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Abstract: Multiple-input multiple-output (MIMO) systems are used in most modern wireless communication systems, 

including WiMAX, DVB-NGH, WiFi, HSPA+, LTE, and 4G. MIMO systems with space time coding are a potential 

technique for increasing data rates and improving wireless communications reliability.This work proposed a new 

technology for decoding Multiple-Input Multiple-Output Space–Time Block Code (MIMO-STBC) by using blind 

source separation (BSS), to enhance the BER performance for MIMO STBC channel estimator by using semi-blind 

independent component analysis (ICA) method, The kurtosis-based source extraction technique is achieved by 

using real imaginary decomposition (R-Im)  of maximum ratio combiner (MRC), Finally, by applying the water cycle 

method in optimization, we were able to increase the work speed of channel estimation using the ICA technique. The 

MATLAB software was used to model the system's performance. The simulation results demonstrate that the proposed 

channel estimation technique is feasible and effective, with only a small difference in performance between the 

estimated and known channel parameters, such that the proposed algorithm using WCA-kurtosis is better than the 

performance of the LS algorithm for transmit and receive antennas 2×1, 2×2, 4×2, and 4×4 by 1.6, 1.5, 1.2, and 2.2 

dB, respectively, at the frame length of the 1024. 

Keywords: Space-time block coding (STBC), Water cycle algorithm (WCA), Multiple input multiple output (MIMO), 
Independent component analysis (ICA), Kurtosis. 

 

 

1. Introduction 

In recent years, the need for high-data-rate mobile 

communication devices has skyrocketed. New 

approaches are required to meet this massive 

communications demand while maximizing the 

efficient use of limited resources such as bandwidth 

and power. MIMO systems with multiple antenna 

elements at both link ends are an efficient alternative 

for future wireless communications systems because 

they deliver high data rates by utilizing the spatial 

domain while operating within bandwidth and 

transmit power limits [1]. STBC is a MIMO transmit 

method that takes advantage of transmit diversity and 

excellent reliability orthogonal space time block 

codes (OSTBCs) and non-orthogonal space time 

block codes (NOSTCs) are the two types of STBCs 

(NOSTBCs). The quasi-orthogonal space time block 

codes (QSTBCs) are a type of NOSTBC that has been 

the subject of a lot of research. The OSTBCs 

accomplish complete variety while reducing decoding 

complexity, albeit at the cost of significant data rate 

loss. In the case of complex-valued symbol 

transmission, the full data rate is only possible with 

full diversity when two transmit antennas (alamouti) 

are used. With QSTBCs, full data rate may be reached 

with more than two transmit antennas with just a 

minor loss of diversity gain [2, 3]. This made space-

time block codes a very popular and most widely used 

scheme [4-23]. 

Many researchers have looked into and studied 

channel estimation. As a result, several wireless 

channel estimate algorithms have been proposed and 

implemented in order to provide channel state 

information (CSI). WCA has been selected in this 

work due to, it requires the lower number of 

insensitive user parameters, where the WCA can 

address a wide range of optimization problems using 

the fixed user defined parameters as compared to 
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other algorithms, the WCA possesses the 

advancements of better convergence performance, 

faster calculation and higher precision compared to 

the other algorithms. The results confirm that the 

WCA applied to determine the optimal solution of the 

populations and can achieve a better result than some 

other algorithms with an acceptable accuracy and 

efficiency.  

On the receiver side of MIMO communication 

systems, efficient channel estimation techniques have 

recently been developed. Estimating methods for 

MIMO may be classified into three groups [3]: 

1- Blind of channel estimation: The receiver in this 

technique has no prior knowledge of the CSI. This 

type does not require a training symbol, allowing it to 

deliver complete throughput. However, the blind 

estimator's main two flaws are its enormous 

complexity and latency. 

2- Non-blind channel estimation: In this method, the 

receiver is aware of the CSI. This can be 

accomplished by utilizing an additional receiving 

antenna or a longer training sequence period, both of 

which limit throughput and add to system complexity. 

3- Semi-blind of channel estimation: This technique 

requires fewer of pilots that reduce the efficiency of 

transmission. The main goal of this paper is to provide 

STBCs for multiple transmit antennas and multiple 

receive antennas using semi-blind of channel 

estimation, improve BER performance, reduce 

decoding time and solve the ambiguities of BSS. 

2. STBC system MIMO model 

Space time block code is known by Nt row and p 

column transmission matrix GNt. The entries of the 

matrix GNt are linear combination of the variables S1, 

S2, …, Sk and their conjugates. different codes were 

separated using the Nt of transmitting antennas. Two 

STBCs (G2, G4) are utilized in this paper to assess the 

robustness of the proposed method, and their 

encoding matrices are as follows: 

 

𝐺2 = (
𝑆1 −𝑆2

∗

𝑆2    𝑆1
∗  )                                                     (1) 

 

where this code known Alamouti STBC, and 

 

𝐺4 =

[
 
 
 
 
 
 
 
 

𝑆1      𝑆2    𝑆3 𝑆4

−𝑆2 𝑆1 −𝑆4 𝑆3

−𝑆3 𝑆4 𝑆1 −𝑆2

−𝑆4 −𝑆3        𝑆2    𝑆1

𝑆1
∗ 𝑆2

∗ 𝑆3
∗ 𝑆4

∗

−𝑆2
∗ 𝑆1

∗ −𝑆4
∗ 𝑆3

∗

−𝑆3
∗ 𝑆4

∗ 𝑆1
∗ −𝑆2

∗

−𝑆4
∗ −𝑆3

∗ 𝑆2
∗ 𝑆1

∗ ]
 
 
 
 
 
 
 
 

                        (2) 

 

 
Figure. 1 Channel estimation using pilot sequence 

 

In a MIMO system, matrix notation may be used 

to express the data transmission process. 

Let consider a Flat semi-fixed fade channel with 

Nt transmitters and Nr receivers, then received signal 

 vector 𝒁𝒕 = [
𝒁𝟏

𝒕

:
𝒁𝑵𝒓

𝒕
] at time t is given by [5, 6]: 

 

𝒁𝒕 =  𝑯𝑿𝒕 + 𝒏𝒐𝒊𝒔𝒆                                              (3) 

 

where 𝑿𝒕 = [
𝒙𝟏

𝒕

:
𝒙𝑵𝒕

𝒕
] is the transmitted signal vector at  

time 𝑡 and 𝐻 is the Nr*Nt complex number channel 

coefficients matrix. 

In accordance with the flat semi-fixed fade 

assumption, the channel response varies arbitrarily 

from one block to the next, but it remains constant 

throughout the time of a transmission. this time called 

coherence time [5]. 

The decoding process is split into two stages. The 

channel coefficients must first be estimated using a 

channel estimator. Then, using MRC, the encoded 

signals S1, S2..., Sk will be estimated by using these 

values. as shown in Fig. 1 [7, 8]. 

3. Estimator of the least squares 

The technique of channel estimate is a significant 

and difficult problem in wireless communication 

systems. A channel estimate technique provides 

sufficient information about any distortion delays, 

interferences, attenuations, interferences, and phase 

shifts that occur to the signals carried via the channel 

[9]. 

As illustrated in Fig. 1 above, the employment of 

training symbols or (pilot symbols) (Xt) that are 

known to the receiver side is a typical channel 
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estimation method. The training symbols must be set 

a frequent as the coherence time to maintain track of 

the time-varying channel characteristics. When 

training symbols Zt and Xt are provided, the least 

squares (LS) approach is frequently employed for the 

channel estimation, and estimated channel matrix is 

given by [10]: 

 

𝐻𝐿𝑆 = 𝑍𝑡𝑋𝑡
𝐻(Xt𝑋𝑡

𝐻)−1                                    (4) 

 
However, increasing the amount of pilot symbols 

(Xt) improves quality of channel estimates while in 

same time decreasing transmission efficiency. 

4. STBC decoder using maximum ratio 

combiner (MRC) 

Two STBCs (G2, G4) are used in this work to test 

the robustness of the suggested approach, which is 

given as: 

4.1 (2× 𝑵𝒓) 

Alamouti STBC (G2) is given as an example to 

illustrate MRC decoder works. If a matrix coefficient 

of 2 × Nr MIMO channel is shown as: 

  

H = [ℏ1 ℏ2] 

 

where ℏi is ith column of H.  

The received signals can then be classified as: [21] 

 

𝑍1 = [ℏ1 ℏ2] [
𝑠1

𝑠2
] + 𝑛𝑜𝑠𝑒, 𝑎𝑡 𝑡 = 1                 (5) 

 

When the channel coefficients are still constant (a 

flat semi-fixed fade channel), the received signals can 

be then classified as [10]: 

 

𝑍2 = [ℏ1 ℏ2] [
−𝑠2

∗

𝑠1
∗ ] + 𝑛𝑜𝑠𝑒, 𝑎𝑡 𝑡 = 2               (6) 

 

Eq. (6) can be rewritten by using the simple 

mathematical modification as: 

 

(𝒁𝟐)∗ = [−(ℏ2)
∗ (ℏ1)

∗] [
𝑠1

𝑠2
] + 𝑛𝑜𝑠𝑒                  (7) 

 

The combining of Eqs. (5) and (7) together to 

obtain (8) is the main goal of the MRC as: 

 

[
𝑍1

𝑍2
] = [

  ℏ1     ℏ2

−(ℏ2)
∗ (ℏ1)

∗] [
𝒔𝟏

𝒔𝟐
] + 𝑛𝑜𝑖𝑠𝑒                 (8) 

4.2 (4× 𝑵𝒓): 

In the same manner, the MRC for the generator of 

four transmitter antenna G4. Let the channel 

coefficient matrix be denoted as 𝐻 =
[ℏ1 ℏ2 ℏ3   ℏ4] where the ith row of H matrix is 

ℏ𝑖 then the received signals are:  

- at t=1 

 

𝑍1 =

[
 
 
 
 
𝑍1

1

𝑍2
1

𝑍3
1

𝑍4
1]
 
 
 
 

= [ [  ℏ1 ℏ2 ℏ3   ℏ4]] [

𝑆1

𝑆2

𝑆3

𝑆4

] + 𝑛𝑜𝑖𝑠𝑒 

(9) 

            

- at t=2, if channel still constant then: 

 

𝑍2 =

[
 
 
 
 
𝑍1

2

𝑍2
2

𝑍3
2

𝑍4
1]
 
 
 
 

= [ ℏ1 ℏ2 ℏ3   ℏ4] [

−𝑆2

𝑆1

−𝑆4

𝑆3

] + 𝑛𝑜𝑖𝑠𝑒 

(10) 

 

By using suitable modification Eq. (11) can be 

rewritten as: 

 

𝑍2 = [ℏ2 −ℏ1    ℏ4    − ℏ3] [

𝑆1

𝑆2

𝑆3

𝑆4

] + 𝑛𝑜𝑖𝑠𝑒       (11) 

 

For the same path found the other row of  𝐻𝑀𝑅𝐶 

matrix: 

 

[
 
 
 
 
 
 
 
 

𝑍1

𝑍2

𝑍3

𝑍4

(𝑍5)∗

(𝑍6)∗

(𝑍)∗

(𝑍8)∗]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 

ℏ𝟏 ℏ𝟐 ℏ𝟑 ℏ𝟒

ℏ𝟐 −ℏ𝟏 ℏ𝟒 −ℏ𝟑

ℏ𝟑 −ℏ𝟒 −ℏ𝟏 ℏ𝟐

ℏ𝟒 ℏ𝟑 −ℏ𝟐 −ℏ𝟏

(ℏ𝟏)
∗ ( ℏ𝟐)

∗ (ℏ𝟑)
∗ (ℏ𝟒)

∗

(ℏ𝟐)
∗ (−ℏ𝟏)

∗ (ℏ𝟒)
∗ (−ℏ𝟑)

∗

(ℏ𝟑)
∗ (−ℏ𝟒)

∗  (−ℏ𝟏)
∗ (ℏ𝟐)

∗

(ℏ𝟒)
∗ (ℏ𝟑)

∗  (−ℏ𝟐)
∗ (−ℏ𝟏)

∗]
 
 
 
 
 
 
 
 

[

𝑆1

𝑆2

𝑆3

𝑆4

] + 𝑛𝑜𝑖𝑠  

(12) 
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Figure. 2 The MRC as mixing system 

 

In general, the MRC equation for any OSTBC 

with (m) input samples S1, S2..., Sm might be expressed 

as [12]: 

 

ZMRC = HMRC ∗ ⌈

S1

S2

:
Sm

⌉ + 𝑛𝑜𝑖𝑠𝑒                        (13) 

 

⌈

S1

S2

:
Sm

⌉ =
1

||𝐻𝑀𝑅𝐶||
(𝐻𝑀𝑅𝐶)𝐻  ZMRC                      (14) 

 

It can be noticed from previous equations that for any 

an OSTBC, the matrix of MRC is orthogonal also, 

which means that(𝐻𝑀𝑅𝐶)𝐻𝐻𝑀𝑅𝐶 = ||𝐻𝑀𝑅𝐶||𝐼𝑚. The 

letter I represents the identity matrix, while the letter 

( )𝐻 represents the Hermitian operation. Since 𝐻𝑀𝑅𝐶 

is unitary matrix that made the optimum de mixing 

matrix is  𝐻𝑀𝑅𝐶
𝐻 , the MRC mixing system shown in 

Fig. 2. 

Every statistical way usually deal with complex-

number aren’t suitable and give bad performance 

therefore we will use real-imaginary (R-Im) 

decomposition for MRC model. 

5. Blind source separation based on kurtosis 

(BSS) 

Blind signal separation (BSS) is a technique for 

recovering a single source signal from a noisy mixture 

of received signals. Kurtosis-based BSE employs a 

straightforward criterion: the sum of two independent 

random variables generally has a distribution that is 

more Gaussian than either of the two original random 

variables (Central Limit Theorem). As a result, BSS 

is predicated on the notion that source signals have 

non-Gaussian distributions. The classical measure of 

non-Gaussianity is normalized kurtosis where for real 

random variable u it could be define as [23]. 

 

 𝑘𝑢𝑟𝑡(𝒖) =
𝐸{𝒖4}

(𝐸{𝒖2})2
− 3                                        (15) 

Usually, kurtosis-based ICA works for a one-unit 

ICA (extracting a single source 𝒖). �̆� = 𝒘𝑹  Is the 

solution for one unit ICA transformation, (where �̆�  
represented the estimated of signal source) can be 

reduced to optimization problem that seeks the best 

𝑛𝑟  dimensional vector (𝒘𝒐𝒑𝒕)  that maximizes the 

absolute kurtosis measuring. In Other format, the 

absolute kurtosis is used as the cost function to assess 

a quality of the mixing vector (𝒘) where: 

 

𝑖𝑓 𝒘 =  {
𝒘𝑜𝑝𝑡 → |𝑘𝑢𝑟𝑡(𝒘𝑹)| ≈  𝑚𝑎𝑥

𝑒𝑙𝑠𝑒 → |𝑘𝑢𝑟𝑡(𝒘𝑹)| <  𝑚𝑎𝑥
       (16) 

 

There are two methods for solving optimization 

problems: the first is the Gradient Ascent-Decent 

Algorithm (GAA) and evolutionary search algorithm. 

6. GAA for kurtosis based ICA 

The gradient is a 1st order optimization method 

which tries to discover the function's maximum and 

minimum values by continually updating the value of 

w with the cost function's first-order differential. To 

begin, determine the value of 
𝜕 𝑘𝑢𝑟𝑡(�̆�)

𝜕𝑤
 should 

evaluate, Then, for each iteration (it), w will be 

updated recursively using: 

 

𝛥𝒘𝑖𝑡 = −𝜇
𝜕 𝑘𝑢𝑟𝑡(�̆�)

𝜕𝒘
                                           (17) 

 

where μ is the study rate.  

The famous update formula is provided by the GAA: 

 

𝒘𝒊𝑡+1 = 𝒘𝒊𝑡 − μ𝝋(𝒖)𝑹𝑻                                   (18) 

 

where 𝝋(𝒖) is the nonlinear function and  𝜇 is 

the learning rate (step size) that can be defined as:  

 

𝜑(𝒖) =
𝒖

𝐸{𝒖𝟐}
−

𝒖3

𝐸{𝒖𝟒}
                                          (19) 

 

The de-mixing vector will be considered to be w1 

at the end of each iteration. The other de mixing 

vectors 𝑤2 , 𝑤3, … . , 𝑤𝑛𝑠
 can be easily calculated 

utilizingstructure of mixing matrix for MIMO-STBC 

(one source extraction criteria).  

The weighted vector must be Normalized for 

each iteration as follows:  𝒘𝒊𝑡+1 =
𝒘𝒊𝑡+1

‖𝒘𝒊𝑡+1‖
 , in the end, 

the algorithm can be stopped if: it exceeds the 

maximum number of iterations or (𝒘𝒊𝑡+1) converges 

to a specified value, for example: 

 

|𝟏 − |𝒘𝒊𝒕 × (𝒘𝒊𝒕+𝟏)
𝑻|| ≤ 𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅          (20) 
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7. Proposed MIMO STBC system mixing 

model 

To use the BSS method in the decoding of MIMO 

STBC system, MRC decoder in Eq. (13) will be 

regarded as the noisy real-value mixing system. and 

the complex number will then be removed from the 

equation using real-imaginary (Re-Im) 

decomposition. Assume the 𝑖𝑡ℎ  complex source is  

𝑺𝒊 = 𝒖𝒊 + 𝒋𝒖𝒌+𝒊 where 𝑢𝑖 is the real part of 𝑺𝒊,  𝒖𝒌+𝒊 

is the imaginary part of 𝑺𝒊 , and i= 1, 2, ……, k. This 

decomposition will deduce a 𝑛𝑠 (where 𝑛𝑠 = 2𝑘) real 

value sources arranged as following: 

 

 𝑈 =

[
 
 
 
 
 

𝒖𝟏

:
𝒖𝒌

𝒖𝒌+𝟏

:
𝒖𝒏𝒔 ]

 
 
 
 
 

=

[
 
 
 
 
 
 
 
𝑅𝑒 {

S1

S2

:
Sk

}

𝐼𝑚 {

S1

S2

:
Sk

}

]
 
 
 
 
 
 
 

                                (21)  

 

Similarly, 𝑍𝑀𝑅𝐶  can divied into 𝑛𝑟  real value 

combinations in the following manner: 

 

  𝑅 = [
𝑅𝑒{𝑍𝑀𝑅𝐶}

𝐼𝑚{𝑍𝑀𝑅𝐶}
] = [

𝒓𝟏

𝒓𝟐

:
𝒓𝒏𝒓

]                                 (22) 

 

Consider a linear mixing system with 𝑛𝑠  input 

sources U and 𝑛𝑟 output mixes received signals R, the 

𝑛𝑟 × 𝑛𝑠  mixing matrix M should look like this:  

 

𝑀 = [
𝑅𝑒{𝐻𝑀𝑅𝐶} −𝐼𝑚{𝐻𝑀𝑅𝐶}

𝐼𝑚{𝐻𝑀𝑅𝐶}   𝑅𝑒{𝐻𝑀𝑅𝐶}
]                        (23) 

 

The whole noisy real values mixing system looks 

like the following equation: 

 

𝑅 = 𝑀𝑈 + 𝑛𝑜𝑖𝑠𝑒                                               (24) 

 

The fact that the mixing matrix is orthogonal  

 

 
Figure. 3 R-Im decomposition model for MIMO STBC 

means that the optimum un-normalized de mixing 

matrix 𝑤𝑜𝑝𝑡 should equal 𝑀𝑇 , as illustrated in Fig. 4b. 

8. Statistical analysis of proposed model 

A mathematical representation of a QPSK signal 

with a carrier amplitude of  𝐴𝐶  is 𝑆𝑖 =
𝐴𝑐

√2
{(∓1) +

𝑗(∓1)} . After Source Decomposition all sources 

(normalized sources) are belong to two values 𝑢𝑖 ∈
{−1,+1}. To put it another way, any source may be 

represented statistically as a discrete r.v. with two 

level binomial distributions as illustrated in Fig. 4. 

Note that PU (u = -1) = PU (u = +1) = 0.5 is 

assumed because in a communication system, any 

source encoding produces a binary signal (modulator 

input) with an equal likely distribution. The expected 

statistic for U, according to traditional statistical 

computation analysis: 

All sources are sub-Gaussian.  

1- The variance is 0.5 and the mean value is 0. 

2- For each source, the normalized Kurtosis is 2 

3- The entropy for each source is 1. 

4- Uncorrelated the All source. 

Receiving signals R can be represented as a 

continuous random variable (r. v.) with a Gaussian 

distribution probability density function, according to 

central limit theory. The expected statistic for 𝑹 are: 

 

1) Because all sources and noise are zero, the mean 

value of R is zero.  

 

2)  Variance of 𝑹 depending on noise variance (SNR 

value). 

 

3)  Entropy of  𝑹 is greater than entropy of 𝑼. 

 

4)  All mixtures received signals are correlated signals. 

 

The predicted signal can be approximated as �̃� =
𝜶𝒖 + 𝒏𝒐𝒊𝒔𝒆, because the de-mixing method isolates  

 

 
(a) 

 
(b) 

Figure. 4 (a) Probability mass function of a discrete r.v.u 

and (b) is the probability density function of  �̃�. 
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the mixture signals without reducing additive noise. 

The predicted PDF for estimated signal �̃� is based on 

the additive probity of the two variables is: 

 

 𝑃𝑈(�̃�) = 𝑃𝑈(𝑢) ⊛ 𝑃𝑛𝑜𝑖𝑠𝑒                                    (25) 

  

Where the convolution operation is ⊛ 𝑎𝑛𝑑 

𝑃𝑛𝑜𝑖𝑠𝑒 is PDF of noise (zero mean Gaussian noise), 
the expected PDF of �̃� can be represent as shown in 

Fig. 4 (b). 

9. Improve kurtosis based ICA using water 

cycle algorithm (WCA) 

 

Figure. 5 Water cycle algorithm 

In this section we try to combine one unit kurtosis 

ICA optimization problems, with a high dimensional 

search-space, using WCA algorithms of optimization. 

Most of optimization algorithms mimic physical or 

biological processes. Some of most famous of these 

algorithms are ant colony optimization [ACO], 

genetic-algorithm [GA], particle swarm optimization 

[PSO] and bacterial foraging algorithm [BFA]. There 

is, however, no specific algorithm for achieving the 

optimum answer to all optimization issues. Some 

algorithms provide a better answer than others in 

certain situations. In this paper the water cycle 

algorithm was used to improve the efficiency of the 

LS algorithm, where kurtosis was used as an objective 

function to reach to the optimal solution. 

The WCA is formed by watching a water cycle 

process and simulates the flow of rivers and streams 

toward the sea. Assume that rain or precipitation has 

occurred. Following raining process, a random 

population (pop) of the design variables (i.e., streams 

population) is produced. The better individual (i.e., 

best stream) is picked based on having the smallest 

cost function (for the minimization issues), is chosen 

as the sea [22]. Then, the number of good streams (i.e., 

the cost function values near to the current best 

record) is chose as rivers, while the other streams flow 

into the rivers and the sea. WCA can be simplified in 

Fig. 5. 

Starting the optimization method necessitates the 

formation of an initial population, which is 

representing by a matrix of streams of size Npop × N, 

hence, this matrix, which is generated randomly, is 

given as: 

 

𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑝.=

[
 
 
 
 
 
 
 
 

𝑠𝑒𝑎
𝑅𝑖𝑣𝑒𝑟1
𝑅𝑖𝑣𝑒𝑟2

⋮
𝑆𝑡𝑟𝑒𝑎𝑚1

𝑆𝑡𝑟𝑒𝑎𝑚2

⋮
.

𝑆𝑡𝑟𝑒𝑎𝑚𝑁𝑃𝑂𝑃]
 
 
 
 
 
 
 
 

 

=

[
 
 
 
 

𝑥1
1 𝑥2

1

𝑥1
2 𝑥2

2 ⋯
𝑥𝑁

1

𝑥𝑁
2

⋮ ⋱ ⋮

𝑥1
𝑁𝑃𝑂𝑃 𝑥2

𝑁𝑃𝑂𝑃 ⋯ 𝑥𝑁
𝑁𝑃𝑂𝑃

]
 
 
 
 

       (26) 

 

where Npop and N are the total population number and 

the number of design variables, respectively. For 

continuous and discrete issues, each of the decision 

variable values (x1, x2, ..., xN) can be expressed as a 

floating-point number (real values) or as a 

predetermined set. The cost of a stream is determined 
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by evaluating the cost function (C), which is shown 

below: 

 

Ci = Costi = f (xi
1, x

i
2, …, xi

N ), i =1, 2, .., Npop      (27) 

 

The cost function is absolute kurtosis (that given 

in Eq. (15)) for each individual.  

The initial sea position should equal to the first 

column of MLS, then the other population (the position 

of streams and rivers) are generated randomly around 

the initial position of sea where distance doesn’t 

exceed ±1 initial value This distance is terrifying  

 

 
Figure. 6 Initialization for WC algorithm 

 

 
(a) 

 
(b) 

Figure. 7 The WCA Optimization: (a) Streams flowing 

into a specific river and (b) WCA Optimization 

schematically. 

enough that the exploring space does not reach the 

maximum points of the neighbor.as shown in Fig. 6. 

Npop are generated in the initial stage. The sea and 

rivers are then chosen from a group of the best 

individuals Nsr (minimum values). The sea is believed 

to be the stream with the lowest value (objective 

function) among the others. In actuality, Nsr is the sum 

of the number of rivers and a single sea (as stated by 

the user).  

A rest of population is viewed as a stream that 

runs into rivers or directly into the sea. Each river 

receives water from streams based on the size of the 

flow. As a result, the quantity of water that enters the 

river and/or the sea fluctuates from one stream to 

another. Rivers also flow to the sea, that is the most 

sloped region. 

To assign streams to rivers and the sea based on 

the intensity of the flow, use the following formula: 

 

𝐶𝑜𝑠𝑡𝑖 = 𝑓(𝑠𝑡𝑟𝑒𝑎𝑚𝑖) = 𝑓(𝑥1, 𝑥2, 𝑥3, … , 𝑥4)        (28) 

  

where i = 1, 2, 3, ……, N       
 

𝐶𝑛 = 𝐶𝑜𝑠𝑡𝑛 − 𝐶𝑜𝑠𝑡𝑁𝑠𝑟+1 , 𝑛 = 1,2,3,… ,𝑁𝑠𝑟    (29) 

 

Eq. (30) is used to determine the designated 

streams for each river and sea. 

 

 𝑁𝑆𝑛 = 𝑟𝑜𝑢𝑛𝑑 {|
𝐶𝑛

∑ 𝐶𝑜𝑠𝑡𝑖
𝑁𝑠𝑟
𝑖=1

| × 𝑁𝑃𝑂𝑃} , 𝑛 = 1,2, , 𝑁𝑠𝑟  

(30) 

 

where Nsr denotes the streams number that feed into 

the specified rivers and sea.  

Fig. 7 shows the WCA optimization process. 

The following equation is used to compute the 

streams for each river and the sea [20]. 

 

 𝑁𝑆𝑛 = 𝑟𝑜𝑢𝑛𝑑 {|
𝐶𝑜𝑠𝑡𝑛−𝐶𝑜𝑠𝑡𝑁𝑠𝑟+1

∑ 𝐶𝑛
𝑁𝑆𝑅
𝑖=1

| × 𝑁𝑆𝑡𝑟𝑒𝑎𝑚𝑠}  (31) 

            

where , 𝑛 = 1,2, … ,𝑁𝑠𝑟  and the  𝑁𝑠𝑟  is number of 

streams that feed into the specified rivers and the sea. 

Fig. 7(a, b) depicts a schematic representation of a 

stream moving towards a specific river and the WCA 

optimization method. For WCA's exploitation phase 

the following new stream and river sites have been 

proposed [19]: 

 

 �⃗�𝑆𝑡𝑟𝑒𝑎𝑚
𝑖+1 = �⃗�𝑆𝑡𝑟𝑒𝑎𝑚

𝑖 (𝑡) + 𝑟𝑎𝑛𝑑 × 𝐶 × (�⃗�𝑠𝑒𝑎
𝑖 (𝑡) −

�⃗�𝑆𝑡𝑟𝑒𝑎𝑚
𝑖 (𝑡))                                                                             (32) 
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�⃗�𝑆𝑡𝑟𝑒𝑎𝑚
𝑖+1 = �⃗�𝑆𝑡𝑟𝑒𝑎𝑚

𝑖 (𝑡) + 𝑟𝑎𝑛𝑑 × 𝐶 × (�⃗�𝑅𝑖𝑣𝑒𝑟
𝑖 (𝑡) −

�⃗�𝑆𝑡𝑟𝑒𝑎𝑚
𝑖 (𝑡))                                                          (33) 

                                        

�⃗�𝑅𝑖𝑣𝑒𝑟
𝑖+1 = �⃗�𝑅𝑖𝑣𝑒𝑟

𝑖 (𝑡) + 𝑟𝑎𝑛𝑑 × 𝐶 × (�⃗�𝑠𝑒𝑎
𝑖 (𝑡) −

�⃗�𝑅𝑖𝑣𝑒𝑟
𝑖 (𝑡))                                                             (34) 

   

where t is the iteration index, 1 < C < 2 (where 2 is 

the best value for C), where rand is the uniformly 

distributed random integer between the numbers 0 

and 1. Eqs. (32) and (33) are for the streams that run 

into sea and their comparable rivers. If the solution of 

stream is better than of its connected river the places 

of river and stream are swapped (i.e., the stream 

transforms into a river, and the river transforms into 

the stream). A river and the sea can be exchanged in 

a similar way. To avoid early (immature) convergence 

to local optima, the evaporation process operator is 

also introduced (exploitation phase Evaporation is the 

process by which sea water evaporates when 

rivers/streams flow into it. This causes fresh 

precipitation. As a result, we must determine if the 

river/stream is close enough to the sea for evaporation 

to occur. For this reason, the evaporation condition 

between a river and the sea is measured using the 

following criterion: 

 

 𝑖𝑓 ||�⃗�𝑠𝑒𝑎
𝑖 − �⃗�𝑅𝑖𝑣𝑒𝑟

𝑖 || < 𝑑𝑚𝑎𝑥 , 𝑖 = 1,2,3, … ,𝑁𝑆𝑅 − 1  

(35) 

 

where dmax is a tiny integer around zero. The rainy 

process is employed after evaporation, and fresh 

streams emerge in diverse locations (similar to 

mutation in the GAs). Indeed, the evaporator operator 

is in charge of the exploratory phase in the WCA. To 

designate new positions of newly created streams, a 

uniform random search is utilized. A big dmax number 

discourages future searches, but a lower value 

encourages search intensity near the sea. As a result, 

dmax determines the intensity of the search near the 

water (i.e., best obtained solution). The value of dmax 

decreases adaptively as seen below [20]: 

 

𝑑𝑚𝑎𝑥
𝑖+1 = 𝑑𝑚𝑎𝑥

𝑖 −
𝑑𝑚𝑎𝑥

𝑖

𝑀𝑎𝑥 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛    
                           (36) 

 

 where t = 1, 2, ……Max_iter 

 

The evolution of the WCA optimization process 

is depicted in Fig. 7 (b), with circles, stars, and 

diamonds representing streams, rivers, and the sea, 

respectively. The white (empty) shapes represent the 

new locations of streams and rivers. 

There are two ways to end the evolution process.  

1- The first one: variance of cost function for sea 

position ≤ threshold=10−5. 

2- The second: if number of iterations ≥  max. 

iteration.  

In the evolution step optimum solution for WCA 

(after iteration stopped) is 𝒘𝒐𝒑𝒕 = 𝑿𝒈. 

10. Simulation and results 

In this paper, the QPSK - STBC (2× 1, 2×2, 2×4, 

4×2 and 4×4) MIMO channel was implemented using 

the MATLAB-2018 software. The decoding and 

estimating performances are analysed using the BER 

and the number of iterations. In this work, a random 

data generator generates digital information bits 

(frame by frame), where the frame length changes 

based on the situation. The QPSK modulator was used 

to modulate these frames, resulting in the different 

amount of the symbols for each frame. 

The first Np values will be used as the training 

symbols, with the remaining frame length Nt encoded 

by the STBC encoder serving as the data symbol. Two 

and four antennas are presented in this paper for 

transmitting encoded signals over a MIMO STBC 

Rayleigh fading channel, the received signal is mixed 

with its complex AWGN. The training symbols are 

used to compute the channel estimate coefficient in 

the LS channel estimation. At the receiver end, the 

MRC is being used to decode the other received 

symbols, which are then transmitted to the QPSK 

demodulator. In order to calculate a BER for the given 

SNR, the coded bits are compared to the original data 

bit frame. Second, simple criteria based on the use of 

𝐻𝐿𝑆  (calculated channel coefficient using a LS 

estimator with restricted experimental sequence of 

training) is used as the beginning value of the 

statistically based blind channel estimator to produce 

a semi blind channel estimator. The performance of 

channel estimation for MIMO STBC was described 

using nine parameters: number of transmitter 

antennas, number of receiver antennas, SNR, BER, 

the number of iterations, numeral of frame, number of 

symbols/frames, number for pilot, and sampling rate 

as follows [15, 16]. 

10.1 BER performance of ICA algorithms  

This section compares the BER performance for 

channel estimation when the kurtosis type of ICA 

method is used for one source to the BER 

performance for channel estimation when the kurtosis 

is coupled with the WCA as follows: 
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A- 𝟐 × 𝟏, 𝑵𝒑 =8: 

Using kurtosis-based ICA with number of 

samples/frames = 1024, the simulation result is shown 

in Fig. 8 (a, b) 

B- 𝟐 × 𝟐, 𝑵𝒑 =8: 

By using kurtosis-based ICA and number of 

samples/frames = 1024, the simulation result is shown 

in Fig. 9 (a, b) 

C- 𝟒 × 𝟐, 𝑵𝒑 =8: 

By using kurtosis-based ICA and number of 

samples/frames = 1024, the simulation result is shown 

in Fig. 10 (a, b) 

D- 𝟒 × 𝟒, 𝑵𝒑 =8: 

By using kurtosis-based ICA and number of 

samples/frames = 1024, the simulation result is shown 

in Fig. 11 (a, b). 

 

                
(a)                                                                                                     (b) 

Figure. 8 (a) BER performance of one source kurtosis based ICA (b) average number of iterations for kurtosis one source 

 

        
(a)                                                                                               (b) 

Figure. 9 (a) BER performance of one source kurtosis based ICA (b) average number of iterations for kurtosis one source 

 

               
(a)                                                                                                     (b) 

Figure. 10 (a) BER performance of one source kurtosis based ICA (b) average number of iterations for kurtosis one source 
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(a)                                                                                                  (b) 

Figure. 11 (a) BER performance of one source kurtosis based ICA and (b) average number of iterations for kurtosis one 

source 

 

             
(a)                                                                                                     (b) 

Figure. 12 (a) BER performance of one source WCA-kurtosis based ICA and (b) average number of iterations for 

WCA-kurtosis one source. 

 

10.2 Comparison between BER performance of 

WCA-kurtosis and BER performance kurtosis  

In this section, the BER performance of WCA-

kurtosis and kurtosis-ICA had been compared in 

terms of BER performance and average number of 

iterations with in SNR varied numbers of frames.  

A- 𝟐 × 𝟏, 𝑵𝒑 =8: 

By using WCA-kurtosis based ICA and number 

of samples/frames = 1024, the simulation result is 

shown in Fig. 12 (a, b). 

From the calculation of BER optimization at 

10−2 for the two antennas at the transmitter, we show 

that the performance of the proposed algorithm using 

WCA-kurtosis is better than the performance of the 

LS algorithm by 1.6 dB at the length of the 1024 

frame which is shown in Fig. 12 (a). The performance 

of the proposed algorithm using kurtosis-ICA shows 

0.6 dB better than the LS algorithm in the 1024 frame 

length shown in Fig. 8 (a). 

B- 𝟐 × 𝟐,𝑵𝒑 =8: 

By WCA-kurtosis based ICA and number of 

samples/frames =1024, the simulation result is shown 

in Fig. 13 (a, b). 

From the calculation of BER optimization at 

10−4 for the two antennas at the transmitter, we show 

that the performance of the proposed algorithm using 

WCA-kurtosis is better than the performance of the 

LS algorithm by 1.5 dB at the length of the 1024 

frame which is shown in Fig. 13 (a). The performance 

of the proposed algorithm using kurtosis-ICA shows 

1db better than the LS algorithm in the 1024 frame 

length shown in Fig. 9 (a). 

C- 𝟒 × 𝟐, 𝑵𝑷=8: 

By using WCA-kurtosis based ICA and number 

of symbole/frame = 1024, the simulation result is 

shown in Fig. 14 (a, b). 

From the calculation of BER optimization at 

10−4 for the tow antenna at the transmitter, we show 
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that the performance of the proposed algorithm using 

WCA-kurtosis is better than the performance of the 

LS algorithm by 2.1db at the length of the 1024 frame 

which is shown in Fig. 14 (a) The performance of the 

proposed algorithm using kurtosis-ICA shows 1.2dB 

better than the LS algorithm in the 1024 frame length 

shown in Fig. 10 (a). 

D- 𝟒 × 𝟒, 𝑵𝑷=8: 

By using WCA-kurtosis based ICA and number 

of symbole/frame = 1024, the simulation result is 

shown in Fig. 15 (a) and (b). 

 

 

 

                   
(a)                                                                                         (b) 

Figure. 13 (a)BER performance of one Source WCA-kurtosis based ICA and (b) average number of iterations for WCA-

kurtosis one source 

 

                 
(a)                                                                                               (b) 

Figure. 14 (a) BER performance of one source WCA-kurtosis based ICA and (b) average number of iterations for WCA-

kurtosis one source 

 

                 
(a)                                                                                              (b) 

Figure. 15 (a) BER performance of one source WCA-kurtosis based ICA and (b) average number of iterations for 

WCA-kurtosis one source. 
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From the calculation of BER optimization at 

10−4 for the two antennas at the transmitter, we show 

that the performance of the proposed algorithm using 

WCA-kurtosis is better than the performance of the 

LS algorithm by 2.2 dB at the length of the 1024 

frame which is shown in Fig. 15 (a) The performance 

of the proposed algorithm using kurtosis-ICA shows 

2.8 dB better than the LS algorithm in the 1024 frame 

length shown in Fig. 11(a). 

11. Conclusion 

This study introduces a fresh method for the 

direct decoding the MIMO STBC system based on 

modelling MRC as a mixing function. This method 

eliminates the requirement for the separate estimator. 

Despite fact that the modern suggested decoder is 

considerably more complex to implement than 

existing decoders, the new decoder, according to 

MRC, is better. By using fewer pilot symbols, BER 

performance can be improved. An MRC model is 

used to decode this data. For BSS techniques, the 

matrix of channel mixes is used instead of a mixed 

matrix. Despite the fact that a MIMO channel has 

fewer receive antennas than a broadcast channel, the 

new model allows for the usage of BSS. The most 

important element of the method is that the entire 

system is decoded using only one source. This 

criterion reduces decoding time to 1/𝑛𝑠 of a second. 
The problem of source and sign ambiguity in BSS 

solved by use a proper initialization of a de mixing 

vector. 

The standard WC algorithm is modified in this 

study by developing a new update formula that 

incorporates population behaviour and the GAA 

algorithm. It has also been discovered that integrating 

WCA with the kurtosis BSS based on one source 

extraction offers a high speed, low complexity, and 

BER 0ptimized solution. As a consequence, any 

MIMO-STBC system will operate with the proposed 

decoder. 
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