective factors associated with the peculiarities of the generation of such complex structures, methods of working with them and storage. In this paper,

we focus on the description of the algorithm for constructing classification trees for a large training set and show the way to the possibility of a uniform

description of a fixed class of recognition trees. A simple, effective, economical method of constructing a logical classification tree of the training sample
allows you to provide the necessary speed, the level of complexity of the recognition scheme, which guarantees a simple and complete recognition

of discrete objects.

Keywords: pattern recognition problems, logical tree, graph-scheme models, recognition system

LOGICZNE DRZEWA KLASYFIKACJI W ZADANIACH ROZPOZNAWANIA

Streszczenie. Artykuł poświęcono algorytmom konstruowania logicznych drzew klasyfikacji. Większość tych algorytmów z reguły sprowadzają się

do zbudowania jednego drzewa klasyfikacyjnego na podstawie stałej próby uczącej. Należy zauważyć, że niewiele algorytmów budowania drzew
klasyfikacyjnych dla prób treningowych o dużej objętości. Oczywiste jest, że mają one obiektywne czynniki związane ze specyfiką generowania takich

struktur, metodami pracy z nimi i ich przechowywania. W niniejszym artykule autorzy skupiają się na opisie algorytmu konstruowania drzew

klasyfikacyjnych dla dużego zbioru uczącego i wskazują możliwość jednolitego opisu stałej klasy drzew rozpoznawczych. Prosta, skuteczna i ekonomiczna
metoda budowy logicznego drzewa klasyfikacyjnego dla danej próby uczącej pozwala na zapewnienie niezbędnej szybkości i stopnia złożoności schematu

rozpoznawania, co gwarantuje proste i kompletne rozpoznawanie obiektów dyskretnych.

Słowa kluczowe: zadania rozpoznawania obrazów, logiczne drzewo, schematy modeli rozpoznawania, system rozpoznawania

Introduction

As of today, various algorithms for constructing logical

classification trees are known [7]. However, all of them, as a rule,

are reduced to the construction of a single classification tree from

the data of a fixed training sample. Note that in the literature there

are very few algorithms for constructing logical trees for training

samples of large volume. It is clear that this is based on objective

factors associated with the features of the generation of such

complex structures, methods of working with them and storage

[5]. Even using the tools of Java or C#, it is necessary to provide

the implementation of special data structures for working with

logical trees, and ready-made libraries (LightGBM, XGBoost),

although close ideologically (logical tree scheme), do not allow to

implement the concept of an algorithmic classification tree, which

consists of a set of vertices – different types of Autonomous

classification algorithms. However, the main drawback in the

construction of logical trees is the lack of algorithms and methods

that would allow uniformly describe different algorithms for

pattern recognition in the form of tree structures.

The ability to represent the recognition function as a logical

tree has great advantages over other representations of

classification schemes [4]. It should be noted that the algorithms

for generating classification trees according to the training sample

complement the methodology of the branched feature selection

approach and allow to build simple and effective rules for the

classification of discrete objects [1].

In this paper, we will focus on the description of the algorithm

for constructing logical training samples for a large volume and

show the way to the possibility of a uniform description of a fixed

class of logical trees.

1. Statement of the recognition problem

In fact, the central task of pattern recognition is to build such

a system that for each object that will be presented to it, would

give the number of the class to which the object belongs [3, 4, 5].

The general problem of pattern recognition (classification) can be

formulated in the following simplified form. Let on some set M of

objects w a given partition R into a finite number m of subsets

(classes, images) Hi (i = 0, ..., m):

1

m

i

i

M H



 (1)

The corresponding sets H0, H1, ..., Hm will be called images,

and the elements of the set – M images or representatives of

images H0, H1, ..., Hm. If the condition is met (1), then this split

will be called complete. Objects (images) w are defined by sets of

values of some features , 1,...,jx j n . If
iw H we assume

that this object belongs to the image
iH . In general, images

H0, H1, ..., Hm can be specified by probability distributions

0 1(/), (/),..., (/)mp H w p H w p H w , where (/)ip H w – the

probability (or in the continuous case, the probability density)

()w w M of belonging to the image
iH .

As a rule, in the problems of pattern recognition at the

beginning is given some a priori information about R the nature of

the partition and, depending on the nature of this information, it is

customary to consider the following recognition tasks with

training, without training, with self-learning. In this paper, the

main attention will be paid to the problems of recognition with the

previous training.

It should be noted that the fixed set of features that are

characterized w, is always the same for all objects that are

considered in solving this problem. Each feature can take values

from different sets of valid feature values. For example, very often

signs take values from a set {0,1} or a sign takes a finite number

of values –
1 2{ , ,..., }da a a the value of a sign can be a

distribution function of some random variable. Objects that belong

to one class are characterized by a certain commonality of their

features, and objects from different classes do not have such a

commonality, therefore the solution to the problem of recognition

is to somehow highlight and describe this commonality or its

absence.

When recognizing images, the most important, and sometimes

the only given information about the partition is the training

sample:

1 ,1 2 ,2 ,(,),(,),..., (,)s s z s zA H A H A H (2)

where
`kA – certain objects (vectors),

,z kH are the numbers

of classes that contain objects
kA . Belonging of the object to

a particular class is determined, as a rule, as a result of

experimental studies, during which the training sample is formed.

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 2/2020 13

It is on the basis of it in the problems with the previous training

that the classification rule is built, and the solution is to determine

the class to which the object that is being studied belongs.

The main requirement that is imposed on the training sample

is the most complete and adequate description of the nature

of the breakdown H0, H1, ..., Hm. In real tasks to fulfill

this requirement is not only difficult, and sometimes impossible,

because the nature of the partition may not even know

the experimenter, and its full description will lead to a significant

increase in the amount of training sample, and therefore – and

the time spent on the learning process of the system. Therefore,

the process of “error accumulation” begins at this stage,

and even the most perfect recognition system in this case will be

ineffective and powerless.

Each partition H0, H1, ..., Hm can be implemented using some

finite-valued function ()rf w whose argument takes values from

the set M . For example, H0, H1, ..., Hm it is possible

to use a function ()rf w i to split, if w necessary Hi, i = 0, ..., m.

It should be noted that the function ()rf w , where w M ,

determines, in turn, some partition of the set M . Furthermore

()rf w , then is only then everywhere defined in set M

the plural when the corresponding partition R is complete.

Thus, each partition H0, H1, ..., Hm can be set using a finite-valued

function ()rf w , and – each finite significant function ()rf w

sets some partition.

For example, M – let the set of real numbers

and
0 { | 0 2}H w w   ,

1 { | 2 1}H w w     ,

3 { | 3 5}H w w   . Moreover, { | ()}w P w there is a set w

for which the predicate ()P w will be true. This partition

can be set using an arbitrary function of the form:

0

1

2

, 0 1

() , 2 1

, 3 5

r

if w

f w if w

if w







 


    
  

Note that here
0 1 2, ,   – arbitrary pairwise different real

numbers. Thus, the same partition H0, H1, ..., Hm can be specified

using many functions ()rf w .

In general , the task of pattern recognition (classification)

is to construct a function ()rf w that implements the splitting

R of the set M , or to calculate the values of some predicates

()iP w (note that the decision about the object belonging

to a particular class can be encoded as follows: 0 (w not allowed

iH) and 1 (w belongs
iH).

Let's define a feature of some object w as a function ()f w

whose arguments take values from an arbitrary set G , and ()f w

– from a countable set {0,1,.., }k . The function ()f w can be

both deterministic and probabilistic. An arbitrary function ()f w

defined on G , and taking a finite number of values, we called a

sign. Let L be a class of signs on the lot M , and K – class

diagrams. Under the scheme
1 2(, ,....,)nS f f f of the class K we

understand the operator, which signs
1 2, ,..., nf f f with L puts in

line some (over significant) function
1() (,...,)nx S   ,

defined on the set M .

As rudimentary signs there may be predicates, that is,

deterministic characteristics of the host either 0 or 1. From them

we will demand that they, in a sense, were the simplest (were a

description of a fixed image). A sign that can be obtained in some

way from the elementary features
1 2, ,..., n   we call

a generalized feature.

2. The scheme of construction of a logical

recognition tree

The main purpose of the algorithms of recognition methods

based on the logical tree, which will be presented below, is to

maximize the value of ()MW f [2, 5, 7]. The latter means that the

algorithms of the logical tree should be found for the training

sample (2) such a generalized sign f for ()MW f which the

value is the largest possible.

Note the following, the sample (2) may have a probabilistic

character, that is (, ())i R ix f x , (1, 2, ...,)i M pairs may

appear in it according to some probability distributions

0 1(/), ..., (/)kp x H p x H 
, but the generalized characteristic is

deterministic. Thus, we pose the problem of optimal

approximation of the probability sample (2) with the help of some

deterministic function, which is generally represented by

a generalized feature f . It is obvious that the problem makes

sense when the character of images (classes) H0, H1, ..., Hk-1 is

close enough to deterministic. The latter will mean that the main

share is occupied by those points (objects) x for which the value

0 1max((/), ..., (/))kp x H p x H 
 is close to one. This value can

vary significantly only at points (objects) that lie on the boundary

of several classes H0, H1, ..., Hk-1.

Note that in practice, they mainly work with tasks where

images (classes) H0, H1, ..., Hk-1 have a character close to the

deterministic case (for example, recognition of handwritten

characters).

All algorithms that will be presented below have the following

feature. Each algorithm is a process that consists of certain steps

0 1, , ..., id d d . Each step
jd here consists in turn of two stages

(modes) – training and test.

In the training mode, a generalized feature
if is formed

on the step
id . In the test mode, the effectiveness of ()M iW f [5]

relative to the training sample (2) is calculated for this generalized

trait. If ()M iW f  , then the learning process ends, if

()M iW f  , then the transition to the step
1id 

;  – a number

that characterizes the evaluation of the effectiveness of training

that is required by the task.

Now it is necessary to note the points regarding the nature

of the sample submission (2) during training. In practice, two

cases are possible:

a) The sample (2) is fixed, that is, all of It is supplied at each step

of training
id .

b) Selection (2) depends on the step
id , which means that each

step
id of the training is fed its own sample.

The case (a) occurs when the sample (2) is the data of some

experiment (for example, computer measurements), which are

recorded in permanent memory. The learning algorithm in this

case is a multiple sample processing (2). Note that the sample (2)

can be very large. Therefore, the algorithms of processing of the

sample should be such that it would be in their work sample (2)

are not recorded in memory.

If there is no case (a) and stored data in permanent memory,

then we have case (b). In this case, all the pairs that are processed

in the step
id are not remembered, and therefore some other

series of training pairs of the form (2) are supplied in the step

1id 
.

Most of the methods presented below are structured so that

they can be applied in both case (a) and case (b). For certainty, we

further assume that there is a case (a), that is, at each step
id the

same sample (2) is supplied.

14 IAPGOŚ 2/2020 p-ISSN 2083-0157, e-ISSN 2391-6761

At the heart of all recognition methods in the form of a logical

tree is one schematic diagram, which is called the scheme of the

tree method. In this scheme, initially selected some elementary

feature
1

1 . This characteristic requires that the magnitude

1

1()MW  is relatively (2) were possibly the greatest. Let us note

once
1

1()MW  that it is calculated according to the method [5, 6].

The following steps of the method of the logical tree, it is

convenient to interpret with the help of a tree (Fig. 1).

In each vertex of the tree (Fig. 1) there is either some sign
j

i

or a number
j

im that belongs to the set {0, 1, ..., 1}k  . Note that

the number
j

im here defines the image (class) i
jm

H . The vertex in

which it stands
j

im is called the final vertex of the tree. From

each vertex, in which there is a sign
j

i , depart two guides

(arrows) which are marked 0 and 1. Guide, labeled 0, corresponds

to the value 0j

i  and represents the 1 value 1j

i  . The tree is

broken conditionally behind tiers. There are signs
1 2, , ...,j j 

in j – tier.

Fig. 1. Initial recognition tree

Fig. 2. Recognizer tree after three steps of the synthesis

All the features that are in all tiers, starting from the first and

ending with the n – tier are those features that are obtained after

the n steps (stages) of the process of building the classification

tree. Moreover, the signs standing on the n – tier are those signs

that are obtained at the n step (stage) of the process of building

a logical tree.

Suppose that only three steps of the tree method are carried

out and
1 2 2 3 3 3

1 1 2 1 2 3, , , , ,       – all the signs obtained as a

result of these steps. The logical tree that we get for these three

steps will have the form shown in (Fig. 2).

Each related pair (, ())i R ix f x , (1)i M  of sampling (2)

is the corresponding defined path of the tree (Fig. 2). This path

is implemented as follows. First calculated
1

1 ()i ix r  . Further

from the top
1

1 down the arrow, which is indicated by
ir .

Let, for example
1

1 1() 0ix r   . Then go down to the top, which

is a sign
2

1 . Then calculate
2

1 ()ix r  and go down the arrow

that comes out of the vertex
2

1 and marked with the value
2r

and so on.

The path that corresponds to the pair (, ())i R ix f x

(it is completely determined by the value
ix) is denoted by

iT .

There are two possible cases:

a) Let the path
iT end with some directional arrow for example,

if
1 2 3

1 1 1() 0, () 0, () 0i i ix x x     the path
iT ends with

an arrow that comes out of the vertex
3

1 and is denoted

by a symbol 0 (Fig. 2).

b) Let the path
iT end with some vertex where the value is

j

im .

For example, when
1 2

1 2() 1, () 1i ix x   and path
iT ends

with a vertex containing a value
3

1m (Fig. 2).

The paths in case (a) are called unfinished, and the paths

in case (b) are finished.

If the path
iT that corresponds to the pair (, ())i R ix f x

is complete and there is a value , ({0,1,..., 1})j j

i im m k  at the

end, it means that () j

R i if x m . For example (Fig. 2) for all pairs

(, ())i R ix f x that satisfy the condition
1 2

1 2() () 1i ix x   , the

following condition is fulfilled:
3

1()R if x m . It can be said that

for a value
ix that corresponds to a complete path

iT , full tree

recognition is implemented (Fig. 2). That is, we can say that the

pair (, ())i R ix f x belongs to the corresponding path
iT .

When carrying out the following steps in the construction

of a classification tree are considered only unfinished journey.

Next, each path on the tree under construction will be denoted

by a binary set
1 2 3, ,({0,1})ir r r r  . For example, a binary set

010 in a tree (Fig. 2) denotes a path that ends with a final arrow,

with a vertex
3

2 and a symbol 0. It is obvious that the set 000,

001, 010, 011, 100, 101 is a set of all unfinished paths on the tree

(Fig. 2).

Let
1 2 3, ,r r rM – the number of all sample pairs (, ())i R ix f x (2)

that belong to the unfinished tree path
1 2 3, , r r r (Fig. 2). Let's

1 2 3, ,

j

r r rM , (0 1)j k   – say the number of all pairs that belong

to a path
1 2 3, , r r r and also for them the following relation is

executed: ()R if x j . For each unfinished tree path (Fig. 2)

calculate the values:

1 2 3

1 2 3

1 2 3

, ,

, ,

, ,

, (0, 1, ..., 1)

j

r r rj

r r r

r r r

M
t j k

M
   (3)

Next, we find such a value
1 2 3(, ,)l r r r that:

 1 2 3

1 2 3 1 2 3

(, ,)

1 2 3 , , , ,(, ,) {0,1,..., 1}, max
l r r r j

r r r r r r
j

l r r r k t t   (4)

Substituting at the end of each path
1 2 3, , r r r on the tree

(Fig. 2) the value
1 2 3(, ,)l r r r , we obtain the following tree

(Fig. 3).

Fig. 3. Modified classification tree

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 2/2020 15

3. Verification test stage

The tree (Fig. 3) implements some generalized trait
3()f x

which is defined on the set G and takes values from the set

{0,1,..., 1}k  . The sign
3()f x is calculated as follows. First find

for x the entire path
xT , which corresponds to this element. For

example, if
1

1 () 0x  ,
2

1 () 1x  ,
3

2 () 1x  , then 011xT  .

As values
3()f x , take the element {0,1,..., 1}k  that ends the

path
xT . For example, if, 011xT  then

3() (011)f x l . If the

object x corresponds to the completed path
xT , at the end of

which there is a number , (0)x xm m l  , then we assign that

3() xf x m .

After the feature
3()f x is built, the verification test stage

begins. In the test mode, the number S of all the pairs

(, ())i R ix f x from the sample (2) for which the ratio is performed

is calculated
3() ()R if x f x . Next, check the condition

S

M


here ( – a number that characterizes the recognition efficiency

which is given at the beginning). If this condition is met, the

process of constructing the classification tree ends, then the

generalized feature
3()f x , which is represented by the tree

(Fig. 3) is such that provides an approximation of the sample of

the form (2). If
S

M
 so, the tree building process continues.

When building a tree, first select recognition on the tree (Fig. 3)

all those values
1 2 3(, ,)l r r r for which the ratio is performed

1 2 3

1 2 3

(, ,)

, , 1
l r r r

r r rt  . Paths
1 2 3, , r r r that perform only the specified ratio

can be considered complete.

For example let:
(010) (011)

010 011 1;l lt t 
(000)

000 1;lt 
(001)

001 1;lt 
(100)

100 1;lt 
(101)

101 1.lt 

In this case, you will get the tree view (Fig. 4) where
4 4

2 3(010), (011)m l m l  .

All the ways, 100 and 101, but on the tree (Fig. 4) are

unfinished. For each of these paths
1 2 3, , r r r we consider sets

1 2 3, ,r r rH , where
1 2 3, ,r r rH is the set of all those pairs (, ())i R ix f x

of the training sample that belong to the path
1 2 3, , r r r . Sets

1 2 3, ,r r rH can be considered as some samples. In the case of a tree

(Fig. 4) we will have the following samples
000 001 100 101, , , .H H H H

Fig. 4. General view of the final logical classification tree

4. Main results

For each sample
1 2 3, ,r r rH , an elementary feature

1 2 3, ,r r r is

selected for which the value
, , 1 2 31 2 3

, ,()
r r rH r r rW  is the largest

possible. The value
, , 1 2 31 2 3

, ,()
r r rH r r rW  represents the efficiency

of recognition of the sample
1 2 3, ,r r rH using the characteristic

1 2 3, ,r r r [1, 6]. After selecting the features
1 2 3, ,r r r , we get a new

tree, which is shown in (Fig. 1). Note that here
4

1 000  ,

4

2 001  ,
4

3 100  ,
4

4 101  . Next to the tree (Fig . 1) apply

the same process as to the tree (Fig. 2). It is important to note that

you do not need to create a separate set of training pairs

to implement each sample
1 2 3, ,r r rH . All these samples are

implemented as follows: sample pairs (2) are submitted

sequentially and only those pairs that belong to the path
1 2 3, , r r r

are taken into account. As a result of this process, sampling

1 2 3, ,r r rH will be implemented.

So, summarizing all the above, we can draw the following

conclusions regarding the construction of logical trees:

A logical tree provides coverage of an array of educational

information by fixing the sample objects in its structure.

Moreover, such an approach of information storage provides-as

a mechanism for further training (expansion) and error correction.

To date, in the specialized literature there is no description

of algorithms and methods that would allow you to build logical

trees based on large data arrays.

The use of logical trees in pattern recognition problems allows to

describe recognition functions simply and compactly, which

positively affects the complexity and speed of the resulting

classification system.

Thus, the paper presents a step-by-step scheme for

constructing a system of recognition of discrete objects based on

a logical tree, and the focus of the study was a graph-scheme

model of the recognition system in the form of a logical tree. Once

again, we note that the results of this work are relevant for all

problems of pattern recognition, in which the resulting recognition

scheme can be represented as a logical tree.

References

[1] Povhan I.: General scheme for constructing the most complex logical tree

of classification in pattern recognition discrete objects. Electronics and

information technologies 11/2019, 112–117.

[2] Quinlan J.R.: Induction of Decision Trees. Machine Learning 1/2008, 181–222.

[3] Vasilenko Y.A, Kuhayivsky A.I, Papp S.A.: Construction and optimization

of recongnizing systems. Information Technologies and Systems 1(T2)/1999,

122–125.

[4] Vasilenko Y.A., Vashchuk F.G., Povhan I.F.: Overall assessment

of minimization of logical tree. European Journal of Enterprise Technologies

1(55)/2012, 29–33.

[5] Vasilenko Y.A., Vashchuk F.G., Povhan I.F.: The problem of estimating

the complexity of the logic trees, recognition and general method optimization.

European Journal of Enterprise Technologies 6/4(54)/2011, 24–28.

[6] Vtogoff P.E.: Incremental Induction of Decision Trees. Machine Learning

4/2009, 161−186.

[7] Zheng Z., Kohavi R., Mason L.: Real world performance of association rule

algorithms. Proceedings of the Seventh ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining 2008, 401–406.

Ph.D. Povhan Igor

e-mail: igor.povkhan@uzhnu.edu.ua

Igor Povhan, worked as the head of the laboratory of

software and hardware of the faculty of information

technology in the period from 2003 to 2008. Since

2009, associate Professor of the Department of

Software Systems of Uzhgorod National University.

The direction of scientific work-artificial intelligence,

pattern recognition theory, low-level programming.

http://orcid.org/0000-0002-7034-8702

otrzymano/received: 22.12.2019 przyjęto do druku/accepted: 26.06.2020

