
Received: August 13, 2021. Revised: September 13, 2021. 464

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.41

A Parallel Permutation Flow-Shop Scheduling Model by Using a Two-Step

Evolutionary Algorithm to Minimize Intermediate Storage with Tolerable

Maximum Completion Time

Purba Daru Kusuma1* Abduh Sayid Albana2

1Computer Engineering, Telkom University, Indonesia

2Industrial Engineering, Institut Teknologi Telkom Surabaya, Indonesia

* Corresponding author’s Email: purbodaru@telkomuniversity.ac.id

Abstract: Intermediate storage is one important aspect of parallel permutation flow-shop scheduling (PPFSP).

Unfortunately, research about optimizing intermediate storage is rare. Most existing studies were conducted to

minimize or optimize the maximum completion time under various circumstances and constraints. Thus, this work

aims to minimize intermediate storage with a tolerable maximum completion time level. In this work, the proposed

model was developed by using an evolutionary algorithm (EA). This model consists of two steps. In the first step,

the EA is used to determine the tolerable maximum completion time. In the second step, the EA is used to make a

solution with minimum intermediate storage and a tolerable maximum completion time. This proposed model is then

compared with the existing non-dominated sorting genetic algorithm (NSGA II), improved efficient genetic

algorithm (IEGA), cloud-theory based simulated annealing (CTSA), and artificial bee colony algorithm (ABC).

Based on the simulation results, the proposed model performs better than the IEGA, CTSA, and ABC models.

Meanwhile, the proposed model is competitive enough compared with the NSGA II. And, the two-step evolutionary

algorithm (TSEA) produces 26 percent higher maximum intermediate storage, and the improved two-step

evolutionary algorithm (ITSEA) produces 7 percent higher maximum intermediate storage than the NSGA II. The

ITSEA produces 16 lower maximum intermediate storage than the TSEA. Both TSEA and ITSEA produce a 21

percent higher maximum completion time than the NSGA II.

Keywords: Parallel flow-shop scheduling, Evolutionary algorithm, Intermediate storage.

1. Introduction

It is widely known in manufacturing that there

are several types of production, such as: job-shop,

batch, and flow shop. Flow-shop is commonly used

in factories with a mass production process. The

problem of scheduling a flow-shop, commonly

named the flow-shop scheduling problem (FSP),

isn’t trivial and has been studied widely.

Flow-shop scheduling is a type of job-shop

scheduling [1]. It is a processing system in which

each job's task sequence is fully specified and all

jobs are processed in the same order at the

workstations [2]. Flow-shop scheduling determines

the best order for jobs to be processed on machines

in the same order, i.e. each job must be handled in

the same order on machines 1, 2, ..., 𝑚 [1].

One of FSP’s attractiveness is the complexity of

the production process. Thus, FSP has many

derivatives, such as classical model, permutation,

non-permutation, parallel, two-machine, hybrid, etc.

Research on FSP was conducted with specific

constraints and the processes ran in specific

circumstances, such as deteriorating jobs [3],

sequence-dependent setup times [4], multiple

requirements from customers [5], limited waiting

times [4], no-idle machines [6], and blocking

limitations [7].

FSP, as an optimization model, is designed to

solve problems based on its objective. Several

studies applied a single objective, while other

Received: August 13, 2021. Revised: September 13, 2021. 465

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.41

studies conducted multi-objective solutions. The

majority of FSP research intended to minimize the

maximum completion time [8]. Other objectives

include tardiness [9], penalties [5], energy

consumption [10], and so on.

Ironically, intermediate storage as an objective

was rarely investigated, even though it is a crucial

part of the flow-shop system. In most FSP research,

intermediate storage was considered as a limitation

rather than an objective. Several studies assumed

that intermediate storage is limitless, whereas others

considered that it is limited [11] or nil [7], resulting

in the possibility of blocking [12].

This paper presents a parallel FSP model which

focuses on minimizing intermediate storage size

while maintaining a tolerable maximum completion

time. This model can be called a semi-multi-

objective model. The maximum completion time

can be viewed as an objective as well as a constrain.

As a parallel FSP, there are a set number of identical

production lines [13], and any job can be processed

on any line of the system. As a permutation FSP, a

task cannot overlap with other jobs in a sequence

once it has been arranged [11].

The evolutionary algorithm [14] is a well-known

metaheuristic algorithm that has been widely used to

tackle combinatorial problems. It has proven to be a

generic, robust and powerful search mechanism [15].

Thus, this model is developed based on an

evolutionary algorithm. Other metaheuristic

algorithms that have been widely used in solving the

FSP are genetic algorithm [3], simulated annealing

[16], tabu search [17], particle swarm optimization

[9], chaotic-student-psychology based optimization

[18], etc.

In this paper, a novel two-step EA solution is

proposed. This proposed model consists of two

serial steps. In the first step, the algorithm focuses

on determining the tolerable maximum completion

time level. In the second step, the algorithm focuses

on finding the solution that its intermediate storage

is minimum.

The contribution of this work is as follows:

(1) This work promotes a novel serial

evolutionary-algorithm-based model to solve the

parallel permutation flow-shop scheduling problem.

(2) This work proposes a semi-multi-objective

problem by concerning the intermediate storage with

a tolerable maximum completion time, rather than a

pure multi-objective problem where the intermediate

storage and maximum completion time are

concerned at the same time.

The rest of the paper is organized as follows.

The second section discusses the literature on

permutation FSP, particularly parallel permutation

FSP. In the third section, the proposed two-step EA

model is explained. The fourth section explains the

simulation results that compare the proposed

model's performance to that of existing models. The

fifth section delves deeper into the proposed model's

analysis, findings, and limits. The conclusion relates

to the main result, findings, and the research

purpose; and the implications and future research

potential are explained in the sixth section.

2. Literature review

The literature on FSP is discussed in this section.

Based on [3], the basic process in a flow-shop

system is as follows. There are a certain number of

jobs. A production process is divided into several

stages serially. In a classic FSP, there is a single

production line that is divided into stages. There is a

machine in each stage. A job must pass through all

stages completely. A job enters a stage once [19].

On the other hand, a stage (machine) can only do a

job at one time. A job can move to the next stage if

it meets two conditions. This job has finished the

current stage and the machine in the next stage is

available. When this job has finished its current

stage but the machine in the next stage has not been

available yet, this job must be stored in the

intermediate storage. Otherwise, this job is stuck in

this current job and blocks other jobs from

occupying the machine in the current stage [12].

This classic FSP is divided into two derivatives:

the permutation FSP and the non-permutation FSP.

In the permutation FSP, once a job sequence is

arranged, this sequence does not change until all

jobs in the sequence are processed completely [20].

This model applies to the first-in-first-out (FIFO)

mechanism [13]. It means jobs overlapping are not

permitted. This process is simple. Unfortunately,

this permutation FSP may cause longer total

completion time. Meanwhile, in the non-

permutation FSP, job overlapping is permitted [11].

The goal of non-permutation FSP is to reduce total

completion time. A job with a shorter processing

time can be processed earlier than other jobs in front

of it in the sequence.

There are plenty of studies in the FSP. Several of

the latest classic FSPs are as follows. Xuan, Zhang,

and Li [3] proposed model for a flexible FSP. Rather

than a fixed processing time, in the real world, the

processing time may be longer due to several

problems: failure, machine, or workers [3]. This

problem is known as deteriorating jobs. They

formulated this problem by using mixed integer

linear programming (MILP). This work aimed to

minimize total weighted completion time. They used

Received: August 13, 2021. Revised: September 13, 2021. 466

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.41

a combined artificial bee colony algorithm and a

genetic algorithm to solve this problem.

Hsu, Lin, Duan, Liao, Wu, and Chen [16]

proposed incorporating scenario-dependent

processing times into a two-machine flow-shop

environment in order to reduce total completion

time. They first derive a lower bound and two

optimality properties to improve the branch-and-

bound method's searching efficiency. Then, using a

pairwise interchange mechanism, they offer 12 basic

heuristics and their corresponding counterparts.

Furthermore, they presented 12 simple heuristics as

the 12 starting seeds for designing 12 cloud theory-

based simulated annealing (CSA) variants.

Lee [4] proposed a model for two-machine FSP.

The first constraint is waiting time. The second

constraint is setup time. This work aimed to

minimize tardiness. The problem was formulated by

using MILP. This work used genetic algorithms to

solve the problem. Several assumptions in this work

were as follows. The information about the

processing time, sequence-dependent setup time,

limited waiting time, and due date are known in

advance.

Assia, El-Abbassi, El-Barkany, Darcherif, and

El-Biyaali. [10] proposed a green scheduling model

for two-machine permutation FSP. This work

integrated energy consumption and maintenance

scheduling as constraints. This work aimed to

minimize total completion time and energy

consumption. This problem was formulated by using

MILP. A machine can only process a job at one time,

and a job can only be processed by one machine at

one time.

The next derivative in FSP is parallel FSP. It is a

system that consists of several parallel identical

processing units or identical lines [9]. Jobs are

distributed into production lines. A parallel FSP can

be permutation or non-permutation. In its classic

mode, once a job is allocated to a certain line, it will

stay on this line until its process finishes completely.

It cannot jump to the other line during the

processing time, although the machine in the next

stage is available or it can be produced better

(faster) in the other line for the next stage. Fig. 1

illustrates the parallel FSP. There is plenty of

research in parallel with FSP.

Here are a few of the most recent ones. Sun and

Qi [5] conducted research in the parallel FSP where

there are multiple requirements for every job. This

was about a customized job due to a customer's

request. Based on this customization, stages that

must be passed by every job might be different from

each other. Jobs of the same type would pass

through the same number of stages. This work

Figure. 1 Parallel FSP illustration

aimed to minimize the penalty due to lateness and

the maximum completion time. The authors

proposed a combination of ant colony optimization

and simulated annealing algorithms to solve the

problem. The proposed model combines differential

evolution and local search algorithms. In this work,

interruptions were not allowed, and the arrival time

of all jobs was known in advance.

Geng, Ye, Cao, and Liu. [19] conducted parallel

FSP research where re-entrance mechanism was

possible. Rather than in classic FSP, where a job

enters a stage once, a job might enter the same stage

more than once. This condition occurs in certain

industries. Energy consumption has become an

important aspect. This work aimed to minimize

maximum completion time, maximum tardiness, and

idle energy consumption. The stop-and-go strategy

was proposed. A machine will be turned off when it

is idle to save energy. This problem was formulated

by using MILP. Machine failure and machine

adjustment were excluded from the model. They

used a multi-verse optimizer algorithm, one kind of

heuristic technique, to solve the problem.

Ribas & Companys [7] developed a model for

parallel FSP that allowed blocking mechanism. This

work aimed to minimize the maximum completion

time. The blocking mechanism occurs due to the

absence of the intermediate storage that plays as a

buffer for the job during the inter-stage condition.

Because there was no intermediate storage, a job

must wait to proceed to the next stage while the

adjacent machine is still working. Several heuristic

methods were compared: Palmer heuristic (PAL),

shortest processing time (SPT), largest processing

time (LPT), and trapezium (TRA).

The other type of parallel FSP is the distributed

FSP. There are a certain number of jobs that are

distributed to a certain number of factories. Each

factory is identical, in the context that it has the

same set of the same number of machines [26].

Several studies on distributed FSP are as follows.

Fernandez-Viagas & Framinan [27] proposed the

bounded-search-integrated greedy algorithm to solve

Received: August 13, 2021. Revised: September 13, 2021. 467

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.41

Table 1. Previous works in flow-shop scheduling

Work Objective

Parameters

Method

[8] make-span MILP and 12

heuristic methods

[21] make-span scatter search (SS)

[19] make-span, tardiness,

and idle energy

consumption.

multi-objective

multi-verse

optimizer

(IMOMVO)

[22] make-span iterated greedy

algorithm

[3] total weighted

completion time

artificial bee colony

algorithm

[10] make-span, a

measure of service

level and total energy

consumption

MILP

[16] total completion time. cloud theory-based

simulated annealing

(CSA)

[23] total actual flow time MILP

[24] total weighted

tardiness

constructive

heuristics and

branch-and-bound

algorithm (B&B)

[4] total tardiness GA

[5] make-span and the

cost of delay

differential

evolution (DE) and

local search (LS)

[12] make-span MILP and iterated

greedy algorithm

[25] total completion time IEGA

[9] total weighted

tardiness, total

operation time, and

total cost of the

company’s

reputational damage

MILP, MOPSO,

NSGA II

[7] maximum completion

time of jobs

constructive

heuristics

the distributed permutation FSP. Naderi & Ruiz [8]

compared 14 heuristic-based dispatching methods to

solve problems in distributed permutation FSP.

Their work aimed to minimize the make-span.

Overall, the summary of the latest studies in FSP is

shown in Table 1.

Table 1 is organized based on chronological

order. It can be seen that parallel FSP is still an

interesting issue to be discussed. Based on our

literature review, we decided to explore more about

parallel permutation flow-shop scheduling (PPFSP).

Similar to the existing studies, we minimize or

optimize the maximum completion time or make-

span with various circumstances and constraints.

However, we chose to specialize in optimizing the

intermediates, as research in this field is rare. Most

of the existing research uses the genetic algorithm

variant where GA is one of evolutionary

computations. We chose another type of

evolutionary computation, named the evolutionary

algorithm (EA). Our proposed model will be

compared with these existing ones.

3. Model

As a parallel permutation FSP, the system

consists of several shops. Each shop consists of a

production line with a certain number of stages. In

every stage, there is a machine or set of machines.

There is a set of jobs that enter the system to be

produced in any shop. This model is developed

based on several assumptions as followed:

• The jobs are homogeneous. It means the

number of stages that must be passed by every

job is same [5].

• Every job can be produced by any shop in the

system [8].

• Pre-emption is not allowed [6].

• The jobs are independent [19].

• As a parallel FSP, once a sequence is

determined, a job cannot overlap with other

jobs in a sequence during the production

process [21].

• All jobs are ready at time zero [4].

• All machines are ready at time zero.

• The processing time of every job in every stage

in every machine is known in advance [4].

• The setup time is zero. It means that once a job

finishes in a stage and the machine in the next

stage is available, this job can move to the next

stage immediately.

• Every shop has intermediate storage so that

once a job finishes in a stage and the machine

in the next stage is still unavailable, this job is

transferred to the intermediate storage so that

this job does not blocks the next job in the

sequence.

• The intermediate storage has unlimited capacity.

We use several notations in order to model our

problems. The notations that are used in this work

are as followed:

fth : threshold factor

g : stage

G : set of stages in a processing line

j : job

J : set of jobs

jsm : selected job for mutation

l : solution

L : set of solutions

n : number of a set

Received: August 13, 2021. Revised: September 13, 2021. 468

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.41

nv : intermediate storage

o : offspring

ps : shop of the job

pe : position of a job in a sequence

q : sequence

Q : set of sequence in a shop

s : shop

S : set of shops

ssm : selected shop for mutation

ta : start time of a job in a stage

tacl : the all-time lowest maximum

completion time during iteration

tach : the all-time highest make-span during

iteration

tc : maximum completion time of a shop

tcl : the lowest maximum completion time

of a solution

tch : the highest maximum completion time

of a solution

te : end time of a job in a stage

ti : iteration time

Ti : set of iteration time

tp : processing time

Tp : set of processing time

ttrc : the maximum completion time

threshold

tth : threshold of the tolerable maximum

completion time

v : the maximum intermediate storage in a

solution

val : the all-time lowest maximum

intermediate storage

vh : the highest maximum intermediate

storage among solutions

vl : the lowest maximum intermediate

storage among solutions

In this work, the proposed model to solve the

parallel permutation FSP is developed based on the

evolutionary algorithm (EA). EA is a popular

metaheuristic algorithm. This condition is similar to

the parallel permutation FSP, which is also a

combinatorial problem. EA is a population-based

solution that is developed based on the evolution

system [28]. The better solution is found by creating

new generations, mutations, and crossovers.

During iterations, new generations are generated

by the fittest or the best solution from the current

generation, and the worst current solution is

replaced by this offspring [29]. The illustration of

basic EA is shown in Fig. 2. The basic algorithm of

the EA is as follows [28].

1. In the beginning, certain number of solutions

are generated randomly. The number of

solutions represents the population size.

Figure. 2 Evolutionary algorithm illustration

2. The fitness value of every solution is calculated

by using a pre-determined fitness function.

3. Based on this fitness function, the best solution

and the worst solution are determined.

4. The worst solution is replaced by the best

solution as the offspring.

5. Mutation is conducted to the offspring so that

the offspring becomes new solution.

6. Step 2 until step 5 is repeated in every iteration.

7. The iteration stops if one of these two

conditions occurs. First, the maximum iteration

is reached. Second, the targeted fitness value is

reached.

8. The quantity of all jobs is homogeneous.

A solution represents a parallel permutation FSP

that consists of a number of shops and a number of

jobs in every shop. This solution is represented as a

two-dimensional array. The first index of the array

represents the shop. The second index of the array

represents the job order in a shop. Each cell

represents a job. This array is illustrated in Fig. 4.

For example, in Fig. 3, a population consists of 12

jobs and 3 shops. There are 4 jobs in every shop.

In this work, the mutation process occurs by

exchanging jobs in a selected shop with another job

in another selected shop. This mutation occurs in a

solution. This mutation process is formalized by

using Eqs. (1) and (2). This mutation is illustrated in

Fig. 4. Eq. (1) shows that the selected shop that its

job will mutate is chosen at random and follows a

Figure. 3 Array design of a solution

Received: August 13, 2021. Revised: September 13, 2021. 469

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.41

Figure. 4 Mutation process

uniform distribution. Eq. (2) shows that the position

of a job in a selected shop that mutates is randomly

determined and follows a uniform distribution.

𝑠𝑠𝑚 = 𝑈(1, 𝑛(𝑆)) (1)

𝑝(𝑗𝑠𝑚) = 𝑈(1, 𝑛(𝐽𝑠ℎ)) (2)

In this work, two models are proposed: Two-

Step Evolutionary Algorithm (TSEA) and Improved

Two-Step Evolutionary Algorithm (ITSEA).

Between these two models, the difference lies in the

number of parents that will produce offspring in

every iteration. In the TSEA, only one solution

becomes parent. In the ITSEA, half of the solutions

become parents. This idea is inspired by the NSGA

II where the parents are half of the sorted population

[30]. In every model, the proposed model consists of

two serial EA steps. The difference between TSEA

and ITSEA occurs only in the second step.

In the first step, the TSEA process is conducted

to find the lowest and the highest maximum

completion time. These variables are used to

determine the maximum completion time threshold

that will be used in the second step. The algorithm

for the first step is as follows.

1. In the beginning, certain number of solutions

are generated randomly.

2. The maximum completion time of every

solution is calculated.

3. The lowest and the highest maximum

completion time is calculated.

4. The all-time lowest and all-time highest

maximum completion time is updated.

5. The offspring is generated by replacing the

solution with the highest maximum

completion time with the solution with the

lowest maximum completion time.

6. This offspring mutates.

7. Steps 2 to 6 are repeated.

8. Iteration stops when the maximum iteration is

reached.

The algorithm process is formalized by using

Eqs. (3) to (13).

𝑝𝑠(𝑗) = 𝑈(1, 𝑛(𝑆)), 𝑡 = 0 (3)

𝑝𝑞(𝑗) = 𝑈(1, 𝑛(𝑄)), 𝑡 = 0 (4)

𝑡𝑠𝑐(𝑠, 𝑡𝑖) = 𝑡𝑒(𝑗, 𝑔), 𝑝𝑞(𝑗) = 𝑛(𝑄) ∧ 𝑝𝑔 = 𝑛(𝐺) (5)

𝑡𝑐(𝑙, 𝑡𝑖) = 𝑚𝑎𝑥(𝑡𝑠𝑐(𝑠, 𝑡𝑖)), 𝑠 ∈ 𝑆𝑙 (6)

𝑡𝑐𝑙(𝑡𝑖) = 𝑚𝑖𝑛(𝑡𝑐(𝑙, 𝑡𝑖)), 𝑙 ∈ 𝐿 (7)

𝑡𝑐ℎ(𝑡𝑖) = 𝑚𝑎𝑥(𝑡𝑐(𝑙, 𝑡𝑖)), 𝑙 ∈ 𝐿 (8)

𝑡𝑎𝑐𝑙 = 𝑚𝑖𝑛(𝑡𝑐𝑙(𝑡𝑖)), 𝑡𝑖 ∈ 𝑇𝑖 (9)

𝑡𝑎𝑐ℎ = 𝑚𝑎𝑥(𝑡𝑐ℎ(𝑡𝑖)), 𝑡𝑖 ∈ 𝑇𝑖 (10)

𝑜(𝑡𝑖) = 𝑙, 𝑡𝑐(𝑙, 𝑡𝑖) = 𝑡𝑐𝑙(𝑡𝑖) (11)

𝑝𝑙(𝑜(𝑡𝑖)) = 𝑝𝑙(𝑙), 𝑡𝑐(𝑙, 𝑡𝑖) = 𝑡𝑐ℎ(𝑡𝑖) (12)

𝑡𝑡ℎ = 𝑡𝑎𝑐𝑙 + (𝑓𝑡ℎ. (𝑡𝑎𝑐ℎ − 𝑡𝑎𝑐𝑙)) (13)

Eq. (3) shows that in the beginning, a job is

distributed randomly among shops in a solution. It

follows a uniform distribution. Eq. (4) shows that in

the beginning, the position of a job in the sequence

is randomly distributed. It follows a uniform

distribution. Eq. (5) shows that the completion time

in a shop is the last stage end time of the last job in

the shop. Eq. (6) shows that the maximum

completion time of a solution is the highest

completion time among shops in this solution. Eq.

(7) shows that the lowest maximum completion time

is the lowest maximum completion time among

solutions in an iteration. Eq. (8) shows that the

highest maximum completion time is the highest

maximum completion time among solutions in an

iteration. Eq. (9) shows that the all-time lowest

maximum completion time is the lowest maximum

completion time during the iteration. Eq. (10) shows

that the all-time highest completion time is the

highest completion time during the iteration. Eq.

(11) shows that the offspring is the solution with the

lowest maximum completion time. Eq. (12) shows

that the offspring will replace the solution with the

highest maximum completion time. Eq. (13) shows

that the maximum completion time threshold is

determined by the range between the all-time lowest

maximum completion time and the all-time highest

Received: August 13, 2021. Revised: September 13, 2021. 470

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.41

maximum completion time, and it is multiplied by

the threshold factor.

In the second step, the TSEA process is

conducted to find the lowest intermediate storage

with the tolerable maximum completion time. The

algorithm for the second step is as follows.

1. In the beginning, certain number of solutions

are generated randomly.

2. The maximum completion time of every

solution is calculated. The lowest and the

highest intermediate storage is calculated.

3. If the solution that its maximum intermediate

storage is the lowest among other solutions in

this iteration and its maximum completion

time is equal or below the maximum

completion time threshold, then the all-time

lowest maximum intermediate storage is

updated.

4. The lowest and the highest maximum

intermediate storage is calculated.

5. The offspring is generated by replacing the

solution with the highest maximum

intermediate storage with the solution with the

lowest maximum completion time.

6. This offspring mutates.

7. Steps 2 to 6 are repeated.

8. Iteration stops when the maximum iteration is

reached.

The algorithm process is formalized by using

Eqs. (14) to (21).

𝑛𝑣(𝑠, 𝑡𝑝, 𝑡𝑖) = ∑ 𝑗, (𝑡𝑒(𝑗, 𝑔) < 𝑡𝑝 <∀𝑗,𝑝𝑠(𝑗)=𝑠

𝑡𝑎(𝑗, 𝑔 + 1) ∧ 𝑔 < 𝑛(𝐺))

(14)

𝑣(𝑙, 𝑡𝑖) = 𝑚𝑎𝑥 (𝑛𝑣(𝑠, 𝑡𝑝, 𝑡𝑖)) , 𝑠 ∈ 𝑆𝑙 ∧ 𝑡𝑝 ∈ 𝑇𝑝(𝑡𝑖)

(15)

𝑣ℎ(𝑡𝑖) = 𝑚𝑎𝑥(𝑣(𝑙, 𝑡𝑖)), 𝑙 ∈ 𝐿 (16)

𝑣𝑙(𝑡𝑖) = 𝑚𝑖𝑛(𝑣(𝑙, 𝑡𝑖)), 𝑙 ∈ 𝐿 (17)

𝑜(𝑡𝑖) = 𝑙, 𝑣(𝑙, 𝑡𝑖) = 𝑣𝑙(𝑡𝑖) (18)

𝑝𝑙(𝑜(𝑡𝑖)) = 𝑝𝑙(𝑙), 𝑣(𝑙, 𝑡𝑖) = 𝑣ℎ(𝑡𝑖) (19)

𝑣𝑎𝑙(𝑡𝑖) = 𝑣𝑙(𝑡𝑖), 𝑡𝑖 = 1 (20)

𝑣𝑎𝑙(𝑡𝑖) = {
𝑣𝑎𝑙(𝑡𝑖 − 1), 𝑣𝑎𝑙(𝑡𝑖 − 1) ≤ 𝑣𝑙(𝑡𝑖)

𝑣𝑙(𝑡𝑖), 𝑣𝑎𝑙(𝑡𝑖 − 1) > 𝑣𝑙(𝑡𝑖)
, 𝑡𝑖 > 1

(21)

Eq. (14) shows that the intermediate storage is

detected by calculating the number of jobs which

have idle time at a certain processing time. Eq. (15)

shows that the maximum intermediate storage of a

solution is calculated by finding the maximum

number of shops that need intermediate storage at a

certain processing time along the processing time.

Eq. (16) shows that the highest maximum

intermediate storage is the highest maximum

intermediate storage among the solutions in an

iteration time. Eq. (17) shows that the lowest

maximum intermediate storage is the lowest

maximum intermediate storage among the solutions

in an iteration time. Eq. (18) shows that the

offspring is generated from the solution with the

lowest maximum intermediate storage. Eq. (19)

shows that the offspring replaces the solution with

the highest maximum intermediate storage. Eq. (20)

shows that in the beginning, the all-time lowest

maximum intermediate storage is the lowest

maximum intermediate storage. Eq. (21) shows that

the all-time lowest maximum intermediate storage is

updated when the current lowest maximum

intermediate storage is lower than the previous

lowest maximum intermediate storage for iteration

time is more than 1.

In the second step of the ITSEA, as mentioned

above, in every iteration, the number of parents is

half of the population. The algorithm of the ITSEA

is as follows.

1. In the beginning, certain number of solutions

are generated randomly.

2. The maximum completion time of every

solution is calculated.

3. The solutions are then sorted ascendingly based

on the maximum intermediate storage.

4. If the solution that its maximum intermediate

storage is the lowest among other solutions in

this iteration and its maximum completion time

is equal or below the maximum completion

time threshold, then the all-time lowest

maximum intermediate storage is updated.

5. Half best of the population is selected as

parents.

6. These selected parents then become offspring

after mutated.

7. These offspring then replace the half worst of

the population.

8. Steps 2 to 6 are repeated.

9. Iteration stops when the maximum iteration is

reached.

To see performance of our proposed model, we

are going to compare our model with the four

techniques: NSGA II [9], IEGA [25], CTSA [16],

and ABC [3]. These four comparing algorithms

Received: August 13, 2021. Revised: September 13, 2021. 471

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.41

were used in several latest FSP studies as they are

explained in the literature review.

4. Simulation and result

This model is then implemented into simulation

to evaluate its performance. In this simulation, the

proposed model is then compared with the existing

NSGA II [9], IEGA [25], CTSA [16], and ABC [3].

In this simulation, the objectives of the NSGA II are

modified so that the objectives are maximum

completion time and maximum intermediate storage.

The goal is to minimize these two parameters.

Meanwhile, the IEGA [25], CTSA [16], and ABC

[3] is a single-objective model whose objective is to

minimize the maximum completion time. The

CTSA [16] and ABC [3] are chosen due to their

feature in avoiding local optimal trap. In this work,

two simulations were conducted.

In the first simulation, the adjusted variables are

similar to NSGA II [9]. There are 40 jobs, 5 shops,

and 4 stages. The average processing time in every

stage is 5 time-units. It is randomly generated and

follows normal distribution. The population size is

20. In NSGA II, the parent population size is 10

because the total population is doubled [30]. In

every simulation session, there are 200 iterations.

The maximum completion time threshold is 0.5. In

this simulation, there are two observed parameters:

maximum intermediate storage and maximum

completion time. The simulation result is shown in

Fig. 5.

In Fig. 5a, the NSGA II [9] becomes the best

solution for producing the lowest maximum

intermediate storage. Meanwhile, the CTSA [16]

becomes the worst solution. Although the proposed

models produce higher maximum intermediate

storage rather than the NSGA II, their value is

competitive enough compared with the IEGA [25],

CTSA [16], and ABC [3]. The IEGA and ABC

produces higher maximum temporary storage rather

than the proposed model, but still lower than the

CTSA. By comparing the proposed models, the

ITSEA produces lower maximum intermediate

storage than the TSEA. The TSEA produces 26

percent higher maximum intermediate storage than

the NSGA II. The ITSEA produces 7 percent higher

maximum intermediate storage than the NSGA II.

The TSEA produces 57 percent lower maximum

intermediate storage than the CTSA [16].

Meanwhile, the ITSEA produces 61 percent lower

maximum intermediate storage than the CTSA [16].

In Fig. 5b, the NSGA II becomes the best solution

for producing the lowest maximum completion time.

Meanwhile, ITSEA becomes the worst solution.

(a)

(b)
Figure. 5 Model performance comparison: (a) maximum

temporary storage and (b) maximum completion time

The TSEA produces a 21 percent, 17 percent, 3

percent, and 9 percent higher maximum completion

time than the NSGA II [19], IEGA [25], CTSA [16],

and ABC [3] consecutively.

In the second simulation, the relationship

between the threshold factor and the observed

parameters is conducted. The reason why this

simulation was conducted is because in the proposed

model, the system may not be able to produce a

solution because after the maximum iteration is

reached, the system still cannot find a solution

where the maximum completion time is under the

threshold. The observed factors include maximum

intermediate storage, maximum completion time,

and success percentage. The success percentage is

the percentage between the number of simulations

that produce solutions and the total number of

Received: August 13, 2021. Revised: September 13, 2021. 472

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.41

solutions. The adjusted parameters, which are jobs,

shops, stages, processing times, and population size,

are the same as in the first simulation. The evaluated

models in this simulation are TSEA and ITSEA. The

result is shown in Fig. 6.

Fig. 6 shows that there is a relationship between

the threshold factor and the observed parameters.

Fig. 6a shows that the increase in the threshold

factor makes the maximum intermediate storage

decrease. It occurs in both TSEA and ITSEA. In all

threshold factor values, the ITSEA produces lower

maximum intermediate storage than the TSEA. Fig.

6b shows that the increase in the threshold factor

makes the maximum completion time increase. It

occurs in both TSEA and ITSEA. The maximum

completion time of both models is almost equal in

all threshold factor values. Fig. 6c shows that the

increase in the threshold factor makes the success

percentage increase when the threshold factor is

from 0.3 to 0.7. And after that, the success

percentage is stagnant because the success

percentage is almost or equal to 100 percent. It

occurs in both models. The TSEA and ITSEA

produce similar value and trend in success

percentage in all threshold factor values.

5. Discussion

There are several findings in this work. The

proposed models, both TSEA and ITSEA, are able

to achieve the objective of this work, which is to

minimize the maximum intermediate storage with a

tolerable maximum completion time. Both models

are better than the single objective models, the

IEGA, CTSA, and ABC models, whose objective is

to minimize maximum completion time. These

proposed models are competitive enough compared

with the multi-objective solution. Meanwhile, the

proposed models are much better than the single

objective models (IEGA [25], CTSA [16], and ABC

[3]), which represents the majority of existing

studies in flow-shop scheduling which most of their

objectives are to minimize the maximum completion

time.

Unfortunately, although the proposed model can

produce solutions at a tolerable maximum

completion time, its maximum completion time is

still higher than all comparing previous models

(IEGA, NSGA II, CTSA, and ABC). Among these

previous models, the NSGA II becomes the best

solution in both parameters due to its

competitiveness in producing pareto-optimal

solutions [30]. This result, where the NSGA II

creates the best in both (all) parameters, while the

proposed models can compete in minimizing

(a)

(b)

(c)

Figure. 6 Relation between threshold factor and the

observed parameters: (a) maximum temporary storage,

(b) maximum completion time, and (c) success

percentage

maximum intermediate storage but give up on

maximum completion time, also shows the concept

difference between both models. In NSGA II, as a

multi-objective solution, it tries to minimize all

parameters by finding the most dominant solution

[30]. On the other hand, the proposed models, as

Received: August 13, 2021. Revised: September 13, 2021. 473

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.41

semi-multi-objective solutions, try to minimize

maximum intermediate storage while trying to keep

the maximum completion time low within the

tolerable range. This result also proves that the

IEGA, CTSA, and ABC, as a single-objective

solution, focus on its single objective while ignoring

other parameters [9].

Our proposed model has a weakness that there is

a probability where the model fails to find a solution

with a tolerable maximum completion time

threshold. This probability is high when the

threshold factor is low. It is because when the

tolerable maximum completion time is low, finding

an accepted solution becomes more difficult,

although its maximum completion time is better. On

the other hand, finding an accepted solution

becomes easier when the threshold is higher,

although it makes the production maximum

completion time increase.

The ITSEA performs better than the TSEA,

especially in producing low maximum intermediate

storage. The difference between the TSEA and

ITSEA is in the number of offspring that are

produced in every iteration. Based on this, it can be

said that more offspring makes the performance of

this EA based model better at achieving its objective.

On the other hand, the number of offspring does not

affect the tolerable maximum completion time,

which is in the second step, it becomes a constraint.

6. Conclusion

This work has demonstrated that the proposed

models, two-step evolutionary algorithm (TSEA)

and improved two-step evolutionary algorithm

(ITSEA), can solve the problem of minimizing the

maximum intermediate storage with the maximum

completion time threshold in the parallel flow-shop

system. Both models are competitive enough with

the existing NSGA II, although the NSGA II is a

little bit better, and much better than the existing

single objective improved efficient genetic

algorithm (IEGA), cloud-theory based algorithm

(CTSA), and artificial bee colony algorithm (ABC).

Overall, the ITSEA is better than the TSEA.

Unfortunately, the maximum completion time

produced by the proposed models, although still

tolerable, is worse than the existing comparing

methods. Based on the simulation results, the TSEA

produces 26 percent higher maximum intermediate

storage and the ITSEA produces 7 percent higher

maximum intermediate storage than the NSGA II.

The ITSEA produces 16 lower maximum

intermediate storage than the TSEA. Both TSEA

and ITSEA produce a 21 percent higher maximum

completion time than the NSGA II. Meanwhile,

there is a weakness in these proposed models. The

proposed models may fail to find an accepted

solution during the iteration. This failure probability

is high when the threshold factor is low or when the

tolerable maximum completion time range is tight.

On the other hand, this failure probability is low

when the threshold factor is high. Unfortunately, the

increase in the threshold factor makes the maximum

completion time increase.

This model has the potential to be improved in

the future. The first improvement could be to

improve its competitiveness compared with multi-

objective solutions, such as NSGA II. The second

improvement could be to reduce the failure

probability of finding an accepted solution,

especially in the tight tolerable attributes range.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

Conceptualization: Kusuma; methodology:

Kusuma and Albana; software: Kusuma; validation:

Kusuma; formal analysis: Kusuma and Albana;

investigation: Kusuma and Albana; writing-original

draft preparation: Kusuma; writing-review and

editing: Albana.

Acknowledgments

This work is funded by Telkom University.

References

[1] S. Kumar and P. Jadon, “A Novel Hybrid

Algorithm for Permutation Flow Shop

Scheduling”, International Journal of

Computer Science and Information

Technologies, Vol. 5, No. 4, pp. 5057-5061,

2014.

[2] H. Emmons and G. Vairaktarakis, Flow Shop

Scheduling: Theoretical Results, Algorithms,

and Applications, Springer Science & Business

Media, 2012.

[3] H. Xuan, H. Zhang, and B. Li, “An Improved

Discrete Artificial Bee Colony Algorithm for

Flexible Flowshop Scheduling with Step

Deteriorating Jobs and Sequence-dependent

Setup Times”, Mathematical Problems in

Engineering, pp. 1-13, 2019.

[4] J. Y. Lee, “A Genetic Algorithm for a Two-

machine Flowshop with a Limited Waiting

Time Constraint and Sequence-dependent

Received: August 13, 2021. Revised: September 13, 2021. 474

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.41

Setup Times”, Mathematical Problems in

Engineering, pp. 1-13, 2020.

[5] Y. Sun and X. Qi, “A DE-LS Metaheuristic

Algorithm for Hybrid Flow-shop Scheduling

Problem Considering Multiple Requirements of

Customers”, Scientific Programming, pp. 1-14,

2020.

[6] D. Gupta and H. Singh, “A Heuristic Approach

to n x m Flow Shop Scheduling Problem in

which Processing Times are Associated with

Their Respective Probabilities with No-idle

Constraint”, ISRN Operations Research, pp. 1-

9, 2013.

[7] I. Ribas and R. Companys, “A Computational

Evaluation of Constructive Heuristics for the

Parallel Blocking Flow Shop Problem with

Sequence-dependent Setup Times”,

International Journal of Industrial Engineering

Computations, Vol. 12, pp. 321-328, 2021.

[8] B. Naderi and R. Ruiz, “The Distributed

Permutation Flowshop Scheduling Problem”,

Computers & Operations Research, Vol. 37, pp.

754-768, 2010.

[9] N. Farmand, H. Zarei, and M. R. Barzoki,

“Two Meta-heuristic Algorithms for

Optimizing a Multi-objective Supply Chain

Scheduling Problem in an Identical Parallel

Machines Environment”, International Journal

of Industrial Engineering Computations, Vol.

12, pp. 249-272, 2021.

[10] S. Assia, I. E. Abbassi, A. E. Barkany, M.

Darcherif, and A. E. Biyaali, “Green

Scheduling of Jobs and Flexible Periods of

Maintenance in a Two-machine Flowshop to

Minimize Makespan, a Measure of Service

Level and Total Energy Consumption”,

Advances in Operations Research, pp. 1-9,

2020.

[11] D. Rossit, F. Tohme, M. Frutos, M. Safe, and O.

C. Vasquez, “Critical Paths of Non-permutation

and Permutation Flow Shop Scheduling

Problems”, International Journal of Industrial

Engineering Computations, Vol. 11, pp. 281-

298, 2020.

[12] M. Takano and M. Nagano, “Solving the

Permutation Flow Shop Problem with Blocking

and Setup Time Constraints”, International

Journal of Industrial Engineering

Computations, Vol. 11, pp. 469-480, 2020.

[13] M. L. Pinedo, Scheduling: Theory, Algorithms,

and Systems, Springer, 2018.

[14] A. P. Engelbrecht, Computational Intelligence:

an Introduction, John Wiley & Sons, 2007.

[15] S. Bhargava, “A Note on Evolutionary

Algorithms and Its Applications”, Adults

Learning Mathematics, Vol. 8, pp. 31-45, 2013.

[16] C. L. Hsu, W. C. Lin, L. Duan, J. R. Liao, C. C.

Wu, and J. H. Chen, “A Robust Two-machine

Flow-shop Scheduling Model with Scenario-

dependent Processing Times”, Discrete

Dynamics in Nature and Society, pp. 1-16,

2020.

[17] F. Cetinkaya, P. Yeloglu, and H. Catmakas,

“Customer Order Scheduling with Job-based

Processing on a Single-machine to Minimize

the Total Completion Time”, International

Journal of Industrial Engineering

Computations, Vol. 12, pp. 273-292, 2021.

[18] A. Sasmito and A. B. Pratiwi, “Chaotic Student

Psychology based Optimization Algorithm for

Bi-objective Permutation Flowshop Scheduling

Problem”, International Journal of Intelligent

Engineering and System, Vol. 14, No. 3, pp.

109-118, 2021.

[19] K. Geng, C. Ye, L. Cao, and L. Liu, “Multi-

Objective Reentrant Hybrid Flowshop

Scheduling with Machines Turning On and Off

Control Strategy Using Improved Multi-verse

Optimizer Algorithm”, Mathematical Problems

in Engineering, pp. 1-18, 2019.

[20] A. Mishra and D. Shrivastava, “A Discrete Jaya

Algorithm for Permutation Flow-shop

Scheduling Problem”, International Journal of

Industrial Engineering Computations, Vol. 11,

pp. 415-428, 2020.

[21] B. Naderi and R. Ruiz, “A Scatter Search

Algorithm for the Distributed Permutation

Flowshop Scheduling Problem”, European

Journal of Operational Research, Vol. 239, pp.

323-334, 2014.

[22] R. Ruiz, Q. K. Pan, and B. Naderi, “Iterated

Greedy Methods for the Distributed

Permutation Flowshop Scheduling Problem”,

Omega, Vol. 83, pp. 213-222, 2019.

[23] D. Kurniawan, A. C. Raja, S. Suprayogi, and A.

H. Halim, “A Flow Shop Batch Scheduling and

Operator Assignment Model with Time-

changing Effects of Learning and Forgetting to

Minimize Total Actual Flow Time”, Journal of

Industrial Engineering and Management, Vol.

13, pp. 546-564, 2020.

[24] I. S. Lee, “A Scheduling Problem to Minimize

Total Weighted Tardiness in the Two-stage

Assembly Flowshop”, Mathematical Problems

in Engineering, pp. 1-10 2020.

[25] M. A. Basset, R. Mohamed, M. Abouhawwash,

R. K. Chakrabortty, and M. J. Ryan, “A Simple

and Effective Approach for Tackling the

Received: August 13, 2021. Revised: September 13, 2021. 475

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021 DOI: 10.22266/ijies2021.1231.41

Permutation Flow Shop Scheduling Problem”,

Mathematics, Vol. 9, pp. 1-23, 2021.

[26] Y. Xu, L. Wang, S. Wang, and M. Liu, “An

Effective Hybrid Immune Algorithm for

Solving the Distributed Permutation Flow-shop

Scheduling Problem”, Engineering

Optimization, Vol. 46, pp. 1269-1283, 2014.

[27] V. F. Viagas and J. M. Framinan, “A Bounded-

search Iterated Greedy Algorithm for the

Distributed Permutation Flowshop Scheduling

Problem”, International Journal of Production

Research, Vol. 53, pp. 1111-1123, 2015.

[28] K. Peng, L. Wu, Y. Yi, and X. Chen, “An

Effective Hybrid Algorithm for Permutation

Flow Shop Scheduling Problem with Setup

Time”, Procedia CIRP, Vol. 72, pp. 1288-1292,

2018.

[29] Suyanto, A. T. Wibowo, S. A. Faraby, S.

Saadah, and R. Rismala, “Evolutionary Rao

Algorithm”, Journal of Computational Science,

Vol. 53, 2021.

[30] K. Deb, A. Pratap, S. Agarwal, and T. A. M. T.

Meyarivan, “A Fast and Elitist Multiobjective

Genetic Algorithm: NSGA-II”, IEEE

Transactions on Evolutionary Computation,

Vol. 6, pp. 182-197, 2002.

