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Abstract. The article discusses methods and algorithms for digital processing and filtering when carrying out nano-measurements using a scanning probe 

microscope. The paper discusses frequency methods for improving images, in particular, the use of the Fourier transforms with various filtering methods 
to improve the quality of the resulting image. Stable computational algorithms have been developed for transforming discrete signals based on the Fourier 

transform. Methods for the interpretation of the numerical results of the discrete Fourier transform in such packages as Matlab, MathCad, Matematica are 

presented. It is proposed to use a window transform, developed based on the Fourier transform, which makes it possible to single out the informative 
features of the signal and to reduce the influence of the destabilizing factors that arise when processing signals from a scanning gold microscope in real 

conditions. 
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SPOSÓB UZYSKANIA CHARAKTERYSTYKI WIDMOWEJ SONDY SKANUJĄCEJ MIKROSKOPU 

Streszczenie: W artykule omówiono metody i algorytmy cyfrowego przetwarzania i filtracji podczas nano-pomiarów z wykorzystaniem mikroskopu z sondą 

skanującą. Badane są metody korekcji częstotliwości obrazu, w szczególności wykorzystanie transformaty Fouriera z różnymi metodami filtracji w celu 

poprawy jakości otrzymanego obrazu. Opracowano stabilne algorytmy obliczeniowe do konwersji sygnałów dyskretnych na podstawie transformaty 

Fouriera. Przedstawiono metody interpretacji numerycznych wyników dyskretnej transformaty Fouriera w takich pakietach jak Matlab, MathCad, 
Matematica. Proponuje się zastosowanie transformacji okienkowej opracowanej na podstawie transformaty Fouriera, która pozwala wyodrębnić 

charakterystykę informacyjną sygnału i zmniejszyć wpływ czynników destabilizujących występujących podczas przetwarzania sygnału z mikroskopu 

z sondą skanującą w warunkach rzeczywistych. 

Słowa kluczowe: nano-pomiar, cyfrowe przetwarzanie sygnału, mikroskop z sondą skanującą, transformata Fouriera 

Introduction 

In recent years, the study of submicron, nano-, and cluster 

materials has developed rapidly due to existing and potential 

applications in many technological fields, such as electronics, 

catalysis, magnetic data storage, structural components, etc.  

The study of nanoscale structures (nanostructures) belongs 

to the direction of nanotechnology. The important components 

of this scientific and technical direction are the development 

and study of nanostructured materials, the study of the properties 

of the obtained nanostructures under various conditions. 

Many countries are actively searching for optimal methods 

for measuring nanomaterials. The results of these methods 

are increasingly demanding. The main ones are accuracy, 

versatility, and high-speed calculations. Unfortunately, optimal 

methods have not yet been developed by which it would be 

possible to analyze different types of nano-materials with equal 

success, taking into account the above requirements [13]. 

One of the most modern methods for measuring 

the characteristics of materials and diagnosing the features 

of small-sized systems is electron and scanning probe microscopy 

(SPM). With the use of this device and the developed techniques, 

many interesting scientific results have been obtained 

concerning the mechanical, electrical, and tribological properties 

of new structural materials and unique products. The purpose 

of microscopic examination of solids using scanning probe 

microscopy is to obtain an enlarged image of the surface. 

SPM images, due to the specificity of the method, usually 

contain noise. This is due to the vibration of the probe relative to 

the sample, acoustic interference, noise from electrical equipment, 

which are always present when measuring weak signals. Image 

distortions are also introduced due to thermal drift of the probe 

relative to the sample, nonlinearity, and creep in the piezoelectric 

elements from which the scanner is made. In this regard, to obtain 

high-quality SPM images and conduct their quantitative analysis, 

it is necessary to improve existing ones and develop new methods 

for the digital processing of these images. 

1. Analysis of existing methods for studying 

nanostructures 

Thus, several methods of analysis are often used to analyze 

the structure of nanomaterials – fractal, textural, and classical 

amplitude method. Currently, the most popular fractal methods 

of analysis, but these methods have low efficiency in the study 

of materials with complex relief. This is because the main 

characteristic of fractals - fractal dimension [13, 18], has a direct 

dependence on the complexity of the relief, which is obtained 

by the interaction of filler particles and the source material. Other 

commonly used methods of image analysis are methods based 

on working with the matrix of the image itself, the so-called. 

amplitude methods [12]. 

Such as calculating the areas of figures are in the image, 

brightness differences, highs, and lows, averages, etc. However, 

there is an even bigger drawback. In matters relating to the 

analysis of images obtained by optical methods, there is an error 

related to the quality of the image and the conditions under which 

it was obtained. So changing the brightness or sharpness of the 

image leads to a significant change in the result.  

These methods of analysis can be applied to images that are 

the result of the use of electronic, X-ray, and other non-optical 

methods of studying the structure of the material. Digital filtering 

of noisy signals and images is important in solving a wide range 

of scientific and technical problems. Such tasks arise, in particular, 

in communication technology to improve the quality of reception 

of transmitted messages [13, 18]. 

Thus, several methods of analysis are often used to analyze 

the structure of nanomaterials – fractal, textural, and classical 

amplitude method. Currently, the most popular fractal methods 

of analysis, but these methods have low efficiency in the study 

of materials with complex relief. This is because the main 

characteristic of fractals – fractal dimension [13, 18], has a direct 

dependence on the complexity of the relief, which is obtained 

by the interaction of filler particles and the source material.  

Other commonly used methods of image analysis are methods 

based on working with the matrix of the image itself, 

the so-called. amplitude methods [12]. Such as calculating 

the areas of figures are in the image, brightness differences, highs, 

and lows, averages, etc.  
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However, there is an even bigger drawback. In matters relating 

to the analysis of images obtained by optical methods, there is an 

error related to the quality of the image and the conditions under 

which it was obtained. So changing the brightness or sharpness 

of the image leads to a significant change in the result.  

These methods of analysis can be applied to images that are 

the result of the use of electronic, X-ray, and other non-optical 

methods of studying the structure of the material. Digital filtering 

of noisy signals and images is important in solving a wide range 

of scientific and technical problems.  

Such tasks arise, in particular, in communication technology 

to improve the quality of reception of transmitted messages 

[13, 18]. Traditionally, approaches that use Fourier transforms 

have been used to clear information messages from interference. 

2. Signal filtering using Fourier transforms 

The most convenient from the point of view of the 

organization of processing and a natural way of sampling 

is the representation of signals in the form of samples of their 

values (samples) in separate, regularly located points 𝑇𝜕 = ∆𝑡. 

In practice, the sampling operation is performed by measuring 

the values of the signal using a sensor, the action of which can be 

described as a convolution with a core 𝛾𝜕 = (𝑡): 

 𝑢(𝑘Δ𝑡) = ∫ 𝑢(𝑡)𝛾𝜕(𝑡 − 𝑘∆𝑡)𝑑𝑡               
∞

−∞
 (1) 

set of values {𝑢(𝑘Δ𝑡)} is a discrete representation of the signal. 

The core 𝛾𝜕(𝑡) is called the sampling aperture. Recovery 

of a continuous signal from approximate values {𝑢(𝑘Δ𝑡)} 

performed by interpolation  

 ∑ 𝑢(𝑘∆𝑡)𝛾𝜕(𝑡 − 𝑘∆𝑡) ≈ 𝑢(𝑡)𝑘   (2) 

using the interpolating function 𝛾𝑏(𝑡), which is called the 

recovery aperture.  

If we proceed only from the accuracy of the approximation, 

then there is an important class of signals and the corresponding 

basic functions for which the distributions (1) and (2) are accurate. 

These are signals whose Fourier spectrum 𝑈 (𝑓)  =  𝐹 {𝑢 (𝑡)} 

non-zero only within a limited area of the detection area (signals 

with a limited spectrum). Let the signal sector differ from zero 

in the interval (
1

2∆𝑡
,

1

2∆𝑡
), that is 

 𝑈(𝑓) = 𝑈(𝑓)𝑟𝑒𝑐𝑡 (𝑓∆𝑡 +
1

2
).  (3) 

 𝑟𝑒𝑐𝑡(𝑎) = ⟨
1,             0 ≤ 𝛼 ≤ 1
0,    𝑖𝑛 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠

 

For such signals, the sampling and recovery bases are formed 

from the reference functions: 

 𝛾𝜕(𝑡) = (
1

∆𝑡
) sin 𝑐 [

𝜋(𝑡−𝑘∆𝑡)

∆𝑡
] , 

 𝛾𝑏(𝑡) = sin 𝑐 [
𝜋(𝑡−𝑘∆𝑡)

∆𝑡
] , (4) 

а (1) і (2) go into exact equations: 

 𝑢(𝑘∆𝑡) =
1

∆𝑡
∫ 𝑢(𝑡) sin 𝑐 [

𝜋(𝑡−𝑘∆𝑡)

∆𝑡
] ,

∞

−∞
 (5) 

 𝑢(𝑡) =
1

∆𝑡
∑ 𝑢(𝑘∆𝑡) sin 𝑐 [

𝜋(𝑡−𝑘∆𝑡)

∆𝑡
] ,∞

−∞  (5) 

These relations are called the reference theorem. Equation (5) 

means that the samples of the signal are its values in points {𝑘∆𝑡}, 

obtained after passing the signal through an invariant to the offset 

"ideal" filter with pulse and frequency characteristics: 

 ℎ𝜕(𝑡) = 𝛾𝜕(𝑡) = (
1

∆𝑡
) sin 𝑐 (

𝜋𝑡

∆𝑡
),            

 𝐻𝜕(𝑓) = 𝑟𝑒𝑐𝑡 (𝑓∆𝑡 +
1

2
). (6) 

Equation (6) means that the procedure for restoring 

a continuous signal from its samples 𝑢{𝑘∆𝑡}, can be represented 

as the transmission through an ideal low-pass filter (7), (8) 

of a continuous signal of the form 

 𝑢1(𝑡) = ∑ 𝑢(𝑘∆𝑡) δ(𝑡 − 𝑘∆𝑡),∞
−∞  (7) 

whose spectrum 𝑈1(𝑓) is periodically extended with the period 
1

∆𝑡
 spectrum 𝑈(𝑓) signal 𝑢(𝑡): 

 𝑈1(𝑓) = ∑ 𝑈 (𝑓 −
𝑚

∆𝑡
)∞

𝑚=−∞ .                 (8) 

Indeed, such filtering spectrum 𝑈1(𝑓) multiplied by the 

frequency response of the filter (8), which allocates only one 

period of the spectrum corresponding 𝑚 = 0 equal to the signal 

spectrum 𝑢(𝑡). Periodic continuation of the spectrum (10) 

is possible if the rasterization step ∆𝑡 is less than or equal 

to the inverse of the length of the spectrum. Otherwise, there 

is an overlap of adjacent periods of the signal spectrum, 𝑢1(𝑡) 

and with an ideal low-pass filter, it is impossible to select 

the signal spectrum in its pure form (Fig. 1). 

 

Fig. 1. Overlapping of adjacent periods of the signal spectrum 

Although as a result of thinning, each of the time series will 

be characterized by a frequency range twice less than the signal 

before filtering, the presence of two sequences (at the output 

of each filter) allows you to uniquely restore the output signal 

in reverse conversion. The use of digital low-pass filters 

in the receiving device reduces the level of additive noise present 

in the signal transmitted over the communication channel. 

Depending on the requirements for receiving information 

messages and the spectral composition of the signal and noise can 

also be used band-pass or band-barrier filters [10, 12]. But even 

though the mathematical apparatus of Fourier transform is an 

important and useful tool for practical research, it has some 

limitations. 

Thus, filters based on Fourier transforms do not effectively 

eliminate isolated features of signals. Since this transformation 

uses infinitely oscillating harmonic functions, information about 

the isolated features of the signal is contained in all conversion 

factors. 

These problems can be partially solved by applying 

the window Fourier transform, which allows you to limit the range 

corresponding to the selected time window. 

3. Application of window Fourier transform 

The time interval of the signal is divided into subintervals 

and the conversion is performed sequentially for each subinterval 

separately. Thus, the transition to the frequency-coordinate 

representation of the signals, while within each subinterval 

the signal is "considered" stationary. The result of the window 

transformation is a family of spectra, which reflects the change 

in the spectrum of the signal at intervals of the shift 

of the transformation window.  

This allows you to select on the coordinate axis and analyze 

the features of non-stationary signals. The size of the window 

function media w(t) is usually set comparable to the stationary 

interval of the signal. In essence, such a transformation of one 

nonlocalized basis is divided into some bases localized within 

the function w(t), 

Window conversion is performed according to the expression: 

 𝑆(𝜔, 𝑏𝑘) = ∫ 𝑠(𝑡) ∙ 𝜔(𝑡 − 𝑏𝑘) ∙ 𝑒−𝑗𝜔𝑡𝑑𝑡
∞

−∞
,    (9) 

where is the function 𝑤(𝑡 − 𝑏) is a function of the transformation 

shift window from coordination 𝑡, where the parameter 𝑏 sets 

fixed offset values.  

When shifting windows with a uniform step, the values of 𝑏𝑘 

are taken equally 𝑏𝑘 = 𝑘∆𝑏. Both the simplest rectangular 

window and special weighted windows (Bartlett, Gauss, etc.) 

which provide small distortions of a spectrum at the cutting 

of window segments of signals (neutralization of the Gibbs 

phenomenon) can be used as transformation windows. 
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An example of a window conversion for a non-stationary signal 

at a high noise level is shown in Fig. 2. According to the signal 

spectrum, it is possible to judge the presence of harmonic 

oscillations in its composition at three frequencies, to determine 

the relationship between the amplitudes of these oscillations, 

and to specify the locality of oscillations in the signal interval. 

The signal is the sum of three consecutive radio pulses with 

different frequencies without pauses, with a signal-to-noise ratio 

close to 1. The window function wi is given with an effective 

window width 𝑏  34 and a full-size 𝑀 =  50.  

The frequency step  =  0.1 is set for the results. slightly 

higher than the actual resolution 



  . 

The coordinate resolution of the window transformation 

is determined by the width of the window function and is 

inversely proportional to the frequency resolution. When the width 

of the window function is equal to 𝑏, the frequency resolution 

is determined by the value ∆𝜔 =
2𝜋

𝑏∆𝜔
.  

 
Fig. 2. Example of a conversion window for a transient signal at the high  

At the required value of the frequency resolution ∆𝜔 

accordingly, the width of the window function must be equal 

to 𝑏 =
2𝜋

∆𝜔
. For the window Fourier transform, these restrictions 

are fundamental. Yes, for Fig. 2 when the size of the data array 

𝑁 =  300 and the width of the window function ∆𝑏 = 100 

the frequency resolution of the conversion results decreases 
𝑁

∆𝑏
= 3 times compared to the original data and graphs 𝑆(𝜔, 𝑏𝑘)  

𝑆(𝑛∆𝜔_𝑠 ) on the coordinate 𝑛 for visual comparison with 

the graph  are constructed with a step on the frequency 

∆𝜔𝑆𝜔
= 3∆𝜔𝑆, that is, at points 𝑛 =  0, 3, 6, . . . , 𝑁. 

However, this option has significant drawbacks – it is 

excessive, and many coefficients of decomposition of wavelet 

functions contain information that is duplicated in other 

coefficients. Such redundancy is not always a disadvantage, 

but it leads to a significant increase in computational time 

due to the lack of effective fast calculation algorithms of the 

non-stationary random process. 

It is also worth remembering that when calculating the value 

of any fractal dimension, the selected step (window size) has 

a great influence, by which the image is calculated. For example, 

the fractal dimension of the same image calculated by a window 

of 5x5 dots will be less than when using a window of size 3x3. 

Frequency-time window conversion is used to analyze 

non-stationary signals if their frequency composition changes 

over time. The window transformation function (11) can be 

translated into a two-dimensional version with independent 

variables in time and frequency:  

 𝑆(𝑡, 𝜔) = ∫ 𝑠(𝑡 − 𝜏) ∙ 𝜔(𝜏) ∙ 𝑒−𝑗𝜔𝑡𝑑𝜏
𝜏

,    (10) 

In Fig. 3 shows an example of calculation and presentation 

(module of the right part of the main range of the spectrum) 

of the frequency-time spectrogram for a discrete task of the input 

signal 𝑆𝑞 (𝑛).  

To ensure the operation of the window function throughout 

the signal interval, the initial and final conditions of the 

calculations were set (continuation of both ends of the signal 

by zero values at M points). 

As can be seen from the results of calculations, the window 

conversion allows you to highlight the informative features 

of the signal and time and frequency. The localization resolution 

is determined by Heisenberg's uncertainty principle, which states 

that it is impossible to obtain an arbitrarily accurate discrete 

representation of a signal.  

 
Fig. 3. An example of calculating and presenting a time-frequency spectrogram 

for a discrete problem of an input signal 

The larger the window, the better the temporary resolution, 

but worse the frequency, and vice versa (Fig. 4). 

a)  

b)  

Fig. 4. Аn example of frequency-time window conversion of a signal consisting 

of 4 disjoint intervals: a) Small Window, b) Big Window 

Figure 4 shows an example of frequency-time window 

conversion of a signal consisting of 4 disjoint intervals, each 

of which is the sum of two harmonics of different frequencies. 

The Gaussian function of different widths is applied as windows.  

The narrow window provides better temporal resolution 

and clear fixation of the boundaries of the intervals, but wide 

frequency peaks within the intervals. A wide window opposite – 

clearly indicates the frequency of intervals, but with overlapping 

boundaries of time intervals. When solving practical problems, 

you have to choose a window to analyze the entire signal, while 

different parts of it may require the use of different windows.  
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If the signal consists of distant frequency components, then 

you can sacrifice spectral resolution in favor of time, and vice 

versa. 

4. Illustrative examples 

Using the analytical mechanism, areas with different textures 

were selected, each type of texture was assigned its unique index. 

This index, when creating the texture of the image, acts as 

a label for a particular color, we have the opportunity for both 

the visual analysis of the texture picture and mathematical analysis 

of the matrix of indexes.  

Going from the original image to its texture map, it is possible 

to level the contribution of external factors affecting the resulting 

image. Fig. 5 shows an image obtained using an electron 

microscope, as well as its texture map. In the future, based 

on the resulting texture, the Fourier transform is calculated, 

which allows you to select the main peak values, that distinguish 

images with different fillers and concentrations.  

a)  

b)  

Fig. 5 a) Dependences of the value of the Fourier transform on the concentration 

and b) the dependence of the degree of crystallinity on the concentration 

The meaning of the Fourier transform is that it allows 

us to distinguish from the textural picture of the amplitudes 

and their periodicity, which characterize the distribution and 

magnitude of texture variability. From a physical point of view, 

this transformation allows us to assess how much the structure 

of the object changes, and to link this change with the 

physicochemical parameters that cause this change. 

The results of evaluations with textured cards (quantified 

by the value of the Fourier transform) were compared with 

the values of the degree of crystallinity obtained for the selected 

objects of study. It turned out that the nature of the dependences 

on the concentration of the value of the Fourier transform 

is similar to the pattern of changes in the concentration 

of the degree of crystallinity of the studied objects (Fig. 5).  

Since the degree of crystallinity directly affects the structure 

of the material, we can assume that the value of the Fourier 

transform responds to structural changes.  

5. Conclusions 

In the course of analyzing the methods and algorithms 

for digital processing and filtering of signals during nano-

measurements using a scanning probe microscope, frequency 

methods of image enhancement were studied. It is proposed to use 

a window transform, developed based on the Fourier transform, 

which makes it possible to single out the informative features 

of the signal and reduce the influence of destabilizing factors 

arising from the processing of signals from a scanning gold 

microscope in real conditions. The use of the Fourier transform 

allows both a qualitative analysis of the spectrum and its 

quantitative interpretation. 

Analysis data show that the method not only depends 

on the degree of crystallinity of the polymer but also distinguishes 

materials by their properties. 
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