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Abstract: Intermediate storage is one important aspect of parallel permutation flow-shop scheduling (PPFSP). 

Unfortunately, research about optimizing intermediate storage is rare. Most existing studies were conducted to 

minimize or optimize the maximum completion time under various circumstances and constraints. Thus, this work 

aims to minimize intermediate storage with a tolerable maximum completion time level. In this work, the proposed 

model was developed by using an evolutionary algorithm (EA). This model consists of two steps. In the first step, 

the EA is used to determine the tolerable maximum completion time. In the second step, the EA is used to make a 

solution with minimum intermediate storage and a tolerable maximum completion time. This proposed model is then 

compared with the existing non-dominated sorting genetic algorithm (NSGA II), improved efficient genetic 

algorithm (IEGA), cloud-theory based simulated annealing (CTSA), and artificial bee colony algorithm (ABC). 

Based on the simulation results, the proposed model performs better than the IEGA, CTSA, and ABC models. 

Meanwhile, the proposed model is competitive enough compared with the NSGA II. And, the two-step evolutionary 

algorithm (TSEA) produces 26 percent higher maximum intermediate storage, and the improved two-step 

evolutionary algorithm (ITSEA) produces 7 percent higher maximum intermediate storage than the NSGA II. The 

ITSEA produces 16 lower maximum intermediate storage than the TSEA. Both TSEA and ITSEA produce a 21 

percent higher maximum completion time than the NSGA II. 

Keywords: Parallel flow-shop scheduling, Evolutionary algorithm, Intermediate storage. 

 

 

1. Introduction 

It is widely known in manufacturing that there 

are several types of production, such as: job-shop, 

batch, and flow shop. Flow-shop is commonly used 

in factories with a mass production process. The 

problem of scheduling a flow-shop, commonly 

named the flow-shop scheduling problem (FSP), 

isn’t trivial and has been studied widely. 

Flow-shop scheduling is a type of job-shop 

scheduling [1]. It is a processing system in which 

each job's task sequence is fully specified and all 

jobs are processed in the same order at the 

workstations [2]. Flow-shop scheduling determines 

the best order for jobs to be processed on machines 

in the same order, i.e. each job must be handled in 

the same order on machines 1, 2, ..., 𝑚 [1]. 

One of FSP’s attractiveness is the complexity of 

the production process. Thus, FSP has many 

derivatives, such as classical model, permutation, 

non-permutation, parallel, two-machine, hybrid, etc. 

Research on FSP was conducted with specific 

constraints and the processes ran in specific 

circumstances, such as deteriorating jobs [3], 

sequence-dependent setup times [4], multiple 

requirements from customers [5], limited waiting 

times [4], no-idle machines [6], and blocking 

limitations [7]. 

FSP, as an optimization model, is designed to 

solve problems based on its objective. Several 

studies applied a single objective, while other 
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studies conducted multi-objective solutions. The 

majority of FSP research intended to minimize the 

maximum completion time [8]. Other objectives 

include tardiness [9], penalties [5], energy 

consumption [10], and so on.  

Ironically, intermediate storage as an objective 

was rarely investigated, even though it is a crucial 

part of the flow-shop system. In most FSP research, 

intermediate storage was considered as a limitation 

rather than an objective. Several studies assumed 

that intermediate storage is limitless, whereas others 

considered that it is limited [11] or nil [7], resulting 

in the possibility of blocking [12].  

This paper presents a parallel FSP model which 

focuses on minimizing intermediate storage size 

while maintaining a tolerable maximum completion 

time. This model can be called a semi-multi-

objective model. The maximum completion time 

can be viewed as an objective as well as a constrain. 

As a parallel FSP, there are a set number of identical 

production lines [13], and any job can be processed 

on any line of the system. As a permutation FSP, a 

task cannot overlap with other jobs in a sequence 

once it has been arranged [11]. 

The evolutionary algorithm [14] is a well-known 

metaheuristic algorithm that has been widely used to 

tackle combinatorial problems. It has proven to be a 

generic, robust and powerful search mechanism [15]. 

Thus, this model is developed based on an 

evolutionary algorithm. Other metaheuristic 

algorithms that have been widely used in solving the 

FSP are genetic algorithm [3], simulated annealing 

[16], tabu search [17], particle swarm optimization 

[9], chaotic-student-psychology based optimization 

[18], etc. 

In this paper, a novel two-step EA solution is 

proposed. This proposed model consists of two 

serial steps. In the first step, the algorithm focuses 

on determining the tolerable maximum completion 

time level. In the second step, the algorithm focuses 

on finding the solution that its intermediate storage 

is minimum.  

The contribution of this work is as follows: 

(1) This work promotes a novel serial 

evolutionary-algorithm-based model to solve the 

parallel permutation flow-shop scheduling problem. 

(2) This work proposes a semi-multi-objective 

problem by concerning the intermediate storage with 

a tolerable maximum completion time, rather than a 

pure multi-objective problem where the intermediate 

storage and maximum completion time are 

concerned at the same time. 

The rest of the paper is organized as follows. 

The second section discusses the literature on 

permutation FSP, particularly parallel permutation 

FSP. In the third section, the proposed two-step EA 

model is explained. The fourth section explains the 

simulation results that compare the proposed 

model's performance to that of existing models. The 

fifth section delves deeper into the proposed model's 

analysis, findings, and limits. The conclusion relates 

to the main result, findings, and the research 

purpose; and the implications and future research 

potential are explained in the sixth section. 

2. Literature review 

The literature on FSP is discussed in this section. 

Based on [3], the basic process in a flow-shop 

system is as follows. There are a certain number of 

jobs. A production process is divided into several 

stages serially. In a classic FSP, there is a single 

production line that is divided into stages. There is a 

machine in each stage. A job must pass through all 

stages completely. A job enters a stage once [19]. 

On the other hand, a stage (machine) can only do a 

job at one time. A job can move to the next stage if 

it meets two conditions. This job has finished the 

current stage and the machine in the next stage is 

available. When this job has finished its current 

stage but the machine in the next stage has not been 

available yet, this job must be stored in the 

intermediate storage. Otherwise, this job is stuck in 

this current job and blocks other jobs from 

occupying the machine in the current stage [12]. 

This classic FSP is divided into two derivatives: 

the permutation FSP and the non-permutation FSP. 

In the permutation FSP, once a job sequence is 

arranged, this sequence does not change until all 

jobs in the sequence are processed completely [20]. 

This model applies to the first-in-first-out (FIFO) 

mechanism [13]. It means jobs overlapping are not 

permitted. This process is simple. Unfortunately, 

this permutation FSP may cause longer total 

completion time. Meanwhile, in the non-

permutation FSP, job overlapping is permitted [11]. 

The goal of non-permutation FSP is to reduce total 

completion time. A job with a shorter processing 

time can be processed earlier than other jobs in front 

of it in the sequence.  

There are plenty of studies in the FSP. Several of 

the latest classic FSPs are as follows. Xuan, Zhang, 

and Li [3] proposed model for a flexible FSP. Rather 

than a fixed processing time, in the real world, the 

processing time may be longer due to several 

problems: failure, machine, or workers [3]. This 

problem is known as deteriorating jobs. They 

formulated this problem by using mixed integer 

linear programming (MILP). This work aimed to 

minimize total weighted completion time. They used 
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a combined artificial bee colony algorithm and a 

genetic algorithm to solve this problem. 

Hsu, Lin, Duan, Liao, Wu, and Chen [16] 

proposed incorporating scenario-dependent 

processing times into a two-machine flow-shop 

environment in order to reduce total completion 

time. They first derive a lower bound and two 

optimality properties to improve the branch-and-

bound method's searching efficiency. Then, using a 

pairwise interchange mechanism, they offer 12 basic 

heuristics and their corresponding counterparts. 

Furthermore, they presented 12 simple heuristics as 

the 12 starting seeds for designing 12 cloud theory-

based simulated annealing (CSA) variants.  

Lee [4] proposed a model for two-machine FSP. 

The first constraint is waiting time. The second 

constraint is setup time. This work aimed to 

minimize tardiness. The problem was formulated by 

using MILP. This work used genetic algorithms to 

solve the problem. Several assumptions in this work 

were as follows. The information about the 

processing time, sequence-dependent setup time, 

limited waiting time, and due date are known in 

advance. 

Assia, El-Abbassi, El-Barkany, Darcherif, and 

El-Biyaali. [10] proposed a green scheduling model 

for two-machine permutation FSP. This work 

integrated energy consumption and maintenance 

scheduling as constraints. This work aimed to 

minimize total completion time and energy 

consumption. This problem was formulated by using 

MILP. A machine can only process a job at one time, 

and a job can only be processed by one machine at 

one time. 

The next derivative in FSP is parallel FSP. It is a 

system that consists of several parallel identical 

processing units or identical lines [9]. Jobs are 

distributed into production lines. A parallel FSP can 

be permutation or non-permutation. In its classic 

mode, once a job is allocated to a certain line, it will 

stay on this line until its process finishes completely. 

It cannot jump to the other line during the 

processing time, although the machine in the next 

stage is available or it can be produced better 

(faster) in the other line for the next stage. Fig. 1 

illustrates the parallel FSP. There is plenty of 

research in parallel with FSP.  

Here are a few of the most recent ones. Sun and 

Qi [5] conducted research in the parallel FSP where 

there are multiple requirements for every job. This 

was about a customized job due to a customer's 

request. Based on this customization, stages that 

must be passed by every job might be different from 

each other. Jobs of the same type would pass 

through the same number of stages. This work 
 

 
Figure. 1 Parallel FSP illustration 

 

aimed to minimize the penalty due to lateness and 

the maximum completion time. The authors 

proposed a combination of ant colony optimization 

and simulated annealing algorithms to solve the 

problem. The proposed model combines differential 

evolution and local search algorithms. In this work, 

interruptions were not allowed, and the arrival time 

of all jobs was known in advance. 

Geng, Ye, Cao, and Liu. [19] conducted parallel 

FSP research where re-entrance mechanism was 

possible. Rather than in classic FSP, where a job 

enters a stage once, a job might enter the same stage 

more than once. This condition occurs in certain 

industries. Energy consumption has become an 

important aspect. This work aimed to minimize 

maximum completion time, maximum tardiness, and 

idle energy consumption. The stop-and-go strategy 

was proposed. A machine will be turned off when it 

is idle to save energy. This problem was formulated 

by using MILP. Machine failure and machine 

adjustment were excluded from the model. They 

used a multi-verse optimizer algorithm, one kind of 

heuristic technique, to solve the problem. 

Ribas & Companys [7] developed a model for 

parallel FSP that allowed blocking mechanism. This 

work aimed to minimize the maximum completion 

time. The blocking mechanism occurs due to the 

absence of the intermediate storage that plays as a 

buffer for the job during the inter-stage condition. 

Because there was no intermediate storage, a job 

must wait to proceed to the next stage while the 

adjacent machine is still working. Several heuristic 

methods were compared: Palmer heuristic (PAL), 

shortest processing time (SPT), largest processing 

time (LPT), and trapezium (TRA). 

The other type of parallel FSP is the distributed 

FSP. There are a certain number of jobs that are 

distributed to a certain number of factories. Each 

factory is identical, in the context that it has the 

same set of the same number of machines [26]. 

Several studies on distributed FSP are as follows. 

Fernandez-Viagas & Framinan [27] proposed the 

bounded-search-integrated greedy algorithm to solve  
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Table 1. Previous works in flow-shop scheduling 

Work Objective 

Parameters 

Method 

[8] make-span MILP and 12 

heuristic methods 

[21] make-span scatter search (SS) 

[19] make-span, tardiness, 

and idle energy 

consumption. 

multi-objective 

multi-verse 

optimizer 

(IMOMVO) 

[22] make-span iterated greedy 

algorithm 

[3] total weighted 

completion time 

artificial bee colony 

algorithm 

[10] make-span, a 

measure of service 

level and total energy 

consumption 

MILP 

[16] total completion time. cloud theory-based 

simulated annealing 

(CSA) 

[23] total actual flow time MILP 

[24] total weighted 

tardiness 

constructive 

heuristics and 

branch-and-bound 

algorithm (B&B) 

[4] total tardiness GA 

[5] make-span and the 

cost of delay 

differential 

evolution (DE) and 

local search (LS) 

[12] make-span MILP and iterated 

greedy algorithm 

[25] total completion time IEGA 

[9] total weighted 

tardiness, total 

operation time, and 

total cost of the 

company’s 

reputational damage 

MILP, MOPSO, 

NSGA II 

[7] maximum completion 

time of jobs 

constructive 

heuristics 

 

the distributed permutation FSP. Naderi & Ruiz [8] 

compared 14 heuristic-based dispatching methods to 

solve problems in distributed permutation FSP. 

Their work aimed to minimize the make-span. 

Overall, the summary of the latest studies in FSP is 

shown in Table 1. 

Table 1 is organized based on chronological 

order. It can be seen that parallel FSP is still an 

interesting issue to be discussed. Based on our 

literature review, we decided to explore more about 

parallel permutation flow-shop scheduling (PPFSP). 

Similar to the existing studies, we minimize or 

optimize the maximum completion time or make-

span with various circumstances and constraints. 

However, we chose to specialize in optimizing the 

intermediates, as research in this field is rare. Most 

of the existing research uses the genetic algorithm 

variant where GA is one of evolutionary 

computations. We chose another type of 

evolutionary computation, named the evolutionary 

algorithm (EA). Our proposed model will be 

compared with these existing ones. 

3. Model 

As a parallel permutation FSP, the system 

consists of several shops. Each shop consists of a 

production line with a certain number of stages. In 

every stage, there is a machine or set of machines. 

There is a set of jobs that enter the system to be 

produced in any shop. This model is developed 

based on several assumptions as followed: 

• The jobs are homogeneous. It means the 

number of stages that must be passed by every 

job is same [5]. 

• Every job can be produced by any shop in the 

system [8]. 

• Pre-emption is not allowed [6]. 

• The jobs are independent [19]. 

• As a parallel FSP, once a sequence is 

determined, a job cannot overlap with other 

jobs in a sequence during the production 

process [21]. 

• All jobs are ready at time zero [4]. 

• All machines are ready at time zero. 

• The processing time of every job in every stage 

in every machine is known in advance [4]. 

• The setup time is zero. It means that once a job 

finishes in a stage and the machine in the next 

stage is available, this job can move to the next 

stage immediately. 

• Every shop has intermediate storage so that 

once a job finishes in a stage and the machine 

in the next stage is still unavailable, this job is 

transferred to the intermediate storage so that 

this job does not blocks the next job in the 

sequence. 

• The intermediate storage has unlimited capacity. 

We use several notations in order to model our 

problems. The notations that are used in this work 

are as followed: 

 

fth : threshold factor 

g : stage 

G : set of stages in a processing line 

j : job 

J : set of jobs 

jsm : selected job for mutation 

l : solution 

L : set of solutions 

n : number of a set 
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nv : intermediate storage 

o : offspring 

ps : shop of the job 

pe : position of a job in a sequence 

q : sequence 

Q : set of sequence in a shop 

s : shop 

S : set of shops 

ssm : selected shop for mutation 

ta : start time of a job in a stage 

tacl : the all-time lowest maximum 

completion time during iteration 

tach : the all-time highest make-span during 

iteration 

tc : maximum completion time of a shop 

tcl : the lowest maximum completion time 

of a solution  

tch : the highest maximum completion time 

of a solution 

te : end time of a job in a stage 

ti : iteration time 

Ti : set of iteration time 

tp : processing time 

Tp : set of processing time 

ttrc : the maximum completion time 

threshold 

tth : threshold of the tolerable maximum 

completion time 

v : the maximum intermediate storage in a 

solution 

val : the all-time lowest maximum 

intermediate storage 

vh : the highest maximum intermediate 

storage among solutions 

vl : the lowest maximum intermediate 

storage among solutions 

 

In this work, the proposed model to solve the 

parallel permutation FSP is developed based on the 

evolutionary algorithm (EA). EA is a popular 

metaheuristic algorithm. This condition is similar to 

the parallel permutation FSP, which is also a 

combinatorial problem. EA is a population-based 

solution that is developed based on the evolution 

system [28]. The better solution is found by creating 

new generations, mutations, and crossovers. 

During iterations, new generations are generated 

by the fittest or the best solution from the current 

generation, and the worst current solution is 

replaced by this offspring [29]. The illustration of 

basic EA is shown in Fig. 2. The basic algorithm of 

the EA is as follows [28]. 

1. In the beginning, certain number of solutions 

are generated randomly. The number of 

solutions represents the population size. 

 
Figure. 2 Evolutionary algorithm illustration 

 
2. The fitness value of every solution is calculated 

by using a pre-determined fitness function. 

3. Based on this fitness function, the best solution 

and the worst solution are determined. 

4. The worst solution is replaced by the best 

solution as the offspring. 

5. Mutation is conducted to the offspring so that 

the offspring becomes new solution. 

6. Step 2 until step 5 is repeated in every iteration. 

7. The iteration stops if one of these two 

conditions occurs. First, the maximum iteration 

is reached. Second, the targeted fitness value is 

reached. 

8. The quantity of all jobs is homogeneous. 

A solution represents a parallel permutation FSP 

that consists of a number of shops and a number of 

jobs in every shop. This solution is represented as a 

two-dimensional array. The first index of the array 

represents the shop. The second index of the array 

represents the job order in a shop. Each cell 

represents a job. This array is illustrated in Fig. 4. 

For example, in Fig. 3, a population consists of 12 

jobs and 3 shops. There are 4 jobs in every shop. 

In this work, the mutation process occurs by 

exchanging jobs in a selected shop with another job 

in another selected shop. This mutation occurs in a 

solution. This mutation process is formalized by 

using Eqs. (1) and (2). This mutation is illustrated in 

Fig. 4. Eq. (1) shows that the selected shop that its 

job will mutate is chosen at random and follows a  

 

 
Figure. 3 Array design of a solution 
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Figure. 4 Mutation process 

 

uniform distribution. Eq. (2) shows that the position 

of a job in a selected shop that mutates is randomly 

determined and follows a uniform distribution. 
 

𝑠𝑠𝑚 = 𝑈(1, 𝑛(𝑆))                        (1) 

 

𝑝(𝑗𝑠𝑚) = 𝑈(1, 𝑛(𝐽𝑠ℎ))                    (2) 

 

In this work, two models are proposed: Two-

Step Evolutionary Algorithm (TSEA) and Improved 

Two-Step Evolutionary Algorithm (ITSEA). 

Between these two models, the difference lies in the 

number of parents that will produce offspring in 

every iteration. In the TSEA, only one solution 

becomes parent. In the ITSEA, half of the solutions 

become parents. This idea is inspired by the NSGA 

II where the parents are half of the sorted population 

[30]. In every model, the proposed model consists of 

two serial EA steps. The difference between TSEA 

and ITSEA occurs only in the second step. 

In the first step, the TSEA process is conducted 

to find the lowest and the highest maximum 

completion time. These variables are used to 

determine the maximum completion time threshold 

that will be used in the second step. The algorithm 

for the first step is as follows. 

1. In the beginning, certain number of solutions 

are generated randomly. 

2. The maximum completion time of every 

solution is calculated. 

3. The lowest and the highest maximum 

completion time is calculated. 

4. The all-time lowest and all-time highest 

maximum completion time is updated.  

5. The offspring is generated by replacing the 

solution with the highest maximum 

completion time with the solution with the 

lowest maximum completion time. 

6. This offspring mutates. 

7. Steps 2 to 6 are repeated. 

8. Iteration stops when the maximum iteration is 

reached. 

The algorithm process is formalized by using 

Eqs. (3) to (13). 

 

𝑝𝑠(𝑗) = 𝑈(1, 𝑛(𝑆)), 𝑡 = 0                 (3) 

 

𝑝𝑞(𝑗) = 𝑈(1, 𝑛(𝑄)), 𝑡 = 0                (4) 

 

𝑡𝑠𝑐(𝑠, 𝑡𝑖) = 𝑡𝑒(𝑗, 𝑔), 𝑝𝑞(𝑗) = 𝑛(𝑄) ∧ 𝑝𝑔 = 𝑛(𝐺) (5) 

 

𝑡𝑐(𝑙, 𝑡𝑖) = 𝑚𝑎𝑥(𝑡𝑠𝑐(𝑠, 𝑡𝑖)), 𝑠 ∈ 𝑆𝑙          (6) 

 

𝑡𝑐𝑙(𝑡𝑖) = 𝑚𝑖𝑛(𝑡𝑐(𝑙, 𝑡𝑖)), 𝑙 ∈ 𝐿               (7) 

 

𝑡𝑐ℎ(𝑡𝑖) = 𝑚𝑎𝑥(𝑡𝑐(𝑙, 𝑡𝑖)), 𝑙 ∈ 𝐿              (8) 

 

𝑡𝑎𝑐𝑙 = 𝑚𝑖𝑛(𝑡𝑐𝑙(𝑡𝑖)), 𝑡𝑖 ∈ 𝑇𝑖                 (9) 

 

𝑡𝑎𝑐ℎ = 𝑚𝑎𝑥(𝑡𝑐ℎ(𝑡𝑖)), 𝑡𝑖 ∈ 𝑇𝑖             (10) 

 

𝑜(𝑡𝑖) = 𝑙, 𝑡𝑐(𝑙, 𝑡𝑖) = 𝑡𝑐𝑙(𝑡𝑖)               (11) 

 

𝑝𝑙(𝑜(𝑡𝑖)) = 𝑝𝑙(𝑙), 𝑡𝑐(𝑙, 𝑡𝑖) = 𝑡𝑐ℎ(𝑡𝑖)        (12) 

 

𝑡𝑡ℎ = 𝑡𝑎𝑐𝑙 + (𝑓𝑡ℎ. (𝑡𝑎𝑐ℎ − 𝑡𝑎𝑐𝑙))          (13) 

 

Eq. (3) shows that in the beginning, a job is 

distributed randomly among shops in a solution. It 

follows a uniform distribution. Eq. (4) shows that in 

the beginning, the position of a job in the sequence 

is randomly distributed. It follows a uniform 

distribution. Eq. (5) shows that the completion time 

in a shop is the last stage end time of the last job in 

the shop. Eq. (6) shows that the maximum 

completion time of a solution is the highest 

completion time among shops in this solution. Eq. 

(7) shows that the lowest maximum completion time 

is the lowest maximum completion time among 

solutions in an iteration. Eq. (8) shows that the 

highest maximum completion time is the highest 

maximum completion time among solutions in an 

iteration. Eq. (9) shows that the all-time lowest 

maximum completion time is the lowest maximum 

completion time during the iteration. Eq. (10) shows 

that the all-time highest completion time is the 

highest completion time during the iteration. Eq. 

(11) shows that the offspring is the solution with the 

lowest maximum completion time. Eq. (12) shows 

that the offspring will replace the solution with the 

highest maximum completion time. Eq. (13) shows 

that the maximum completion time threshold is 

determined by the range between the all-time lowest 

maximum completion time and the all-time highest 
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maximum completion time, and it is multiplied by 

the threshold factor. 

In the second step, the TSEA process is 

conducted to find the lowest intermediate storage 

with the tolerable maximum completion time. The 

algorithm for the second step is as follows. 

1. In the beginning, certain number of solutions 

are generated randomly.  

2. The maximum completion time of every 

solution is calculated. The lowest and the 

highest intermediate storage is calculated.  

3. If the solution that its maximum intermediate 

storage is the lowest among other solutions in 

this iteration and its maximum completion 

time is equal or below the maximum 

completion time threshold, then the all-time 

lowest maximum intermediate storage is 

updated. 

4. The lowest and the highest maximum 

intermediate storage is calculated. 

5. The offspring is generated by replacing the 

solution with the highest maximum 

intermediate storage with the solution with the 

lowest maximum completion time. 

6. This offspring mutates. 

7. Steps 2 to 6 are repeated.  

8. Iteration stops when the maximum iteration is 

reached. 

The algorithm process is formalized by using 

Eqs. (14) to (21). 

 

𝑛𝑣(𝑠, 𝑡𝑝, 𝑡𝑖) = ∑ 𝑗, (𝑡𝑒(𝑗, 𝑔) < 𝑡𝑝 <∀𝑗,𝑝𝑠(𝑗)=𝑠

𝑡𝑎(𝑗, 𝑔 + 1) ∧ 𝑔 < 𝑛(𝐺))  

(14) 

 

𝑣(𝑙, 𝑡𝑖) = 𝑚𝑎𝑥 (𝑛𝑣(𝑠, 𝑡𝑝, 𝑡𝑖)) , 𝑠 ∈ 𝑆𝑙 ∧ 𝑡𝑝 ∈ 𝑇𝑝(𝑡𝑖) 

(15) 

 

𝑣ℎ(𝑡𝑖) = 𝑚𝑎𝑥(𝑣(𝑙, 𝑡𝑖)), 𝑙 ∈ 𝐿              (16) 

 

𝑣𝑙(𝑡𝑖) = 𝑚𝑖𝑛(𝑣(𝑙, 𝑡𝑖)), 𝑙 ∈ 𝐿               (17) 

 

𝑜(𝑡𝑖) = 𝑙, 𝑣(𝑙, 𝑡𝑖) = 𝑣𝑙(𝑡𝑖)                 (18) 

 

𝑝𝑙(𝑜(𝑡𝑖)) = 𝑝𝑙(𝑙), 𝑣(𝑙, 𝑡𝑖) = 𝑣ℎ(𝑡𝑖)          (19) 

 

𝑣𝑎𝑙(𝑡𝑖) = 𝑣𝑙(𝑡𝑖), 𝑡𝑖 = 1                     (20) 

 

𝑣𝑎𝑙(𝑡𝑖) = {
𝑣𝑎𝑙(𝑡𝑖 − 1), 𝑣𝑎𝑙(𝑡𝑖 − 1) ≤ 𝑣𝑙(𝑡𝑖)

𝑣𝑙(𝑡𝑖), 𝑣𝑎𝑙(𝑡𝑖 − 1) > 𝑣𝑙(𝑡𝑖)
, 𝑡𝑖 > 1 

(21) 

 

Eq. (14) shows that the intermediate storage is 

detected by calculating the number of jobs which 

have idle time at a certain processing time. Eq. (15) 

shows that the maximum intermediate storage of a 

solution is calculated by finding the maximum 

number of shops that need intermediate storage at a 

certain processing time along the processing time. 

Eq. (16) shows that the highest maximum 

intermediate storage is the highest maximum 

intermediate storage among the solutions in an 

iteration time. Eq. (17) shows that the lowest 

maximum intermediate storage is the lowest 

maximum intermediate storage among the solutions 

in an iteration time. Eq. (18) shows that the 

offspring is generated from the solution with the 

lowest maximum intermediate storage. Eq. (19) 

shows that the offspring replaces the solution with 

the highest maximum intermediate storage. Eq. (20) 

shows that in the beginning, the all-time lowest 

maximum intermediate storage is the lowest 

maximum intermediate storage. Eq. (21) shows that 

the all-time lowest maximum intermediate storage is 

updated when the current lowest maximum 

intermediate storage is lower than the previous 

lowest maximum intermediate storage for iteration 

time is more than 1. 

In the second step of the ITSEA, as mentioned 

above, in every iteration, the number of parents is 

half of the population. The algorithm of the ITSEA 

is as follows. 

1. In the beginning, certain number of solutions 

are generated randomly.  

2. The maximum completion time of every 

solution is calculated.  

3. The solutions are then sorted ascendingly based 

on the maximum intermediate storage. 

4. If the solution that its maximum intermediate 

storage is the lowest among other solutions in 

this iteration and its maximum completion time 

is equal or below the maximum completion 

time threshold, then the all-time lowest 

maximum intermediate storage is updated. 

5. Half best of the population is selected as 

parents. 

6. These selected parents then become offspring 

after mutated. 

7. These offspring then replace the half worst of 

the population. 

8. Steps 2 to 6 are repeated.  

9. Iteration stops when the maximum iteration is 

reached. 

To see performance of our proposed model, we 

are going to compare our model with the four 

techniques: NSGA II [9], IEGA [25], CTSA [16], 

and ABC [3]. These four comparing algorithms 
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were used in several latest FSP studies as they are 

explained in the literature review. 

4. Simulation and result 

This model is then implemented into simulation 

to evaluate its performance. In this simulation, the 

proposed model is then compared with the existing 

NSGA II [9], IEGA [25], CTSA [16], and ABC [3]. 

In this simulation, the objectives of the NSGA II are 

modified so that the objectives are maximum 

completion time and maximum intermediate storage. 

The goal is to minimize these two parameters. 

Meanwhile, the IEGA [25], CTSA [16], and ABC 

[3] is a single-objective model whose objective is to 

minimize the maximum completion time. The 

CTSA [16] and ABC [3] are chosen due to their 

feature in avoiding local optimal trap. In this work, 

two simulations were conducted. 

In the first simulation, the adjusted variables are 

similar to NSGA II [9]. There are 40 jobs, 5 shops, 

and 4 stages. The average processing time in every 

stage is 5 time-units. It is randomly generated and 

follows normal distribution. The population size is 

20. In NSGA II, the parent population size is 10 

because the total population is doubled [30]. In 

every simulation session, there are 200 iterations. 

The maximum completion time threshold is 0.5. In 

this simulation, there are two observed parameters: 

maximum intermediate storage and maximum 

completion time. The simulation result is shown in 

Fig. 5. 

In Fig. 5a, the NSGA II [9] becomes the best 

solution for producing the lowest maximum 

intermediate storage. Meanwhile, the CTSA [16] 

becomes the worst solution. Although the proposed 

models produce higher maximum intermediate 

storage rather than the NSGA II, their value is 

competitive enough compared with the IEGA [25], 

CTSA [16], and ABC [3]. The IEGA and ABC 

produces higher maximum temporary storage rather 

than the proposed model, but still lower than the 

CTSA. By comparing the proposed models, the 

ITSEA produces lower maximum intermediate 

storage than the TSEA. The TSEA produces 26 

percent higher maximum intermediate storage than 

the NSGA II. The ITSEA produces 7 percent higher 

maximum intermediate storage than the NSGA II. 

The TSEA produces 57 percent lower maximum 

intermediate storage than the CTSA [16]. 

Meanwhile, the ITSEA produces 61 percent lower 

maximum intermediate storage than the CTSA [16]. 

In Fig. 5b, the NSGA II becomes the best solution 

for producing the lowest maximum completion time. 

Meanwhile, ITSEA becomes the worst solution. 
 

(a) 

(b) 
Figure. 5 Model performance comparison: (a) maximum 

temporary storage and (b) maximum completion time 
 

The TSEA produces a 21 percent, 17 percent, 3 

percent, and 9 percent higher maximum completion 

time than the NSGA II [19], IEGA [25], CTSA [16], 

and ABC [3] consecutively.  

In the second simulation, the relationship 

between the threshold factor and the observed 

parameters is conducted. The reason why this 

simulation was conducted is because in the proposed 

model, the system may not be able to produce a 

solution because after the maximum iteration is 

reached, the system still cannot find a solution 

where the maximum completion time is under the 

threshold. The observed factors include maximum 

intermediate storage, maximum completion time, 

and success percentage. The success percentage is 

the percentage between the number of simulations 

that produce solutions and the total number of 
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solutions. The adjusted parameters, which are jobs, 

shops, stages, processing times, and population size, 

are the same as in the first simulation. The evaluated 

models in this simulation are TSEA and ITSEA. The 

result is shown in Fig. 6. 

Fig. 6 shows that there is a relationship between 

the threshold factor and the observed parameters. 

Fig. 6a shows that the increase in the threshold 

factor makes the maximum intermediate storage 

decrease. It occurs in both TSEA and ITSEA. In all 

threshold factor values, the ITSEA produces lower 

maximum intermediate storage than the TSEA. Fig. 

6b shows that the increase in the threshold factor 

makes the maximum completion time increase. It 

occurs in both TSEA and ITSEA. The maximum 

completion time of both models is almost equal in 

all threshold factor values. Fig. 6c shows that the 

increase in the threshold factor makes the success 

percentage increase when the threshold factor is 

from 0.3 to 0.7. And after that, the success 

percentage is stagnant because the success 

percentage is almost or equal to 100 percent. It 

occurs in both models. The TSEA and ITSEA 

produce similar value and trend in success 

percentage in all threshold factor values. 

5. Discussion 

There are several findings in this work. The 

proposed models, both TSEA and ITSEA, are able 

to achieve the objective of this work, which is to 

minimize the maximum intermediate storage with a 

tolerable maximum completion time. Both models 

are better than the single objective models, the 

IEGA, CTSA, and ABC models, whose objective is 

to minimize maximum completion time. These 

proposed models are competitive enough compared 

with the multi-objective solution. Meanwhile, the 

proposed models are much better than the single 

objective models (IEGA [25], CTSA [16], and ABC 

[3]), which represents the majority of existing 

studies in flow-shop scheduling which most of their 

objectives are to minimize the maximum completion 

time.  

Unfortunately, although the proposed model can 

produce solutions at a tolerable maximum 

completion time, its maximum completion time is 

still higher than all comparing previous models 

(IEGA, NSGA II, CTSA, and ABC). Among these 

previous models, the NSGA II becomes the best 

solution in both parameters due to its 

competitiveness in producing pareto-optimal 

solutions [30]. This result, where the NSGA II 

creates the best in both (all) parameters, while the 

proposed models can compete in minimizing 
 

 
(a) 

 
(b) 

 
(c) 

Figure. 6 Relation between threshold factor and the 

observed parameters: (a) maximum temporary storage, 

(b) maximum completion time, and (c) success 

percentage 

 

maximum intermediate storage but give up on 

maximum completion time, also shows the concept 

difference between both models. In NSGA II, as a 

multi-objective solution, it tries to minimize all 

parameters by finding the most dominant solution 

[30]. On the other hand, the proposed models, as 
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semi-multi-objective solutions, try to minimize 

maximum intermediate storage while trying to keep 

the maximum completion time low within the 

tolerable range. This result also proves that the 

IEGA, CTSA, and ABC, as a single-objective 

solution, focus on its single objective while ignoring 

other parameters [9]. 

Our proposed model has a weakness that there is 

a probability where the model fails to find a solution 

with a tolerable maximum completion time 

threshold. This probability is high when the 

threshold factor is low. It is because when the 

tolerable maximum completion time is low, finding 

an accepted solution becomes more difficult, 

although its maximum completion time is better. On 

the other hand, finding an accepted solution 

becomes easier when the threshold is higher, 

although it makes the production maximum 

completion time increase. 

The ITSEA performs better than the TSEA, 

especially in producing low maximum intermediate 

storage. The difference between the TSEA and 

ITSEA is in the number of offspring that are 

produced in every iteration. Based on this, it can be 

said that more offspring makes the performance of 

this EA based model better at achieving its objective. 

On the other hand, the number of offspring does not 

affect the tolerable maximum completion time, 

which is in the second step, it becomes a constraint. 

6. Conclusion 

This work has demonstrated that the proposed 

models, two-step evolutionary algorithm (TSEA) 

and improved two-step evolutionary algorithm 

(ITSEA), can solve the problem of minimizing the 

maximum intermediate storage with the maximum 

completion time threshold in the parallel flow-shop 

system. Both models are competitive enough with 

the existing NSGA II, although the NSGA II is a 

little bit better, and much better than the existing 

single objective improved efficient genetic 

algorithm (IEGA), cloud-theory based algorithm 

(CTSA), and artificial bee colony algorithm (ABC). 

Overall, the ITSEA is better than the TSEA. 

Unfortunately, the maximum completion time 

produced by the proposed models, although still 

tolerable, is worse than the existing comparing 

methods. Based on the simulation results, the TSEA 

produces 26 percent higher maximum intermediate 

storage and the ITSEA produces 7 percent higher 

maximum intermediate storage than the NSGA II. 

The ITSEA produces 16 lower maximum 

intermediate storage than the TSEA. Both TSEA 

and ITSEA produce a 21 percent higher maximum 

completion time than the NSGA II. Meanwhile, 

there is a weakness in these proposed models. The 

proposed models may fail to find an accepted 

solution during the iteration. This failure probability 

is high when the threshold factor is low or when the 

tolerable maximum completion time range is tight. 

On the other hand, this failure probability is low 

when the threshold factor is high. Unfortunately, the 

increase in the threshold factor makes the maximum 

completion time increase. 

This model has the potential to be improved in 

the future. The first improvement could be to 

improve its competitiveness compared with multi-

objective solutions, such as NSGA II. The second 

improvement could be to reduce the failure 

probability of finding an accepted solution, 

especially in the tight tolerable attributes range. 
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