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Abstract: In this paper we consider the discrete time p -adic dynamic system of the family of rational functions
a 1 - - q q
in the form In order to solve the problem in this study, a number of real non-negative functions were constructed

x2+a’
using the properties of the p -adic norm and some substitutions.The following conclusions were drawn about the
discrete time dynamics of p-adic rational functions under consideration using their results by studying their
dynamics:

This rational function cannot have a unique fixed point, the parameter a has two fixed points at a single value
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of a = ~ and the parameter a has three fixed points at the values of a # —% proved to be. The p -adic
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and indifferent fixed points. Also, basin of attraction, Siegel disks were found and trajectories were studied.
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Introduction canonical heights, used for counting rational points on

In the world many scientific and applied research algebraic vertices over a number field, as in [2].
are reduced to the studies that have focused on In [3, 4] p -adic field have arisen in physics in
discrete-time dynamics of the functions defined in the theory of superstrings, promoting questions about
Archimedean or non-Archimedean fields. p-Adic their dynamics. Also some applications of p -adic
dynamical systems generated by rational functions are dynamical systems to some biological, physical
effective in informatics, digital analysis and systems has been proposed in [5,7,8,3,9].
cryptography, psychodynamics and automation Moreover p -adic dynamical systems are
theory, genetic coding and population management. In effective in computer science (straight line programs),
p-adic analysis, rational functions play an important in  numerical analysis and in simulations
role similar to those of analytical functions in complex (pseudorandom numbers), uniform distribution of
analysis. Therefore, the study of the dynamics of sequences, cryptography (stream ciphers, T -
rational functions in the field of p-adic numbers is one functions), combinatory (Latin squares), automata
of the most important tasks in the theory of dynamical theory and formal languages, genetics. The
systems. monograph [10] contains the corresponding survey

It is known that the analytic functions play (see also [11,12] for the theory and applications of p -
important role in complex analysis. In the p -adic adic dynamical systems).
analysis the rational functions play a similar role to the In [7, 9] the behavior of a p -adic dynamical
analytic functions in complex analysis [1]. Therefore, system f(x) = x™ in the fields of p -adic numbers Q,
naturally one arises a question to study the dynamics and C,, were studied.

of these functions in the p -adic analysis.
The study of p -adic dynamical systems arises in
Diophantine geometry in the constructions of

In [6] the properties of the nonlinear p -adic
dynamic system f(x) =x%+c with a single
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parameter ¢ on the integer p -adic numbers Z,, are
investigated. This dynamic system illustrates possible
brain behaviors during remembering.

In [13], dynamical systems defined by the
functions f, (x) = x™ + q(x), where the perturbation
q(x) is a polynomial whose coefficients have small p
-adic absolute value, was studied.

Preliminaries

p -adic numbers. Let Q be the field of rational
numbers and p is a fixed prime number. The greatest
common divisor of the positive integers n and m is
denoted by (n,m). Every rational number x # 0 can
be represented in the form x = p¥® % where
y(x),neZ, m is a positive integer, (p,n) =
1,(p,m) =1.

The p -adic norm of rational number xis given
by

x| {p Y& forx # 0,
P 0, forx =0.

It has following properties:

1) |x|, = 0and |x|, = 0ifand only if x = 0.

2) |xyl, = Ixlplyly .

3) The strong triangle inequality |x + y|, <
max{|x|,, [¥l,},

3.1)if [x], # |yl, then |x +yl,
max{|x|,, [yl,}

3.2) if [x], = |yl, then |x +y|, < |x],,

This is a non-Atchimedean one.

The completion of Q with respect to p -adic
norm defines the p -adic Q,,.

The algebraic completion of Q, is denoted
by C, and it is called complex p-adic numbers. For
any a € C, and r > 0 denote

U.(a) = {x EC,:|x alp < r}
V.(a) = {x € Cp, —al, < }
S.(a) = {x € (Cp |x al, = r}.
Dynamical system in C,. Recall some known
facts concerning dynamical systems (f,U) in Cp,
where f:U — f(x) € U is an analytic function and
U=U.(a)or C,.
Now let f:U — U be an analytic function.
Denote f" = fo o f.

If f(xo) = xo then x, is called a fixed point. The
set of all fixed points of f is denoted by Fix(f). A
fixed point x, is called an attractor if there exists a
neighborhood U (x,) of x, such that for all points x €
U(x,) it holds 111_{210 f*(x) = x,. If xq is an attractor
then its basin of attraction is

A(xy) = {x € C,: f*(x) - xo,n > 0}

Let x, be a fixed point of a function f(x). Put
A = f"(x,). The point x, is attractive if 0 < |4], <
1, indifferent if |1, = 1.

The ball U,(x,) (contained in V) is said to be a
Siegel disk if each sphere S,(x,),p <7 is an
invariant sphere of f(x), i.e. if xeS,(x,) then all
iterated points f™(x)eS,(x,) for all n =1,2,.... The
union of all Siegel disks with the center at x, is said
to a maximum Siegel disk and denoted by SI(x,).

Main part
In this paper we considered the function f can be
written in the following form:

1
fX)=——, a€C, D
where x # %, , = £V—a.
It is easy to see that for rational function (1) the

equation f(x) = x for fixed points is equivalent to the
equation

x3+ax—1=0. )

Since C,, is algebraic closed the equation (2) may
have three solution with one of the following
relations:

(i) One solution having multiplicity three;

(ii) Two solutions, one of which has multiplicity
two;

(iii) Three distinct solutions.

Theorem 1. For (1) rational functions, the
following holds:

1. (1) rational function cannot have a unique
fixed point.

2. The function (1) has two distinct fixed points

. . 3
ifand only if a = BT
Proof. 1. Assume (1) has a unique fixed point,
say x,. Then the LHS of equation (2) (which is
equivalent to f(x) = x ) can be written as
x3+ax —1=x3—3x,x% + 3xix — x3.
Consequently,
—3x,=0
3x(=a .
x3=1
It is easy to see from the last equations that our
assume is incorrect. Hence, (1) function does not have
a unique fixed point.
2. Denote by x; and x, solution of equation (2),
x, has multiplicity two. Then we have x3 + ax — 1 =
(x — x1)%(x — x,) and
x3+ax—1=x3—(2x; +x)x% + 2xyx, + x3)x

— x2x,.
Hence,
2x1+x, =0
2x1x, + x% = a.
x2x, =1
As are result
1
Xq 7z
x, = V4
3
T
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The function has x, = — == and x, = ¥4 two Casep = 2. _
. . . V2 3 . Now let us calculate the 2-adic norm of ¥; and
fixed points at a single value of a = BT Theorem is ¥%,. We know V3 ¢ Q,. Consider the quadratic

proved.
Corollary. Ifa # —
three distinct fixed points.
We know the rational function (1) has two
distinct fixed points if and only if a = —%. When

3 .
6T then the function (1) has

a=- it is easy to see that (1) function has two

3
3_\/?
distinct fixed points x, = —% and x, = V4

Let f:U - U and g:V — V be two maps. fand
g are said to be topologically conjugate if there exists
a homeomorphism h: U — V such that, he f = ho g.
The homeomorphism h is called a topological
conjugacy. Mappings that are topologically conjugate
are completely equivalent in terms of their dynamics.
For example, if f is topologically conjugate to g via
h, and x, is a fixed point for f, thenh(x,) is fixed
point for g. Indeed, h(xy) = hf (xy) = gh(xy).

Let homeomorphism h:C, — C,, is defined by
x=h(t)=t+x, = t—%. So h™l(x) =x+3iﬁ.
Note that, the function f is topologically conjugate
h™'ofoh We have

?X —3\/_36'
f00) = L ©)
1+V/3
where x # X, , = =5

Thus we study the dynamical system (f,C,)
with f given by (3).Note that, function (3) has two
fixed points x; =0 and x, = % So we have
f'(x;) =1and f'(x;) = 8. Thus, the point x; = 0 is

an indifferent point for (3). For any x € C,,, x # ¥, ,
by simple calculation we get
=7
=
lf Ol = lep—lx_fllplx_u : (4)

T2lp

Denote P ={x€C,aneNU{0}, f*(x)€
(%, %3}

extension of K = Q,(v/3). We can write any element
of Kin the form a + bv3. Nyg, (a +bV3) = a® -
3b2.

11+V3], = \/|NK\QZ(1 + \/§)|2 = /1= 3],
1
=%

We know ¥2 & Q,. Consider the cubic
extension of K = Q,(3/2). We can write any element
of Kin the form a + b¥/2 + c V4.

Ngyg, (a + b2 + cV4)

=a®+ 4c® + 2b3® — 6abc.

1

3 3 3 3

|V2|2= Ni\g, (V2) = |2|2=%-

It follows that |9?1|2 = |%,|, =%, and for

= /2. From this relation and

equality (4) we can deflne the function ¢: 0, +0) -
0, +x) by

T, if r<—
i
- if 1
da, if r=-——,
V4
1
o(r) ={ Var?, 1f—<r< —,
ST
b if !
) I r=z=
V2
1
W, if r>—.
V2

where @ and b some positive numbers with d <

3%/1, and b > 3/2. The graph of the function ¢
is
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Lemmal. If p = 2 and x € S, (x,), then for the

function (3) the following holds
")l = @™ (r)

By this lemma we see that the real dynamical
system compiled from ¢™ is directly related to the
2 —adic dynamical system f*(x), n=>1, x € C,\
P.

The following lemma gives properties to this
real dynamical system.

Lemma 2. The dynamical system generated by
¢@(r) has the following properties:

1 o~
1. Fm((p)-{r 0<r<\/_}u{7_ if &
1
= vz}
1
2. If r>ﬁ, then
lime™(r) = V2.
n—oo
3. If r=3i\/z and a<

then @™(r)=a for all n>1.

Proof. 1. This is the result of a simple analysis of
the equation @ (r) =r.
2. By definition of ¢(r), for r > % we have

1
W’

o(r) = V2, i.e., the function is constant. For r = siﬁ
1 7 3 L
we have ¢ (%) = b > V2 and thus we get ¢ (%) >
1
% Consequently, )
n(_—_\_ {/’E
()
3
\/_ <r<i2
V4r?, ¢'(r) = 23/4r > 2 and

(p<(1 1

lime

n—-oo

Assume now then

o) =

Since ¢'(r) > 2 for r € ( there exists

£
\/_) Hence for n >
ny, we get ™(r) > G—ﬁ and consequently

limo™(r) = V2.

n-w

1 ~ ~
3. Ifr=7Z and a<3i\/z then p(r) =d <

.Moreover, a is a fixed point for the function ¢ (7).

n, € N such that g™ (r) € (

\/—
Thus for n = 1 we obtain ¢™(r) = a.

By Lemma 1 and Lemma 2 we get

Theorem 2. The 2-adic dynamical system
generated by function (3) has the following properties:

1. SI(x;) =U1 (0).

3z

2. x, € S3;;(0). The fixed point x, is

attractive and
A(xz) = C\(VL(0) U P).
3z

3. If x € S 1 (0), then there exists u,

3z
such that f™(x) € S, (0) for anym > 1.
Proof. 1. By Lemma 1 and part 1 of Lemma 2
we see that spheres S,(0), r < % andSs;(0) are

invariant for f. ThusSI(x;) = UL(O). Consequently,
3

In thls case x, will be attractive fixed point,

1
<3z

|21, =

2.
i.e.

If G, = [2V2], =
From Lemma 1 and part 2 of Lemma 2 we have
. n
lmf" ) €530
forall x € S.(0)\P, r > B
Let x € S35;(0). We have

<1

1, -
ﬁ'%)> = (ﬁ, \/§> u{a}.
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|f( ) 3 | 3 |-¥ax -2, invariant, consequently, P N S3(0) = @. Thus % ¢
x)—s=| =|x—5=| -
V21, Val, |x2—Vax - V2, P, hence, 3%5 — y # 0. Since C, is algebraic closed the
1 -
By |—§/Zx—§/§|2=ﬁ and |x —X,|, =
el= |3 =3 _3 _
|x —X%,|, = W, = \/Ewegetlf(x) 7, < |x

| for any x € S3,;(0)\P. Consequently,
2

3z
limf™(x) = x,, forall x € S,(0)\P, > =,
n—oco \/Z

i.e., A(xy) = C,\(V1 (0) UP).
3z
3. If x € S 1 (0) then by (4) we have
3 4

v 1
3
@ = o7 w ¥,
XNy =g ———————< 3=
T a (L)Z V2
oz
Thus, there is p; < 3%/2 such that f™(x) €
Sy, (0) forany m > 1 (see part 1 of Lemma 2). Hence
if x € S1(0), then there exists u; < 31 such that
v Va
fM(x) € 5,,(0) foranym > 1.
We note that

P= OP"' P, = {x €, fh(x) € {3?1,3?2}}.

k=0
Theorem 3. 1.P, #0,forany k =0,1,2,....
2Kk_1
=L (L)=2F =
2. P, € 5, (0), where 1y, = 5 (ﬁ) , k=

0,1,2,....
Proof. 1. Incase k = 0 we have Py = {X;,%,} #
@.

Assume for k = n that P, = {x EC,: f"(x) €
.5} = 0.
Now for k=n+1 to prove P, = {x €

Cp: f™(x) € {il,iz}} # @ we have to show that the

following equation has at least one solution:

f™(x) = ¥, for some i = 1,2.

By our assumption P, # 0, there exists y € B,
such that f™(y) € {¥,, X,}. Now we show that there
exists x such that f(x) = y. We note that the equation
f(x) = y can be written as

(%—y)xz—(w—iﬂy)x+§/§y=0. (5)

Since %, %, € S 1 (0), by the Lemma 1 and the
%z
partl of Lemma 2 we know that S37(0) is an
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equation (5) has two solutions, say x = t;,t,. For x €
{t1, 2} we get

T = 1 (f () = f1) € (%, %)

Hence P,,, # @. Therefore, by induction we get
P, #0,foranyk =0,1,2,....

2. We know that |¥, |, = |%,], = ;ﬁ By (4) and
part2 of Lemma 2 forx € S 1 (0), x # X;, we have

%z
y. n
Limf™(x) € S35(0),
i.e., S1(0)nP ={X,%,} = P,.Denotingr, =
8z
ﬁiﬁ we write P, < S, (0).

For each k = 1,2,3,... we want to find some r;
such that the solution x of f*(x) = ¥;, (for some i =
1,2.) belongs to S, (0), i.e., x € S, (0). By Lemma 1
we should have

¥ (o) -
) = ——

Now if we show that the last equation has unique

solution r;, for each k, then we get

P = {x € i f¥(x) € (&1, %,}} € 5,,(0).
By parts 1 and 3 of Lemma 2 we have % <n<

1 1 1 1
% Moreover, we have 1y, = % and 75 <7k < %for
each k=1,2,.... For such r;, by definition of
Y 1 (r), we have
%z
3
Yo (n) = Var.
oz
Thus ¥ (1) = == has the form
% V2
k
%2 -1 1
Ph () = ——r R =
= 1 2(2k-1) 2
8z
consequently,
2k_17?

- @
1, = [— . —_—
“ V2 V2
Taking 2% — root we obtain unique positive
PLEY

solution: r, = 6%/5 (%) 2
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