
Received:  October 2, 2021.     Revised: November 10, 2021.                                                                                          329 

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022           DOI: 10.22266/ijies2022.0228.30 

 

 
Multiplane Convolutional Neural Network (Mp-CNN) for Alzheimer’s Disease 

Classification 

 

Cucun Very Angkoso1,2          Hapsari Peni Agustin Tjahyaningtijas3          I Ketut Eddy Purnama1,4          

Mauridhi Hery Purnomo1,4* 

 
1Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Indonesia 

2Informatics Department, University of Trunojoyo Madura, Indonesia 
3Department of Electrical Engineering, Universitas Negeri Surabaya, Indonesia 

4Departement of Computer Engineering, UCE AIHeS, Institut Teknologi Sepuluh Nopember 

Surabaya, Indonesia 
*Corresponding author’s Email: cucun.17071@mhs.its.ac.id, hery@ee.its.ac.id 

 

 
Abstract: One of the objectives of medical imaging research is to develop an effective and reliable clinical support 

tool for the early detection of various neurological conditions in patients such as Alzheimer's Disease (AD). 

Classification based on three-dimensional (3D) MRI (Magnetic-Resonance-Imaging) images have shown a good 

performance. However, solving 3D object classification as a 3D object using classical machine learning or deep 

learning is computationally high. 3D images from MRI can be reconstructed into three depth directions: axial, coronal, 

and sagittal. However, the multi-view-based method cannot explore the content of each image slice for all planes in 

3D-MRI. Our study proposes a multiplane method by using three two-dimensional (2D) CNNs to capture 

discriminatory information on all available planes. Our method is a new fusion strategy to deal with the disadvantages 

of shape-based multi-view techniques. Our framework selects three slices: the three largest 3-planes to represent whole 

3D-MRI objects as multi-2DCNN inputs. Extensive experiments have shown that the proposed method can outperform 

the 2DCNN method, which uses only one plane. More importantly, by taking full advantage of 2DCNN, we offer a 

new method for identifying 3D objects that is both easy and efficient. We called this new architecture Multiplane 

Convolutional Neural Network  (Mp-CNN) since it used multiple inputs in its design. We evaluated the proposed 

method using T1-weighted structural MRI data consisting of 500 AD, 500 Mild Cognitive Impairment (MCI), and 500 

Normal Cognition (NC) subjects collected from the MRI database of Alzheimer's Disease Neuroimaging Initiative 

(ADNI). From the performed experiments, the proposed method achieves 93% accuracy for multiclass AD-MCI-NC 

and good precision AD 93%, MCI 91%, and NC 95%, respectively. Our study also demonstrates that the proposed 

multiplane approach outperforms the single-plane approach. 

Keywords: Alzheimer’s disease neuroimaging initiative, Multiplane, Convolutional neural network, Alzheimer’s 

disease. 

 

 

1. Introduction 

Dementia is a weakening of the human brain’s 

ability, characterized by changes in personality, often 

forgetting something, and emotional unpredictability. 

As a common form of dementia, alzheimer’s disease 

(AD) is a neurodegenerative disease that attacks the 

structures of the brain throughout its duration. Brain 

chemicals and structures change during the illness, 

resulting in the death of brain cells and the patient’s 

ability to perform daily tasks [1]. AD must be realized 

as a disease and not a regular occurrence to everyone, 

so research studies for early detection, treatment, and 

medication are necessary. Early treatment of the 

patient is critical for preventing the progression of 

AD by initiating therapy and prevention as soon as 

the disease is identified. Early detection and research 

activities that better understand the disease 

progression and new treatments are expected to lower 

healthcare costs [2, 3]. 

Mild cognitive impairment (MCI) is a 

classification label for patients who have AD but are 
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still in the early stages. However, it should be noted 

that not all patients with MCI at this stage will later 

change their AD. MCI is a stage between normal and 

AD in which a person’s cognitive abilities decrease 

slightly, but they can still do daily tasks. MCI affects 

about 15-20 % of adults over 65, and 30-40 % of MCI 

will convert AD in the next five years [4].  

Machine learning has been widely used for 

medical imaging analysis in recent years. Machine 

learning frameworks evolve rapidly, giving rise to a 

new deep learning technique based on neural 

networks. Deep neural networks (deep learning) are 

recognized as powerful and popular algorithms in 

analyzing medical images. The convolutional neural 

network (CNN) is one of the most popular types of 

neural networks within deep neural networks and 

deep learning, especially when dealing with high-

dimensional data such as images and videos. 

Furthermore, CNN has recently performed well in 

medical image analysis to detect various diseases [5]. 

CNN’s concept is similar to multilayer perceptron 

(MLP). Still, every neuron on CNN is represented in 

two dimensions to store spatial information from 

image data, different from MLP, which considers 

each pixel an independent feature. 

Magnetic resonance imaging (MRI) scan tool is 

commonly used to observe the human brain. 

Magnetic resonance (MR) brain imaging is a non-

invasive approach for quantifying neurological 

diseases such as AD. Even before clinical symptoms 

occur or nerve damage has occurred, MR imaging 

can provide useful indicators. Studies suggest that the 

use of MRI generally carries a lesser health risk than 

other modalities such as computed tomography (CT) 

and positron emission tomography (PET) [6]. In 

addition, MRI is preferred for analyzing the brain’s 

anatomical structure because of its high spatial 

resolution and ability to distinguish soft tissues. 

Image processing technologies and artificial 

intelligence in computer systems can help enhance 

disease detection accuracy and consistency in 

hospitals. Advances in medical imaging analysis 

have resulted in sophisticated tools for diagnosing 

neurodegeneration, and interest in using imaging data 

to diagnose disease increases. Furthermore, 

computers have recently been as accurate as 

radiologists in their assessments [7]. 

Several studies involving various binary and 

multiclass classification methods, feature extraction 

algorithms, and feature selection strategies have been 

conducted to diagnose AD using machine learning 

[8–12]. Many methods and evaluations of machine 

learning techniques indicate that typical machine 

learning approaches are insufficient to deal with 

complex challenges like AD classification [13]. The 

difficulty in classifying AD comes from the fact that 

the features and image patterns in the brain look 

similar, so addressing the problem requires the 

utilization of advanced methods. Deep learning 

networks are known for having various advantages 

over conventional machine learning approaches [14].  

Deep learning requires huge amounts of data to 

perform better than other methods and is very 

expensive to train due to complex data models. 

However, thanks to advances in the graphics 

processing unit (GPU), the benefits of this method 

can now be maximized even with the prevailing 

computational complexity. Deep learning models, 

particularly convolutional neural networks (CNNs), 

have been shown to be effective in medical imaging 

research for organ segmentation and disease 

identification in recent years [5]. 

CNN is a great deep learning algorithm for 

classifying MRI images. Lin et al. [15] used CNN and 

freesurfer to extract the feature. The extracted feature 

then becomes an input for the extreme learning model. 

Although it has implemented CNN for feature 

extraction, this method cannot automatically classify 

the alzheimer’s disease neuroimaging initiative 

(ADNI) dataset. Lee et al. [16] proposed deep CNN 

to classify AD using alexnet architecture using 

multiple slices selected based on the image entropy 

using a histogram. Kumar et al. also used entropy 

slicing to choose the most informative MRI slices 

during training using visual geometry group 16 

(VGG16) [17]. However, the problem appeared when 

the slice was a noisy pixel, then the accuracy of AD 

classification decreased. Using the CNN method, pan 

et al. proposed eight layers of training, validation, and 

testing by taking a set of 3D images from an MR scan 

consisting of three sets of 2D image orientations: 

sagittal, coronal, or axial [18].   

The evaluation to classify AD as in [1] [19] shows 

an extensive process in feature extraction techniques.  

 

Axial Coronal Sagittal  
Figure 1. MRI anatomical plane 
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When using voxelwise feature vectors produced from 

noisy brains MRI for machine learning classification, 

adequate preprocessing is required to reduce feature 

selection faults. Compared to other region-of-

interests (ROIs), such as ventricular volume, the 

cortical and hippocampal thickness contour caused 

by AD shows less variation when considered part of 

the overall brain structure. 

Although it is possible to perform the AD 

classification method by segmenting brain images 

into white matter (WM), cerebrospinal fluid (CSF), 

and gray matter (GM) [20] [21], this method has the 

potential of increasing the computational process and 

the amount of data processed for each plane in the 

MRI. Furthermore, the quality of the chosen features 

during the feature extraction process is highly 

dependent on the image preprocessing due to 

registration errors and noise. Thus, this feature 

engineering stage requires domain expertise. 

Recognition of 3D objects is challenging for 

many reasons, including the high cost of 

computational resources compared to 2D image 

analysis. As a simple comparison, 2D-CNN uses a 2D 

kernel, but 3D-CNN uses a 3D kernel, which results 

in more parameters. This approach increases the 

computational cost required by the CNN as the 

number of parameters evaluated increases. To 

alleviate the high computation cost for 3D images, we 

propose an AD classification approach that 

simultaneously uses multiple 2D images as input 

from the axial, coronal, and sagittal planes with a new 

approach named multiplane convolutional neural 

network (Mp-CNN).  

The image of the human body’s internal tissues 

and organs generated from an MRI scan is a 

collection of 2-dimensional sliced images that form a 

3-dimensional object of the scanned organ. Since the 

disease is in the brain tissue, and the study does not 

focus on the brain’s shape, the shape-based object 

recognition method is unsuitable for our study. 

Fig. 1 shows a 3D image from the MRI that can 

be reconstructed in three depth directions (direction 

of the arrows are the plane direction of the MRI 

image), i.e., axial, coronal, and sagittal planes. These 

three image acquisition planes are used as inputs for 

the AD detection system proposed in this study. 

Furthermore, by analyzing the images as a whole 

plane, it is expected that all information from the 

object of MRI images can be more detailed so that 

better detection accuracy is obtained. 

The contribution of this study is as follows:  

 

i. We propose a new network architecture 

design based on sequential CNN, called 

multiplane convolutional neural network 

(Mp-CNN), that enables simultaneous 

processing of three MRI input planes. 

ii. Propose removing non-brain tissue before 

classification to prevent non-brain areas that 

are irrelevant to the disease from being 

included in the classification process. 

iii. Propose a method of selecting significant 

MRI slices for the system classification input. 

Thus, it is unnecessary to process the entire 

slice for each patient to provide 

computational simplicity.  

iv. Develop a multiclass AD classification 

system based on deep learning techniques on 

AD to help minimize visual inspection and 

manual assessment by medical staff so that 

patient care can be carried out earlier.  

 

The remainder of this study is organized as 

follows: first, we discuss AD, previous studies, and 

related work. Next, we discuss the employed dataset 

description and preprocessing. Further, we present 

our proposed method to answer the existing problem. 

Then, we present the results of the experiments and 

hold an open discussion. Finally, we provide our 

findings as a conclusion in the last section. 

2. Dataset and their preparation 

We used images from ADNI to evaluate our 

proposed method [22]. The ADNI has well-organized 

and processed data freely available on the internet 

(http://www.loni.ucla.edu/ADNI). T1 and T2 scans 

from 1.5T and 3T MRI systems were used to create 

the database images. All participants with sufficient 

follow-up information were chosen from the ADNI-

1 baseline magnetization prepared - rapid gradient 

echo (MP-RAGE) T1-weighted sequence at 1.5T 

tesla, usually 256 x 256 x 170 voxels with a voxel 

size of around 1mm, 1mm, 1.2mm. Our main goal is 

to categorize each person in the database as having 

AD, MCI, or normal cognition (NC). From primary 

T1-weighted MRI data, we randomly chose 449 

subjects, including 500 AD, 500 MCI, and 500 NC 

images data. 

A comprehensive psychiatric evaluation is 

required to diagnose AD, including patient history, a 

mini-mental state examination (MMSE), a clinical 

dementia level (CDR), and a physical and neuro-

biological assessment. 

Table 1 shows the demographic distribution data 

of our ADNI collection, and more detailed 

information on the procedures for the acquisition of 

images can be found on the ADNI website. Next, by 

paying attention to the image size format, i.e., total 

slice, width, and height, all the data images were re- 
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Table 1. Demographic data of ADNI dataset 

Data AD MCI NC 

Number of instances 345 605 991 

Gender 186M/159F 301M/304

F 

646M/345

F 

MMSE +- SD 27.03+-2.60 21.88+-

2.15 

35.22+-

1.24 

 

sampled to 62 x 96 x 96 voxels in size 1 x 1 x 1mm3.  

The axial, coronal, and sagittal planes are the 

three types of orientations an MRI scanner can 

generate. An X-Y plane parallel to the ground 

separates the head from the feet in the X-Y-Z 

coordinate system. A coronal is a front-to-back X-Z 

plane. A Y-Z plane that divides left and right is called 

a sagittal plane. The 3D Cartesian coordinate system 

(three principal planes) utilized for MRI scanning is 

depicted in Fig. 2. By evaluating all three MRI planes, 

we were able to extract more comprehensive 

information from the observed object. Therefore, we 

employed all three planes as input to our suggested 

system. 

As seen in Fig. 3, AD patients’ hippocampus and 

cerebral cortex shrink while the brain’s ventricles 

grow. In addition, many studies have found that as the 

disease progresses, some parts of the brain, i.e., the 

hippocampus, amygdala, entorhinal, and 

parahippocampal cortices of the medial temporal 

lobe (MTL), shrink significantly [23]–[25]. These 

abnormalities in the cerebrum and hippocampus 

impact memory, planning, thinking, and judgment. 

3. The proposed method 

The proposed method includes the following 

steps: collecting data, transformation into three-plane, 

selecting only brain area using BET2 (brain 

extraction tool), selecting the three images with the 

largest area for each plane, and the final step is 

 

 
Figure. 2 The anatomical plane on MRI 

 
(a) 

 
(b) 

 
(c) 

Figure. 3 The MRI’s image samples; (a) normal, (b) MCI, 

(c) AD 

 

multiplane 2DCNN with three outputs fully 

connected (FC) layers AD, MCI and, NC. 

Our proposed approach begins with 

preprocessing the MRI images, as illustrated in Fig. 

4. First, we have to exclude non-brain areas such as 

the skull and neck voxels from the MRI images as 

clinically evidence shows that the disease features 

reside in these areas. Since the abnormality affects 

the brain tissue only thus, we must concentrate solely 

on the brain tissue area. In this study, we employed 

functional magnetic resonance imaging of the brain 

(FMRIB) software library (FSL) to extract the brain 

area. The images were stripped using BET  to remove 

non-brain tissue from the head’s entire image [26] 

(https://fsl.fmrib.ox.ac.uk/).   

The inner and outer skull surfaces and the outer 

scalp surface can also be estimated and affined to 

align all MR images to the template image using 

FMRIB software library (FSL) 5.0. 

Spatial normalization is the next step in our 

preprocessing. Our dataset comprises high-resolution 

(T1-weighting (T1w) MRI images), but we need the 

same settings to examine data from various subjects. 

 
Slice-26                 slice-27                  slice-28 

 
Figure. 4 Sample of the 3-top largest are of MRI image 
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Figure. 5 Block diagram of the proposed method 

 

We can only compare changes in specific voxels in 

specific locations for all patients with corresponding 

brains in the standard spatial domain. We utilized 

FMRIB’s linear image registration tool (FLIRT) 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT) for 

spatial normalization. The images were registered 

with the montreal neurological institute 152 

(MNI152) template data containing 152 registered 

standard images [27] using a linear transformation 

with 7 degrees of freedom (7 DOF). Translation, 

rotation, zoom, and sheer are also used to modify the 

shape and size of the object. As a result of these 

preprocessing steps, we obtained neuroimaging 

informatics technology initiative (NifTI) 4D image 

files with dimensions of 62 x 96 x 96 each. 

3.1 MRI images selection 

It is defined that a single MRI image is referred 

to as a slice. Since an MRI image comprises 

numerous slices, selecting just a few makes the 

computational process easier than processing the 

complete slice on a computer. We can determine the 

influenced slice of the MR image using the Eq. (1) by 

ascending the value of L, and then take one slice 

above it and one slice below it. Thus, we acquired 

three slices on each plane for each observed object. 

 

𝐿(𝑥) =
∑𝑝𝑖

∑ (∑𝑝𝑖)
1
𝑠

                                 (1) 

 

Where, 

L= Percentage of the image area on a spesific slice 

s = Total number of slices 

i = The slice number (i =1 … s) 

p = The non-zero pixel  

 

Algorithm    :  Pseudocode for image slice selection 

Input             : MRI brain images which have already  

                         excluded its non-brain areas 

Output          : The three slices of brain-imaging with  

                         the largest area 

1. for (slice =1) to (slice  endSlice): 

       collectArea   countNonZeroArea(slice) 

2. TotalArea  ∑ (collectArea) 

3. for (slice =1) to (slice  endSlice): 

        precentageArea(slice)  …    

(collectArea(slice)/TotalArea) 

4. LargestArea  find(max(precentageArea(slice)) 

5. Top3Slice     [(SliceNumberLargestArea - 1),  

(SliceNumberLargestArea),  

(SliceNumberLargestArea + 1)] 

6. Output  MRI_Images(Top3Slice) 

3.2 Convolutional neural network 

In general, CNN architecture comprises three layers: 

convolutional, sub-sampling, and FC, each of which 

can be adjusted on many layers. The convolutional 

layer is the initial layer of a CNN, is prone to 

detecting local features taken from input image 

locations. Following that, those layers create a 

linking layer that translates inputted images using 

feature transformations. Unlike the feature 

engineering used in machine learning, CNN, as one- 

of the deep learning methods, uses supervised feature 

learning where the feature extraction process is done 

automatically and adaptively by the model. 

Feature learning is used because feature 

engineering is very limited. After all, each case of 

different data requires a different feature extraction 

method. As a result, the feature engineering method 

cannot generalize to various types of data required in 

object classification in the image. Furthermore, in 

complex data processing, feature extraction is very 
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(a)                                                                                 (b) 

Figure. 6 The proposed architecture (a) for single plane MRI, (b) for multiplane CNN (Mp-CNN) 

 

time-consuming and tends to be less able to describe 

the overall information value of the data. Feature 

learning overcomes this by creating an adaptive 

feature extraction process that can automatically 

adjust the data used. As a result, CNN is noted for its 

advantages in overcoming minor data variations, 

requiring minimal preprocessing, and requiring no 

manual feature extraction outside the CNN system. 

3.3 Multiplane convolutional neural network 

(Mp-CNN) 

We propose a novel architecture based on a 

sequential convolutional neural network layer to 

characterize all the spatial structure information 

simultaneously. In the field of image recognition, this 

sequential convolutional neural network layer has 

had much success. LeNet-5, AlexNet, and VGG16 

are three successful examples of CNN architectures 

for this type.  

Since each MR image has three standard planes, 

axial, coronal, and sagittal, it is important to process 

all of the image data at the same time. Our 

architecture addresses some of the incompleteness of 

earlier research by forcing all accessible visual data 

to be processed simultaneously, whereas existing 

studies have focused on only one plane. Our proposed 

CNN network for a single plane is shown in Fig. 6. 

Each section of our solution has 13 layers, resulting 

in a final architecture consisting of three networks for 

three planes. This network’s input is an MR-images 

that has been preprocessed as described previously. 

Our architecture is based on the common 

architecture in a convolution neural network which 

consists of a layered stack of convolution layers. This 

architecture model is also known as a sequential 

convolutional neural network layer, with well-known 

architectural examples such as LeNet-5, AlexNet, 

and VGG-net. The number of filters arranged 

increases over time; namely, the number of filters in 

the previous layer must be less than the next layer. 

Additionally, all of the filters are 3 x 3 in size. 

The detail of the proposed network consists of 

fourteen layers, including input and output layers. 

The first layer is the input layer, where the input 

image is a hyperplane image of multimodal axial, 

coronal and sagittal. Furthermore, there are three 

layers of convolutional layers followed by the max 

pooling layer.  

The activation function helps in solving complex 

problems by applying non-linear input 

transformations. In the proposed framework, the 

activation function rectified linear unit (ReLU) was 

examined. This ReLU approach is more comparable 

to how biological neurons perform. ReLU was 

chosen because it is a non-linear function with no 

backpropagation errors, unlike the sigmoid function. 

Additionally, for bigger neural networks, the speed of 

constructing models using ReLU is much faster than 

using sigmoids. As shown in Eq. 2, if the input is less 

than 0, the ReLU will produce a 0 output; if the input 

is more than 0, the output will be the same as the input. 

 

ReLu, 𝑓(𝑥) = 𝑚𝑎𝑥(𝑥, 0)  (2) 
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The softmax activation function transforms a list 

of numbers into a list of probabilities, with each 

value’s probability proportional to the vector’s 

relative scale. The softmax not only maps our output 

to a [0, 1] range, but it also maps each output so that 

the entire sum equals 1, making it suitable for 

predicting a multinomial probability distribution. 

Thus, softmax is excellent to be used as an activation 

function for problems requiring class membership on 

more than two class labels. Since our architecture is 

built for multiclass classification, we use softmax as 

an activation function in the output layer. 

 

Softmax, 𝑓(𝑥)𝑗 =
𝑒
𝑥𝑗

∑ 𝑒𝑥𝑘𝑘
1

              (3) 

 

Where,  

x = a vector of inputs to the output layer 

j = a number between 1 and k  

k = represents the number of output class 

 

The activation function, learning rate, loss 

function, optimization function, and sample size all 

have an impact on the model. Therefore, adjustments 

of these parameters are used in the experiments. A 

flatten layer is the eighth layer. It converts the feature 

map into a 1-D vector that should be utilized on the 

FC Layer. Next, the training process begins in order 

to obtain the best CNN model. Finally, an 

optimization function should be applied to minimize 

the loss function and obtain an accurate model.  

In neural networks, the loss function plays an 

important part in the training procedure. It is used to 

determine the discrepancy between the expected and 

actual results. The challenge is to make the loss 

function’s value smaller. The cross-entropy loss 

function was chosen in the proposed framework since 

it performed better than mean squad error (MSE). 

Moreover, since the output is a probability value 

between 0 and 1, the cross-entropy loss is performed 

to analyze the classification model’s performance. As 

a result, we should use this loss function for our  

 

MRI 

Dataset

80%

Training Set

20%

Test Data

Performance 

system

80%

Training Data

20%

Validation Data

Precision, recall, 

specificity, f1-score
 

Figure. 7 The dataset distribution setting 

classifications system. In regression neural networks, 

on the other hand, MSE can be implemented. 

4. Experiment and result 

This section contains comprehensive information 

about model training and parameter setting during 

training as well as the results of our experiments. We 

employed 5-fold cross-validation to evaluate the 

network's performance, which divided the MRI 

dataset into training and testing sets in a 5-fold 

manner. The training and testing sets were split 

80 % : 20 %, as shown in Fig. 7. Each of the four 

partitions was utilized for training the model, with the 

remaining serving as test data. As a result, the model 

was trained five times, and the testing accuracy for 

each training was calculated. The average 

performance was then calculated to obtain a five 

times cross-validation accuracy. 

Table 2 shows the image distribution of the 

dataset we used, the same as the number of processed 

2D images for a single-plane CNN. The total number 

of 2D MRI images used by Mp-CNN, on the other 

hand, is substantially larger. For example, the number 

of images processed by Mp-CNN first, second, and 

third-largest slices is 3x more than the CNN-single 

slice, while the number of images processed by Mp-

CNN (largest slice, +1,-1) is 9x more than CNN-

single slice. This is because CNN (largest slice, +1,-

1) uses MRI as input by taking an image from the 

largest slice, one slice above it, and one slice below 

it. 

The preprocessed images have final axial 

dimensions of 62 x 96 x 96, with 62 denoting the 

number of image slices used as input data. The input 

images are convolutionally calculated and 

downsampled three times, with the number of 

convolutional kernels (3 3) in each convolutional 

layer 16, 32, and 64, respectively, stride 1 and 

padding 1. The maximum pooling approach with a 

size of 2 is used in the down-sampling layer. The 

result is the maximum value of neurons for each 

region, depending on the results of convolution 

calculations. The last Conv-maxpooling network’s 

process is continued by transforming the output to a 

long-vector (flatten) and feeding it into the FC. 

Altogether, we utilized three layers of  FC layers. The 

first FC layer has 4096 neurons, whereas the last FC 

 
Table 2. Dataset distribution for training and testing 

Type Number of MRI 

images 

Training Testing 

NC 500 394 106 

MCI 500 403 97 

AD 500 403 97 

Total 1500 1200 300 



Received:  October 2, 2021.     Revised: November 10, 2021.                                                                                          336 

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022           DOI: 10.22266/ijies2022.0228.30 

 

layer has three class categories that indicate NC, MCI, 

and AD. The dropout value utilized is 0.5, which 

successfully prevents the overfitting phenomena 

caused by the network’s depth. Dropout is a 

technique that successfully terminates the output of 

some neurons based on a set of probabilities. 

We evaluated the accuracy and other model 

performance metrics, including precision, recall or 

sensitivity, and f1-score. The true positive, true-

negative, false-positive, and false-negative values 

must first be determined in order to assess the 

model’s performance. True positive and negative 

values relate to instances where the model properly 

identified positive and negative predictions. On the 

other hand, false positives and negatives are instances 

of the model classifying negative and positive 

predictions into positive and negative classifications.  

 

Accuracy = 
𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙𝐷𝑎𝑡𝑎
 

(4) 

Precision = 
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 
(5) 

Recall 

(Sensitivit

y) 

= 
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

(6) 

Specificity  
𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

(7) 

F1 = 
2𝑥𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑥𝑟𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

(8) 

 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure. 8 The curves of (a) training model accuracy, (b) validation accuracy, (c) training model loss, 

and (d) validation loss 

 

Table 3. The accuracy and precision 

Model Accuracy 
Precision 

NC MCI AD 

CNN  

(Single-plane) 

Axial 0.86 0.92 0.86 0.80 

Coronal 0.85 0.91 0.81 0.81 

Sagittal 0.85 0.89 0.83 0.83 

Mp-CNN 

The largest slice 0.92 0.98 0.89 0.89 

2nd largest slice 0.92 0.99 0.87 0.90 

3rd largest slice 0.91 0.97 0.88 0.87 

Mp-CNN Largest slice, +1,-1 0.93 0.95 0.91 0.93 

TL-Resnet50 
The largest slice 0.88 0.92 0.81 0.90 

Combine largest slice, +1,-1 0.89 0.95 0.81 0.92 
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Table 4. Recall and F1 score 

Model 
Recall F1-score 

NC MCI AD NC MCI AD 

CNN 

(Single-plane) 

Axial 0.97 0.75 0.85 0.94 0.80 0.82 

Coronal 0.95 0.79 0.78 0.93 0.80 0.80 

Sagittal 0.92 0.75 0.89 0.90 0.79 0.86 

Mp-CNN 

The largest slice 0.98 0.89 0.89 0.98 0.89 0.89 

2nd largest slice 0.98 0.89 0.89 0.99 0.88 0.89 

3rd largest slice 0.95 0.84 0.93 0.96 0.86 0.90 

Mp-CNN Largest slice, +1,-1 0.98 0.89 0.92 0.97 0.90 0.92 

TL-Resnet50 
The largest slice 0.94 0.83 0.85 0.93 0.82 0.87 

Combine largest slice, +1,-1 0.95 0.88 0.95 0.95 0.84 0.88 

 

Fig. 4(a) and 4(b) show that training and validation 

accuracy increased significantly until the 20th 

iteration, then reached saturation above 125, with the 

final value remaining stable until the 200th iteration. 

Finally, when the iterations exceed 175, as illustrated 

in Fig. 4(c) and 4(d), the loss in training is saturated. 

Hence, 200 iterations are sufficient to represent the 

model’s performance results.  

In comparison to the results of other experiments, 

the proposed method consistently achieves the 

highest accuracy, precision, recall (sensitivity), and 

f1-score. We can observe from the experimental data 

in Tables 3 and 4 that the proposed model 

outperforms previous experiments that were also 

conducted. The proposed model outperforms single-

plane and the Resnet50 network-based transfer 

learning method. All studies demonstrate that 

employing multiplane can increase model 

performance, and using more data also offers better 

results, as seen when Mp-CNN only utilizes the three 

largest slices, which can be beaten by the 

performance of Mp-CNN when using nine slices, 

each consisting of the largest slices and two slices 

around it 

Discussion 

Many studies have been conducted to aid 

clinicians in defining the characteristics of AD. In 

addition, a digital image-based study using MRI to 

diagnose AD using several advanced machine 

learning methodologies and data modalities has also 

been proposed. Table 5 compares the proposed 

approach to previous studies, where the proposed 

method is more precise since it has higher accuracy 

than the others. These results indicate that, in general, 

CNN is superior to SVM (support vector machine) 

and LR (linear regression) for classification. 

This section explores previous studies on AD 

classifications and discusses our proposed method, 

which is more effective for distinguishing AD, MCI, 

and NC. Pan et al. [18] proposed a classification 

method using ensemble learning CNN, using the 

MRI slice selection method based on reslicing from 

3D images to three 2D images. The preprocessing 

detail of this method is complex with a lengthy 

process, so we propose a method for selecting the 

three slices, i.e., the largest slice, one slice above, and 

below the largest slice so that the preprocessing 

computation could be minimized. Altaf et al.[1], 

Zhang et al. [28] and Minhas et al. [29] proposed a 

machine learning method using SVM or LR as a 

classifier. Lu et al. [30] used multiscale deep neural 

network (MDNN) as an AD classifier, taking the 

multiscale patch-wise metabolism features as input. 

In their study, they used hand-crafted features. 

In contrast, the classification approach followed in 

 
Table 5. The proposed method and prior comparable studies 

Study Dataset Modality Classification Type Algorithm ACC SEN SPE 

[1] ADNI MRI + clinical AD Vs MCI Vs NC SVM 0.61 0.57 0.89 

[28] ADNI ROI MRI MCI Vs NC SVM 0.76 0.86 0.60 

[29] ADNI MRI + clinical sMCI Vs pMCI LR 0.90 0.88 0.92 

[30] ADNI FDG-PET sMCI Vs pMCI MDNN 0.83 0.81 0.83 

[31] ADNI MRI AD Vs NC CNN 0.90 0.01 0.01 

[32] ADNI MRI AD Vs  NC CNN 0.87 0.89 0.85 

Our 

work 
ADNI MRI AD Vs MCI Vs NC Mp-CNN 0.93 0.92 0.93 

FDG-PET: Fludeoxyglucose positron emission tomography, progressive mild cognitive impairment (pMCI), stable mild 

cognitive impairment (sMCI), ACC: Accuracy, SEN: Sensitivity, SPE: Specificity. 
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our study is a deep learning method in which mp-

CNN extracts features automatically. The results of 

the experiments indicate that the proposed mp-CNN-

based architecture can support achieving satisfactory 

diagnostic decisions. 

Furthermore, Lian et al. [31] proposed 

hierarchical fully convolutional network based on a 

3D patch, while Oh et al. [32] proposed a 3DCNN 

method to classify AD. However, both used a 3D 

model, which results in high computational costs. 

Therefore, we propose a 2D approach to reduce the 

computational costs that may occur during the 

classification process. Overall, the results of our 

experiments indicate that the proposed Mp-CNN-

based architecture can effectively support the AD 

classification. 

The scientific contribution of this study will be 

explained in complete detail below to help describe 

our proposed approach. We proposed a multiclass 

AD classification system based on deep learning 

techniques to aid medical professionals in 

minimizing visual inspection and manual assessment, 

allowing them to begin patient care earlier. Our 

architecture allows us to process axial, coronal, and 

sagittal images at the same time. Under the name Mp-

CNN, we present a new network architecture based 

on a sequential type of network. We use all three MRI 

planes as input to the AD recognition system to better 

understand the object instead of just one. Non-brain 

tissue was removed before the classification process 

to ensure that non-brain areas irrelevant to AD 

disease were not included in the classification process. 

This approach is needed for the recognition system to 

focus on disease and avoid being distracted by non-

brain objects' features. Finally, we present an MRI 

slice selection approach for our system's 

classification input. As a result, each MRI's slice does 

not have to be processed as its whole, benefitting in 

computing efficiency.  

Conclusions  

This article presents the multiplane convolutional 

neural network (Mp-CNN), a new deep learning 

network architecture for AD classification that allows 

simultaneous processing of three MRI planes: sagittal, 

coronal, and transverse (axial). Mp-CNN was applied 

to classify patients with Alzheimer’s disease, mild 

cognitive impairment, or normal cognition. 

The following are the three main conclusions to 

be derived from our study. First, the brain damage 

associated with AD is not only noticeable in one 

plane, such as axial, coronal, or sagittal, but also all 

three. The result shows that multiplane recognition 

system outcomes extend beyond single planes. 

Second, the results show that the performance of the 

Mp-CNN delivers good results. Our proposed 

method has a 93 % accuracy for AD-MCI-NC 

classification and precision of AD 93 %, 91 % for 

MCI, and 95 % for NC. Lastly, our study also proves 

that the proposed Mp-CNN method outperforms 

other alternative methods we investigated. 
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