
50      IAPGOŚ 1/2021      p-ISSN 2083-0157, e-ISSN 2391-6761 

artykuł recenzowany/revised paper IAPGOS, 1/2021, 50–53 

http://doi.org/10.35784/iapgos.2413 

POLYPARAMETRIC BLOCK CODING 

Julia Milova, Yuri Melnyk 
State University of Telecommunications, Educational-Scientific Institute of Telecommunications, Kiev, Ukraine 

Abstract. The principles of poly-parametric information coding have been considered. The methods for developing poly-parametric codes have been 

presented. It is shown that the protection of block codes from channel interference using check patterns can be developed by a mono- or poly-parametric 
method. A special type of block codes has been presented, the check patterns of which are formed on the basis of their neighbours, which are functionally 

related to the given code combination. Such codes have been called poly-parametric. Binary poly-parametric ring codes, the check patterns of which 

are designed to detect and correct channel errors, are developed using the properties of Galois fields and on the basis of the vector shift indicators 
of the codewords. To obtain digital poly-parametric block codes, the properties and features of the normalized natural sequence are used. It is shown that 

each codeword of a binary block code can be represented as a certain positive integer in the decimal number system, which is an element of the natural 

sequence. Its elements on an interval that equals the norm acquire a functional dependency. 
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POLIPARAMETRYCZNE KODOWANIE BLOKOWE 

Streszczenie. Rozważono zasady poliparametrycznego kodowania informacji. Przedstawiono metody tworzenia kodów poliparametrycznych. Wykazano, 

że ochrona kodów blokowych przed zakłóceniami kanałowymi za pomocą wzorców kontrolnych może być realizowana metodą mono- 

lub poliparametryczną. Przedstawiono specjalny typ kodów blokowych, których wzorce kontrolne są tworzone na podstawie ich sąsiadów funkcjonalnie 
związanych z daną kombinacją kodową. Takie kody zostały nazwane poliparametrycznymi. Z wykorzystaniem własności pól Galois oraz na podstawie 

wskaźników przesunięcia wektorowego słów kodowych, zostały opracowane binarne poliparametryczne kody pierścieniowe, których schematy kontrolne 

przeznaczone są do wykrywania i korekcji błędów kanałowych. Do otrzymania cyfrowych poliparametrycznych kodów blokowych wykorzystuje 
się właściwości i cechy znormalizowanego ciągu naturalnego. Pokazano, że każde słowo kodowe binarnego kodu blokowego może być reprezentowane 

jako pewną dodatnią dziesiątkową liczbę całkowitą, która jest elementem ciągu naturalnego. Jego elementy w przedziale równym normie uzyskują 

zależność funkcyjną. 

Słowa kluczowe: słowo kodowe, wskaźniki przesunięcia wektorów, ciąg naturalny, kody poliparametryczne 

Introduction 

Block codes play a vital role among a large number 

of different methods for coding digital information. Although 

block codes have the most ancient history in terms of time 

creation, they have not lost their significance even now [7, 9]. 

They are mainly used for coding and exchange of book 

documentary information that requires special accuracy. This 

defines the usual structure of block codes, consisting of two parts 

– useful information and check symbols for error detection 

and correction. The symbol error correction is built on 

the informational part of the codeword and is often built into the 

general structure of the block. Over the years of its existence, truly 

unique, sophisticated methods of creating check patterns have 

been developed, which were often named after their developers – 

Hamming, Halley, BCH codes, etc. All of these codes use 

the information of only the useful part of the transmitted block 

[5, 10, 14]. This imposes certain limitations on the creation 

of the check part of a codeword separate block. 

1. Fundamentals for constructing polyparametric 

binary block codes 

Let us consider the following example. Let the useful 

information, presented in a block of length N binary symbols be 

bitwise shifted left or right N-1 times. Moreover, after each shift, 

the number of bitwise coinciding units in the original and offset 

numerical vectors is determined (V). It is clear that after such 

actions, we will receive the vector shift indicators (VSI) consisting 

of N-1 numeric elements. Note that the original vector and its N-1 

close equivalents have a linear relationship with each other, which 

can be used to create check patterns. Individual elements of the 

vector shift indicators can be subjected to linear and non-linear 

operations, the results of which can also be used to obtain a check 

pattern. The considered example is shown in Fig. 1. 

Fig. 1 shows that in this case, to obtain a check pattern, the 

structure of not only the original vector is used, but also the other 

N-1 shift vectors that functionally depend on it. This provides an 

advantage when creating a check pattern and expands the 

possibilities for obtaining it [4, 8, 12]. 

 

Fig. 1. Receiving the elements of the vector shift indicators 

In other words, there are mono- and poly-parametric code 

combinations: 

 mono-parametric block codes are the codes in which the check 

pattern of each block is formed only on the basis of its internal 

structure; 

 polyparametric block codes are the codes, the check pattern 

of which are formed by a given block and a set of neighbour-

ing codewords functionally depending on a given codeword. 

 

When block codes are used, information is transmitted 

by codewords of constant selected length L. The check patterns 

of these codes are based on an internal structure, namely, 

the distribution of 0s and 1s within one codeword. 

Let us consider the structure of 0s and 1s located between 

the first and last single symbols of the codeword called the delta 

factor. A delta factor structure of some type allows ring codes with 

special properties to be created. Namely, when expanding 

the size of the codeword by several zero symbols, the vector 

shift indicators are completely determined by the type of the 

delta factor, which enables codes with special properties 

to be obtained. These codes can be used as entropy codes. 

The information resource for block codes is a relative value 

indicating the number of units of its information part, for which 

a check pattern is created for channel error detection 

and correction. For mono-parametric codes, the information 

resource has a limit equal to one. For polyparametric codes, 

it equals |L/2|+1, where L is the length of the codeword. 
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The information reserve is the amount of information for 

obtaining a check pattern in block codes, which exceeds the 

capabilities of the useful information part of the transmitted 

codeword. For mono-parametric codes, the information reserve is 

equal to zero, and for poly-parametric codes interconnected by 

functional dependency, it is equal to |L/2|-1. 

Earlier, it was shown that the construction of poly-parametric 

codes requires a functional dependency between the received code 

combination and its nearest neighbours. In Fig. 1, there are N-1 of 

such nearest neighbours equal to the length of the code 

combination. Thus, binary codes that are segments of Galois fields 

have functional dependency [1–3]. 

2. Polyparametric digital decimal block codes 

But it turned out that decimal codes, which are elements of the 

normalized natural sequence, have a similar functional 

dependency [9]. 

Deviations of the characteristics of the normalized natural 

series from the non-normalized ones can be used as parameters of 

the set of codewords built on their basis. 

Such features of the normalized natural series create 

conditions for varying its elements in order to create new codes 

with new characteristics. These characteristics can be used as 

parameters. 

Polyparametric codes are closely related to the usual natural 

series, which is an infinite sequence of integers differing by one 

on a unit interval. 

Under the concept of a normalized natural sequence, a natural 

sequence should be taken after each of its elements by the same 

integer. It is convenient to choose this integer equal to the length 

of the information part of the transmitted block. After 

normalization, the natural sequence begins to possess the 

following features: 

 elements of the natural sequence are converted into real num-

bers, consisting of an integer part (modulus) and a fractional 

part (remainder); 

 with respect to the remainders, the normalized sequence or its 

segments are divided into sections of the same length equal to 

the size of the norm, which we have proposed calling cycles; 

 in all cycles of the normalized natural sequence and in its 

segments, the remainders are repeated and depend only on the 

size of the norm; 

 cycles are separated from each other by a normalized element 

with a zero remainder. 

 

When an element of the natural series becomes equal to or a 

multiple of the value of the norm, its remainder becomes zero, and 

the value of the integer part is increased by one and becomes equal 

to the ordinal number of the next cycle. Up to this point, the 

integer part of all normalized elements is equal to the cycle ordinal 

number reduced by one. The fractional part of each normalized 

element in the cycle is determined only by the value of the norm. 

Below are examples of two cycles of normalized natural series 

for two different norms and two different lengths of clippings. 

These features are shown in Fig. 2. 

Here, Gx(n) and Gx(k) are the cycles obtained by normalizing 

the natural sequence, L = 7 and 11 are the size of the norm, and n 

and k are the lengths of the line segment of the normalized natural 

series, from which cycles are selected. The parameters of the 

given cycles are as follows: 

G(n), L = 7, n = 70…84 

G1(n), L = 11, n = 70…84 

G(k), L = 7, k = 56…70 

G1(k), L = 11, k = 56…7 

 

If you select elements of the normalized natural sequence 

as decimal codes, they will have the abovementioned properties. 

It can be considered that any deviation of the properties 

of the normalized natural sequence and various combinations

of its elements are the basis for getting new parameters of 

codewords obtained due to this sequence or its normalized 

equivalent. Such parameters, with the help of adjacent codewords, 

enable check patterns to be obtained for channel error detection or 

correction. 

In particular, the elements of the normalized natural sequence, 

used as code combinations, receive two parameters: the ordinal 

number of the cycle from the beginning of the natural sequence in 

which the code combination is located and which can be 

considered as the index of this combination, as well as its number 

from the beginning of the cycle, used as an offset. Using these 

parameters, it is easy to check the correctness of the code 

combination and to correct existing errors. 

It is worth noting the fundamental feature of the given 

parameters: their one-to-one correspondence with the parental 

code combination. In fact, these two parameters can be transmitted 

with equal success instead of the parent code combination, and 

vice versa. 

Fig. 2. Cycles of a normalized natural sequence 

3. Coefficients before normed codes  

Problems of coefficients in front of normalized codes arise due 

to the fact that the coefficient "k" located in front of the value of 

an element of the natural series is divided by the norm L. As a 

result of this, at least three varieties of the quotient from the 

division are formed: the quotient is equal to, less than or greater 

than one. Moreover, the value of the quotient can be very different 

in magnitude. 

The first kind of quotient occurs when the norm is the largest 

multiple of the coefficient or is equal to it. For example: 

84*k:7=12*k 

48*k:8=6*k 

17*k:17=k 

The second type of quotient occurs when a quotient is a 

fractional number greater than or less than one. For example: 

67*k:13=5.154*k 

13*k:24=0.542*k 

The third kind of quotient appears when the numerator and 

denominator have a common factor. Then the quotient becomes 

basically a real number. Its peculiarities, in this case, are 

preserved. For example: 

66*k:26=33*K:13 

9*K:39=3*K:13 

Four examples of the resulting cycles of a normalized natural 

series with coefficients in front of the elements are given below:  

The sampling interval of the natural range is from 65 to 85 

elements. 

Figure 3 shows the cycles in more detail. 
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Fig. 3. Coefficients of elements of normalized natural series 

From the examples above, you can see that: 

 the cyclicity of the normalized natural series remains, which is 

equal to the size of the norm; 

 each time, the product “coefficient multiplied by the current 

value of the row element” is subjected to normalization; 

 a normalized natural series with coefficients relative to the 

fractional part (remainders) is divided into segments of the 

same length – cycles separated from each other by elements 

with zero remainder; 

 the residuals during normalization of the natural series with 

coefficients are formed not for each successive element of the 

natural series, but for those elements that are created after 

multiplying each element by the corresponding coefficient; 

 cycles are equal to the value of the norm; 

 if the coefficients are real numbers, then the normalized natu-

ral series loses its cyclicity; 

 a normalized natural series with coefficients at a rate of 10 

forms normalized elements with residuals of one digit (multi-

ple of 10). 

4. Constructing polyparametric codes 

Considering the line segments of the normalized natural series 

with coefficients in front of each element, we come to the 

conclusion that, by combining the elements of the natural series 

and then normalizing them, it is possible to construct new 

polyparametric digital codes with two or more parameters. An 

example of the result of such a construction is the so-called 

summary code and its varieties. Each code combination of the 

total code is obtained by arithmetic addition of all elements of the 

natural series up to this number, including it. It is clear that if the 

n-th code combination is created (constructed), it will be equal to 

the sum 1 + 2 + 3 + … + n. The sequence of code combinations 

obtained in this way is then normalized using the selected rate. 

For the summary codes, the following patterns are observed: 

 the normalized natural series, as well as its individual seg-

ments with respect to the fractional part (remainders) of 

neighbouring elements, splits into cycles-segments of the 

same length, equal to the size of the norm L; 

 within each cycle with respect to its middle part, for all re-

mainders, the even symmetry is established: at the same dis-

tance from the centre of the cycle, the residuals of normalized 

elements are equal to each other; 

 in each cycle, there is a pair of normed elements with zero 

residuals, which can be used to frame the cycles; 

 if the norm is an even number, then, relative to the remainders, 

each element of the cycle has its own pair, with an odd norm, 

the middle element of the pair does not have. 

 

These patterns can be seen in more detail in Fig. 4. 

The sequences designated S3, S4 and S7 represent cycles 

of normed codewords at rates equal to 6, 8, and 9, respectively. 

Here, the cyclic essence of the normed natural series 

is immediately revealed, and the cycle size is equal to the norm, 

as well as zero residuals of codes at the ends of the cycles 

(however, the beginning of the cycles can be selected from any 

element in the cycle and this will be correct). It is more convenient 

to start and end cycles with zero remainders. One asymmetric 

element is well traced with remainders 0.857 for the L = 7 norm 

and 0.222 for the L = 9 norm. For an even norm, such as L = 8, the 

remainders of all normed elements in the cycle are repeated twice. 

S3(n) L=70 0; 0.143; 0.429; 0.857; 0.429; 0.143; 0 

S4(n) L=8 0.25; 0.75; 0.5; 0.5; 0.75; 0.25; 0 

S7(n) L=9 0; 0.222; 0.667; 0.333; 0.222; 0.333; 0.667; 

0.222; 0. 

 

Fig. 4. Total code combination loops 

5. Digital total codes and their features 

It is known that any binary code combination can be 

represented by a positive integer. Since the total codes are 

numerical, and in their structure, each total codeword is derived 

from a natural number series, we agree to number the counting set 

of total codes in order with the elements of the natural series 1, 2, 

3, …, n and form them by simply adding the elements of this 

series. Also, the total codeword can be easily represented as a 

binary number [13]. For example, a code with sequence number 

n = 5 is obtained as a binary representation of the total of decimal 

numbers S(n) = 1 + 2 + 3 + 4 + 5 = 15, i.e. as Z = 1111, and a 

code with sequence number n = 10 is encoded as a binary 

representation of the total of decimal numbers S(n) = 1 + 2 + 3 + 4 

+ 5 + 6 + 7 + 8 + 9 + 10 = 55, namely Z=110111. 

A feature of total codes is that they are polyparametric. Each 

codeword typically has several parameters by which it can be 

extracted from a plurality of similar codewords and, against the 

background of external interference distorting the codeword 

structure, reconstructed. Let us indicate two main parameters of 

total codes, which make it possible to check the correctness of the 

code word of the total code and in many cases restore it to its 

original form: 

 belonging of the codeword to the group of total codes. If the 

received codeword, in accordance with its value, does not be-

long to the group of total codes constructed in accordance with 
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the above algorithm, it is erroneous. The sum structure 

of the codeword is its main parameter; 

 the remainder of dividing the total codeword by a given num-

ber. If the remainder of dividing the codeword by some selec-

ted pre-known integer has a remainder other than the expected 

remainder, it is erroneous. The type and value of the remain-

der of dividing the total codeword by a given number is its se-

cond parameter. 

 

There are two properties of total codes that can be easily 

verified experimentally. 

1) A set of codewords on a certain interval of their lengths n, 

being correlated to any small integer K, necessarily gives one 

or several dual multiplicities. Dual multiplicities D are the 

pairwise results of dividing the total codeword with the num-

ber of elements n by K without the remainder. Dual multiplici-

ties are quite common. Therefore, such code words are conve-

nient to use in practice. 

2) If one integer is divided by the second, the result is the whole 

part and the remainder, which is always less than the divisor. 

For total codes, there is such a pattern that, starting from any 

dual multiplicity, the remainders of dividing integers of the to-

tal codes S (n) by the divisor K up and down the set of ordinal 

numbers n are symmetric and pairwise equal to each other, 

starting from any dual multiplicity [11]. 

 

The remainder values are stored over the entire set of 

codeword numbers. 

Thus, for each total codeword, there are three of its 

identification parameters: 

 serial number n; 

 value of the total codeword S(n); 

 remainder of dividing the total codeword by the selected 

number k. 

 

Note that two adjacent dual-fold total codewords have zero 

residuals. 

There are three types of total codes: natural numbers, even 

and odd total codes. The last two codes can be considered 

as derivatives of the total natural number code. 

Even total codes are formed on the basis of even numbers 

of natural numbers 1, 2, 3, … n according to the formula 2*n, 

and odd total codes according to the formula 2*n + 1. Here, 

the next codeword is recursively obtained from the previous 

codeword by adding the next even or odd number, respectively. 

The result is a sequence of codewords. In particular, the first ten 

codewords of an even total code have the form 2 6 12 20 30 42 56 

72 90 110. Similarly, the first twelve odd codewords form 

a sequence of 3 7 13 21 43 57 73 91 111. As follows from 

the logic of things, code combinations with the same sequence 

numbers differ by one, and the odd summary codes prevail over 

the even ones. Therefore, the basic properties in both codes must 

be the same. 

The properties of even and odd sum codes demonstrate 

the following patterns. 

 at any interval, the normalized sequence of the sum code 

breaks down into cycles of equal length, the size of which 

is determined by the size of the norm; each cycle is bordered 

by an integer multiple of the norm value; 

 normalized code words in cycles are real numbers, 

the fractional part of which is a set of values symmetric with 

respect to the average code and equal to each other. 

 

These fractional parts for each norm-different and are stored 

as constants for all received cycles on an infinite sequence 

of codewords. 

6. Conclusions 

The protection of block codes from channel interference using 

check correcting patterns can be performed in a mono-parametric 

or poly-parametric way, i.e. either one code combination at a time 

or using the code combinations of its neighbours functionally 

related to it. 

For this purpose, a methodology for creating binary and digital 

decimal poly-parametric codes have been proposed. 

Binary poly-parametric codes are developed using the 

properties of Galois fields, whereas digital block codes are based 

on the natural sequence. In this case, the basis of poly-parametric 

codes (Galois fields and the original natural sequence) is subjected 

to linear transformations to obtain a functional dependency of the 

neighbouring codes. 

Based on the thinned natural sequence, poly-parametric codes 

can be developed to detect, correct errors, and protect from 

unauthorized access. 

For detecting and correcting combinations of poly-parametric 

codes, new possibilities open up due to additional information 

embedded in adjacent codewords. 

Poly-parametric codes, in comparison to mono-parametric 

codes, using only one code combination, simplify, improve and 

diversify the choice of code protection from errors and 

interference. 
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