
Received: May 20, 2021. Revised: July 28, 2021. 504

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.44

SocioChain: A Distributed Ledger-based Social Framework

for the Internet of Things

Ali Sohofi1* Aliasghar Amidian2 Yaghoub Farjami1

1 Department of Computer Engineering and Information Technology, University of Qom, Qom, Iran

2 Faculty of Post and Telecommunications (Ministry of ICT),
University of Applied Science and Technology, Tehran, Iran

* Corresponding author’s Email: a.sohofi@stu.qom.ac.ir

Abstract: The core vision of the Internet of Things (IoT) is to connect objects into a broad network and establish

interactions between them to enhance society and human life through the society of objects. As this network expands

and the number of connected objects increases continuously, more efficient, secure, and scalable architectures will be

needed. Social IoT (SIoT) is a promising IoT architecture, which is based on establishing social relationships between

objects. However, being centralized is one of its drawbacks, which leads to challenges like scalability, latency, and

privacy issues. Distributed ledger technologies, especially blockchain, are distributed architectures that have received

attention in recent years. This paper proposes a fully decentralized SIoT-based architecture for the IoT, exploiting a

two-layer distributed ledger structure. This architecture is privacy-preserving and scalable; besides, it provides social

relationships between objects. These social relationships are stored as transactions on the ledger. This study also

calculates the required space to store ledger data locally. The number of established relationships between the objects

is estimated by simulation. The results indicate that less than 10% of all possible relationships are based after 1000

days. Hence, it is possible to store ledger data locally. This approach leads to ten times less latency comparing to

previous SIoT-based architectures for 10000 devices.

Keywords: Internet of things, Blockchain, Distributed ledger technology, Smart contract, Distributed architecture.

1. Introduction

Since Kevin Ashton introduced the Internet of

Things concept in 1999, it has been developed

dramatically. IoT is currently being used in various

fields and is expected to play a more critical role in

all aspects of human life [1]. It is predicted that more

than 41 billion devices will be connected to and

interact with each other through the IoT by 2025 [2].

Hence, an efficient IoT solution requires specific

capabilities, including full interoperability among

heterogeneous objects [3] and efficient service

composition and discovery [4, 5]. An IoT architecture

that has promised such capabilities is SIoT [6, 7]. In

this architecture, a set of social relationships has been

defined between objects. Each object interacts with

other objects based on these relationships. Improving

network navigability, enhancing scalability,

establishing a level of trustworthiness, and the

possibility of using social network analysis models in

investigating IoT issues, are among the advantages of

converging the concepts of social networks with IoT

[8].

In contrast, however, the SIoT is a centralized

architecture. Centralized architectures, which are

based on the central server and cloud computing,

utilizing effectively in some cases. Nevertheless,

challenges such as flexibility, scalability, latency,

privacy, presenting the central server as a single point

of failure, and the possibility of information loss are

some of the drawbacks of such architectures [9–11].

Distributed architectures have been introduced as the

key to solving some fundamental challenges of IoT

[12].

With the emergence of digital currencies,

especially Bitcoin [13], the concepts of blockchain

Received: May 20, 2021. Revised: July 28, 2021. 505

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.44

and distributed ledger technology (DLT) have

attracted much attention in recent years. DLT is a

secure, distributed, and tamper-resistant structure that

can also be privacy-preserving [14, 15]. DLT is

widely used in various domains, such as energy

management, supply chain management, and

healthcare [16]. Moreover, thanks to its superior

characteristics, DLT can be considered an

appropriate solution to dealing with IoT challenges,

particularly the challenges of centralized architecture

[17]. The smart contract is a concept that can be

implemented using DLT. Smart contracts are scripts

that reside on the distributed ledger and can apply

rules and policies in a distributed, automatic, and

inevitable manner [18]. This paper has employed

DLT and smart contracts to implement the

relationships between objects in SIoT to introduce a

decentralized architecture for IoT.

The major contributions of this paper are as

follows:

• We proposed a fully decentralized architecture

based on social relationships by removing the

central server (i.e., single point of failure) from

the SIoT architecture and exploiting a two-level

distributed ledger structure. This strategy

improves the scalability, performance,

reliability, and security of SocioChain. User

privacy has also been taken into account in the

new architecture.

• We implemented objects relationships and SIoT

processes using DLT transactions and smart

contracts. It allows heterogeneous objects to

interact and interconnect autonomously based

on user-defined regulations. Also, it makes

transactions secure and tamper-proof.

Furthermore, in the proposed architecture, DLT

has been utilized simply as a module to store

relationships between objects; thus, SocioChain

is independent of the type of utilized DLT.

• We explored the possibility of storing ledger

data locally by analyzing the SWIM mobility

simulator’s results. Accordingly, we compare

the performance of the proposed architecture

with previous SIoT-based implementations.

The rest of the paper is organized as follows.

Section 2 reviews the related works. In section 3, the

SocioChain architecture is introduced, and then

objects’ social relationships, storing transactions on

the ledger and the resulting ledger’s size are

discussed. Section 4 is dedicated to the proposed

architectural simulation and analysis of the number

of relationships between objects. Finally, the

concluding remarks are described in section 5.

2. Related work

The concept of the SIoT is thoroughly discussed

in [7]. This architecture includes a network of smart

objects with relationships similar to human societies.

Objects in SIoT can exert automatic social

relationships with each other based on the owner’s

rules. The main thrust areas of the SIoT include

service discovery, network navigability, relationship

management, and trustworthiness management [8].

Besides, scalability and reliability are improved using

this architecture [19]. In addition to SIoT, other

studies have been conducted to embed social network

concepts into the IoT [20].

Several studies have been conducted in recent

years to address the SIoT limitations by reducing the

latency and increasing the scalability and flexibility.

Cicirelli et al. [21] introduced a Java-based platform

called iSapiens using the SIoT and edge-computing

concepts for smart environments. SIoT was used in

this platform to improve scalability and

interoperability. An intra-network interface layer was

introduced in the iSapiens platform using the edge

computing paradigm to provide a smart environment

to access the processing resources and local storage

with the least latency and bandwidth usage. Although

edge computing has been well applied in this

architecture, the central server of SIoT is still a main

part of the proposed scenario. Additionally, security

and privacy are not taken into account in architectural

design.

Lysis [22] is another SIoT-based architecture that

proposed a four-layer model using a multi-layered

structure from the iCore project [12]. In Lysis, objects

in the real-world layer are converted to several social

virtual objects in the virtual object layer using the

virtualization layer. They can have social

relationships with each other. This architecture uses

the platform as a service (PaaS) model and deploys

applications in the cloud environment. Even though

the proposed framework is valuable, establishing new

relationships based on existing ones is not supported

in this system [23]. Also, the deployment of social

virtual objects on the cloud can lead to centralized

architecture challenges.

A user-centered access control mechanism to

manage access control policies of the IoT is

introduced using social relationships between owners

and objects [24]. The architecture, called FOCUS, is

constructed on a blockchain that used an identity

management system to ensure security and privacy.

In this architecture, the blockchain is used to record

Received: May 20, 2021. Revised: July 28, 2021. 506

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.44

owner’s identities and store them on peers in a

trustless peer-to-peer network. The authors in [25]

proposed a dynamic privacy-preserving and

lightweight key agreement protocol for Vehicle-to-

Grid in the SIoT to address security vulnerabilities.

These studies focused on access control, security, and

privacy in SIoT, yet they have not proposed a solution

to the other challenges it faced.

Although several distributed architectures have

been proposed in the literature for IoT [26], new

architectures are introduced in recent years with the

advent of DLT, especially blockchain. In [27],

blockchain is integrated with the Internet of Vehicles

(IoV) to provide big and secure data storage. The

authors designed a multi-blockchain architecture in

which each blockchain stores part of the data. Novo

[28] provided a distributed access control system

based on blockchain. In this architecture, encrypted

data are stored on the blockchain. Accessing IoT data

is managed by a token-based method and established

policies in a smart contract. BeeKeeper [15] is an IoT

system based on blockchain. In this system, the server

processes user data and generates responses by

performing homomorphic calculations on the

information, but the server cannot get any data related

to user privacy from the handled information. While

these architectures have proposed specific solutions

to solve IoT challenges by utilizing DLT, to the best

of our knowledge, neither of them has highlighted the

establishment of social relationships between objects

using DLT.

3. Sociochain architecture

In this section, we discuss SocioChain in detail.

The proposed architecture structure is first introduced,

then the relationships and interactions between the

objects are brought. The transactions’ structure is

then presented, and finally, the size of the ledger is

analyzed.

3.1 An overview of the proposed architecture

Two distributed ledgers, including a private

distributed ledger (𝑃𝑟𝐷𝐿) and a public distributed

ledger (𝑃𝑢𝐷𝐿), were used in the SocioChain to

decentralize the SIoT architecture. All objects are on

the 𝑃𝑢𝐷𝐿 and have access to its data. 𝑃𝑢𝐷𝐿 is used

to access public services and data. On the other hand,

there is a 𝑃𝑟𝐷𝐿𝑢 for each user, 𝑢 , established and

managed by the user. Only devices connected to

𝑃𝑟𝐷𝐿𝑢 by the user have access to its data. In other

words, each object 𝑂 owned by user 𝑢 is connected

to two distributed ledgers; 𝑂 ∈ 𝑃𝑢𝐷𝐿 and 𝑂 ∈
𝑃𝑟𝐷𝐿𝑢 , and can receive and transmit data from/to

both ledgers. It should be noted that DLT is only used

to store transactions and execute smart contracts.

Accordingly, the implementation of 𝑃𝑢𝐷𝐿 and

𝑃𝑟𝐷𝐿𝑢 is independent of DLT. The only criterion

that needs to be met is to support the execution of

smart contracts. Furthermore, the address and

description of each service’s smart contract are

accessible in another distributed ledger called the

smart contract chain (SCC). All objects have access

to SCC to explore and discover services provided by

other objects on the 𝑃𝑢𝐷𝐿. Fig. 1 shows an overview

of the proposed architecture.

In the IoT, it is assumed that heterogeneous

objects with different processing and storage

capabilities are connected to the network. In the

Figure. 1 An overview of sociochain

Received: May 20, 2021. Revised: July 28, 2021. 507

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.44

SocioChain, three categories are defined for the

objects.

- Category 1 includes objects that are mobile and

have proper processing and communication

capabilities. Smartphones, tablets, and smart cars are

some examples of this category.

- Category 2 includes fixed objects that have proper

capabilities for processing, storage, and

communication. Examples include router modems,

network hard drives, smart TVs, and RSUs.

- Category 3 includes objects with poor capabilities

of either storage or processing. Sensors, actuators,

and RFID tags fall into this category.

To deal with the challenge of object heterogeneity,

we introduced administrators in the SocioChain

architecture. Administrator objects have proper

processing and communication capabilities, and

therefore, categories 1 and 2 can be considered as

administrator objects. The primary function of the

administrator is to perform activities that require

processing or remote communication. The following

subsection will elaborate on the functionalities of the

administrator’s objects.

3.2 Relationships and interactions in sociochain

Defined relationships in the SIoT [7] are used to

describe the relationships in SocioChain.

Parental object relationship (POR) is established

between objects from the same manufacturer and

with similar models. The manufacturer provides the

initial setting and configuration of the objects so they

can connect to the 𝑃𝑢𝐷𝐿.

Co-location object relationship (CLOR) is

established between objects with similar

geographical locations. This relationship does not

necessarily mean a cooperative relationship.

Co-work object relationship (CWOR) is

established between objects that work together to

perform a task or provide a service.

Ownership object relationship (OOR) is

established between objects having the same owner.

The owner of an object is determined in the

configuration procedure by the user.

Social object relationship (SOR) is defined

between the objects that their owners have social

relationships in the real world.

In addition to these relationships, a new

relationship called the administration object

relationship (AOR) is considered in this study. This

relationship is established between objects and their

administrators. An object administrator can manage

the object. It is not a one-to-one relationship, and one

object might have several administrators. Besides, an

object that is defined as an administrator might have

an administrator, too.

To decentralizing the proposed architecture, all

the relationships and interactions of the SIoT should

be implemented using the distributed ledgers.

Parental relationship: Manufacturers provide the

capability of connecting the objects to the 𝑃𝑢𝐷𝐿. To

this end, each manufacturer issues a pair of public and

private keys and a digital certificate for each

manufactured object. Manufacturers can create a

certificate authority (CA) hierarchy to make all the

issued keys compatible. The objects use the issued

certificate to interact with the 𝑃𝑢𝐷𝐿.

Ownership relationship: In addition to the

certificate issued by the manufacturer, another

certificate is issued by the owner (or the

administrator) for the object during the initial

configuration. Objects can interact with the 𝑃𝑟𝐷𝐿𝑢

of the owner (i.e., user 𝑢) using this certificate.

Private information of the owner’s objects is located

on this ledger. The objects can use this private

information in various ways, including calculating

trust factors, establishing new relationships,

collaborating with other objects, and discovering new

services.

Co-location and co-work relationships: Smart

contracts are used to implement these relationships.

The administrator prepares the contract terms (e.g.,

the relationship type, trust measurement criterion,

and the relationship duration) and deploys the smart

contract on the ledger. After that, no more

interactions are required between the object and its

administrator. After calling the smart contract by any

other objects, the CLOR and CWOR automatically

established between the objects that meet the contract

terms.

Social relationship: Social relationships can be

established using smart contracts. The terms of these

contracts can be adjusted based on the number of

visiting of another object, the interval between

consecutive visits, the visit duration, or other

conditions determined by the administrator. Like

CLOR and CWOR contracts, these contracts are

adjusted by the administrator and then are deployed

on the 𝑃𝑢𝐷𝐿. If the conditions are met, the SOR is

established after executing a smart contract without

the administrator’s intervention.

Besides the processes that establish relationships

between objects, three types of processes, namely,

new object entrance, service composition, and

service discovery, are conducted in SocioChain

architecture.

Any new object should be added to 𝑃𝑢𝐷𝐿 and its

owner’s 𝑃𝑟𝐷𝐿𝑢 . During device manufacturing, the

manufacturer issues a digital certificate and a pair of

Received: May 20, 2021. Revised: July 28, 2021. 508

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.44

public and private keys for the object. So, the object

can interact with the 𝑃𝑢𝐷𝐿. To adding the object to

𝑃𝑟𝐷𝐿𝑢 at the first step, the profiling will be

conducted, where the type of the object, its

capabilities (processing, storage, sensory, and

functional), and the services offered by it are

determined, and an ID along with a digital certificate

is created for interacting by 𝑃𝑟𝐷𝐿𝑢. The user does

this process via an administrator. This process can be

done automatically by the administrator based on the

user’s preferences without any intervention. The

administrator can then inference and set the object’s

initial relationships using the data available on two

ledgers and submit them on 𝑃𝑟𝐷𝐿𝑢 . Moreover, to

reduce delay and speed up the service searching and

ranking process, each object’s relationships and

friends are stored in a local database. The sequence

diagram of adding a new object is depicted in Fig. 2.

To composite services, the administrator can

deploy smart contracts on the 𝑃𝑢𝐷𝐿 . These smart

contracts include services offered by the objects. The

terms of these smart contracts are based on owner

preferences. Also, the administrator submits smart

contracts to SCC to make the services discoverable to

other objects. The administrator may aggregate

multiple services, extract a new service, and then

publish it as a smart contract.

Services can be discovered in two distributed

methods. The first method is searching on the SCC.

After deploying each smart contract on the 𝑃𝑢𝐷𝐿, the

object’s administrator publishes the description of the

deployed smart contract on SCC. In this way, smart

contracts will be accessible and explorable via SCC.

Users or objects can search in SCC to find the service

providers that can offer their desired service. The

second method is searching in a P2P manner among

friends. Search for the service is done by sending a

direct request to all friends of the object. If any of its

friends can fulfill the request, the service smart

contract description is sent in the response; otherwise,

the friend object will broadcast the request to its

friends. This process continues until the desired

service is founded. Both methods are fully distributed

and independent of a central element. It effaces the

single point of failure, and the service discovery

process may continue if any nodes failed.

Service ranking is carried out after the service

discovery process. It is a modular process in which

each object can customize this process based on user

preferences. Service ranking can be calculated based

on various parameters considering different weights.

These parameters can include the current

relationships between objects and the score of

previous interactions and utilized services.

Furthermore, trust computation algorithms [29] can

be employed to calculate the degree to which a

service can be trusted. These data can be extracted

from 𝑃𝑢𝐷𝐿 , 𝑃𝑟𝐷𝐿𝑢 , or the local database of the

object. Each user can define an algorithm for

extracting the services’ scores to rank them for his

own devices.

Finally, upon selecting the best service provider,

the service requester calls the service’s smart contract.

Service provisioning is automatically conducted

without a third party being involved based on the

smart contract’s conditions. If conditions are met, the

Figure. 2 Sequnce diagram of adding a new object

Received: May 20, 2021. Revised: July 28, 2021. 509

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.44

smart contract is executed, and the service requester

is provided with the service address and API access

key. The permissions level of the access key is

adjusted based on the conditions stipulated in the

smart contract. After the service is received, the

transaction’s outcome is eventually stored on 𝑃𝑢𝐷𝐿

and/or 𝑃𝑟𝐷𝐿𝑢. Although it is possible to submit and

share all the relationships between objects and

service requests on 𝑃𝑢𝐷𝐿, each of these transactions

can be recorded only on 𝑃𝑟𝐷𝐿𝑢 to protect privacy.

An essential capability of SocioChain is the use

of smart contracts. Besides creating interoperability

among objects, such contracts allow the automatic

establishment of all relationships between the objects

and service requests without user supervision or

intervention. Consequently, every user can create

predefined templates for smart contracts and deploy

them automatically using an administrator.

3.3 Transaction structure of ledgers

As mentioned before, the architecture proposed in

this study is independent of the utilized DLT.

However, we use blockchain for more simplicity in

describing the transaction structure in the SocioChain.

In SocioChain, three types of data are recorded on

ledgers. The first type is entries that determine the

parental relationship. Manufacturers add these entries

on the 𝑃𝑢𝐷𝐿. A block is added to the blockchain for

a certain number of devices produced by the

manufacturer. The manufacturer ID is included in the

block’s header, and the IDs of the manufactured

objects in a specified time interval are inserted into

the block’s body. It is not needed to do this procedure

at once by all manufacturers. They can adapt their

devices to this architecture and add them to the 𝑃𝑢𝐷𝐿

gradually.

The second type includes the entries that

determine the relationships between objects. As

mentioned in the previous subsection, after creating a

CWOR, CLOR, or SOR between two objects, a

transaction is recorded on 𝑃𝑢𝐷𝐿 or 𝑃𝑟𝐷𝐿𝑢 . The

transaction structure recorded in each ledger is

different. The transactions on the 𝑃𝑢𝐷𝐿 include the

public key and the signature of both objects. In

contrast, some relationships are only registered on the

𝑃𝑟𝐷𝐿𝑢 for privacy. In this case, both objects’ public

keys are included in the transaction, but the object on

the 𝑃𝑟𝐷𝐿𝑢 only signs the transaction. Each of these

processes is executed based on the smart contract

terms, and the transactions are recorded on the

corresponding ledger.

The structure of transactions on the 𝑃𝑢𝐷𝐿 is as

follows:

𝑇𝐼𝐷 || 𝑃𝑈𝑃𝐾1 || 𝑆𝐼𝐺1 || 𝑃𝑈𝑃𝐾2 || 𝑆𝐼𝐺2

|| 𝑅𝑇 || 𝐸𝑋 || 𝑁𝑜𝑛𝑐𝑒

𝑇𝐼𝐷 is the id of the transaction, which is the hash

of the transaction content. 𝑃𝑈𝑃𝐾1 and 𝑃𝑈𝑃𝐾2 are

the public keys of two objects for interacting on the

𝑃𝑢𝐷𝐿 . 𝑆𝐼𝐺1 and 𝑆𝐼𝐺2 represent the 𝑇𝐼𝐷 signed by

first and second objects, respectively. 𝑅𝑇 indicates

the relationship type (i.e., CWOR, CLOR, SOR). 𝐸𝑋

is used for extra information. It includes time

boundaries or other constraints in a relationship.

𝑁𝑜𝑛𝑐𝑒 follows this, which is a random number. An

overview of the process is shown in Fig. 3.

In this case, either one of the two objects or their

administrator calls the smart contract. The smart

contract needs the public key and the signature of the

first object as input. The first object calculates and

signs the 𝑇𝐼𝐷 by hashing 𝑅𝑇, 𝐸𝑋, and 𝑁𝑜𝑛𝑐𝑒 agreed

by both parties. Therefore, the service provider

cannot change these fields. The smart contract

validates the signature and the signed fields, and then

the transaction is submitted on the 𝑃𝑢𝐷𝐿 with the

specified structure. Fig. 4 (a) shows an example of

such smart contracts.

On the other hand, the structure of the recorded

transactions available on the 𝑃𝑟𝐷𝐿𝑢 is as follows:

Figure. 3 Flow of registering new relationship and requesting a service, on PuDL

Received: May 20, 2021. Revised: July 28, 2021. 510

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.44

𝑇𝐼𝐷 || 𝑃𝑅𝑃𝐾1 || 𝑆𝐼𝐺 || 𝑃𝑈𝑃𝐾2 || 𝑅𝑇 || 𝐸𝑋 || 𝑁𝑜𝑛𝑐𝑒

This transaction is submitted on the 𝑃𝑟𝐷𝐿𝑢 of

each object by the objects themselves or their

administrators. The 𝑇𝐼𝐷 field is the ID of the

transaction. Each object should use public and private

key pairs of the 𝑃𝑟𝐷𝐿𝑢. The 𝑃𝑅𝑃𝐾1 is the public key

of the object on the 𝑃𝑟𝐷𝐿𝑢, while the SIG is the 𝑇𝐼𝐷

signed by this object’s private key. 𝑃𝑈𝑃𝐾2 is the

public key of the other object, which is on the 𝑃𝑢𝐷𝐿.

𝑅𝑇 and 𝐸𝑋 indicate the relationship type and a field

for extra information about the relationship,

respectively. 𝑁𝑜𝑛𝑐𝑒 is a random number.

In this case, even the second object publicly

shares the information against the contract terms, the

transaction will not be valid due to the lack of the first

object’s signature.
Finally, the third type of data recorded on the

ledger is service transactions. Similar to the

relationship entries, service entries can be recorded in

either 𝑃𝑢𝐷𝐿 or 𝑃𝑟𝐷𝐿𝑢 . The service transactions

recorded on the 𝑃𝑢𝐷𝐿 are public. However, when an

object wants to use a service privately, for reasons

such as privacy, the service transactions are only

recorded on the 𝑃𝑟𝐷𝐿𝑢. These transactions are only

accessible by the objects on the 𝑃𝑟𝐷𝐿𝑢.

The service request transactions recorded on the

𝑃𝑢𝐷𝐿 have the following structure:

𝑇𝐼𝐷 || 𝑃𝑈𝑃𝐾1 || 𝑆𝐼𝐺1 || 𝑃𝑈𝑃𝐾2 || 𝑆𝐼𝐺2

|| 𝑆𝐷 || 𝐸𝑋 || 𝑁𝑜𝑛𝑐𝑒

𝑇𝐼𝐷 is the transaction identifier, which is

calculated by hashing the transaction content. 𝑃𝑈𝑃𝐾1

is the public key, and 𝑆𝐼𝐺1 is the signature of the

service requester on the 𝑇𝐼𝐷. 𝑃𝑈𝑃𝐾2 and 𝑆𝐼𝐺2 are

the public key and the service provider signature on

the 𝑇𝐼𝐷 , respectively. 𝑆𝐷 is a description of the

service, and 𝐸𝑋 is used to record additional service

information. Fig. 3 shows an overview of the process.

When the ranking is performed and the service

provider is determined, the service requester object or

its administrator calls the smart contract. 𝑇𝐼𝐷

calculates by hashing 𝑆𝐷, 𝐸𝑋, and 𝑁𝑜𝑛𝑐𝑒 fields and

then signed by the service requester object. The smart

contract receives the public key and the signed 𝑇𝐼𝐷

as inputs. In the smart contract, the signature and the

signed fields’ validity are first checked, then the

transaction is submitted to the 𝑃𝑢𝐷𝐿 with the

specified structure. Finally, the service is provided to

the service requester via a REST API. Fig. 4(b) shows

an example of the structure of such smart contracts.

Once the service is received, the service requester can

record a transaction at any time to specify the result

of the received service in 𝑃𝑢𝐷𝐿.

Private service transactions are submitted to the

𝑃𝑟𝐷𝐿𝑢 by the object or its administrator. The

structure of these transactions includes:

𝑇𝐼𝐷 || 𝑃𝑅𝑃𝐾1 || 𝑆𝐼𝐺 || 𝑃𝑈𝑃𝐾2 || 𝑆𝐷 || 𝐸𝑋 || 𝑁𝑜𝑛𝑐𝑒

𝑇𝐼𝐷 is the transaction identifier. The service

requester object should use public/private key pairs

Figure.4 Sample smart contract for: (a) establishing relationship and (b) serve

Received: May 20, 2021. Revised: July 28, 2021. 511

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.44

for the 𝑃𝑟𝐷𝐿𝑢 to insert a transaction in it. 𝑃𝑅𝑃𝐾1 is

the public key of the object on the 𝑃𝑟𝐷𝐿𝑢, and the

SIG is the signed 𝑇𝐼𝐷 by the private key of the object.

𝑃𝑈𝑃𝐾2 is the public key of the service requester

object on the 𝑃𝑢𝐷𝐿 . 𝑆𝐷 is the service description,

𝐸𝑋 is a field for supplementary information of the

service, and 𝑁𝑜𝑛𝑐𝑒 is a random number. Since the

transaction is recorded on the 𝑃𝑟𝐷𝐿𝑢 , the service

provider signature is unnecessary because all the

objects on the 𝑃𝑟𝐷𝐿𝑢 have OOR, and their

information is trustworthy. Later, the service

requester object can add a transaction on the 𝑃𝑟𝐷𝐿𝑢

to submit the service results.

3.4 Ledgers size analysis

As mentioned before, in SocioChain, users have

the authority to declare their own objects’

relationship and service transactions publicly on

𝑃𝑢𝐷𝐿 or to store some information on their exclusive

𝑃𝑟𝐷𝐿𝑢 to be accessible only by their own devices.

Furthermore, there is no constraint imposed on the

data storage location. Users can freely choose the

storage location of 𝑃𝑟𝐷𝐿𝑢 and 𝑃𝑢𝐷𝐿 . Under such

circumstances, the user can store ledgers’ data on

local storage or any cloud service provider. In the

former case, a remarkable limitation is the size of

ledgers (i.e., 𝑃𝑟𝐷𝐿𝑢 and 𝑃𝑢𝐷𝐿). Since each user

owns a limited number of devices, the number of

OORs and private relationships are restricted.

Consequently, the 𝑃𝑟𝐷𝐿𝑢 of each user is small, and

storing the 𝑃𝑟𝐷𝐿𝑢 locally is not a challenge.

Nevertheless, the size of the 𝑃𝑢𝐷𝐿 can be significant.

Data stored on the 𝑃𝑢𝐷𝐿, includes public POR, SOR,

C-WOR, C-LOR transactions, service transactions,

and smart contracts. Table 1 shows the symbol

notation used to calculate the size of the 𝑃𝑢𝐷𝐿. It is

assumed that any chosen DLT requires some space

for each block’s header.

As described in section 3, POR transactions are

created and submitted by the manufacturer. If each

block can store B transactions, the manufacturer

submits one block on the 𝑃𝑢𝐷𝐿 for each batch of B

devices of the same model. The space required for the

blocks is calculated as follows.

𝑆𝑃 =
𝐷

𝐵
× (𝐻𝑃 + 𝐵 × 𝑇𝑝) (1)

Users either share data with others or not for a

variety of reasons [30]. 𝜃𝑅 and 𝜃𝑉 are added to the

equations to consider this probability. The required

space for SOR, CWOR, and CLOR transactions

recorded on the 𝑃𝑢𝐷𝐿 are as follows:

𝑆𝑅 = 𝜃𝑅 × (
𝑅

𝐵
) × (𝐻𝑅 + 𝐵 × 𝑇𝑅) (2)

The space required for the service transactions

can be obtained as follows:

𝑆𝑉 = 𝜃𝑉 × (
𝑉

𝐵
) × (𝐻𝑉 + 𝐵 × 𝑇𝑉) (3)

Finally, the size of the required space to store

smart contracts on the ledger is determined as

follows:

𝑆𝐶 = 𝐶 × 𝐴 (4)

The summation of the above values calculates the

total size of the ledger.

𝑆𝐷𝐿 = 𝑆𝑃 + 𝑆𝑅 + 𝑆𝑉 + 𝑆𝐶 (5)

4. Implementation and performance

evaluation

The ledger size is an essential parameter in the

possibility of implementation of the SocioChain. In

this section, we first calculate the ledger size for

different numbers of users using long-term

simulation. Next, the performance of the proposed

architecture is evaluated based on the results obtained

in the first section.

4.1 Size of ledgers

The size of the 𝑃𝑢𝐷𝐿 is one of the impactful

parameters in implementing SocioChain in the real

Table 1. Parameters of PuDL size

Symbol Definition

𝐵 No. of transactions in a block

𝐷 No. of all connected devices

𝐻𝑃 Size of the header of POR blocks

𝐻𝑅 Size of the header of REL blocks

𝐻𝑉 Size of the header of SER blocks

𝑃 Total no. of POR transactions

𝑅 Total no. of REL transactions

𝑉 Total no. of SER transactions

𝑇𝑃 Size of a POR transaction

𝑇𝑅 Size of a REL transaction

𝑇𝑉 Size of a SER transaction

𝜃𝑅
Probability of sharing a relationship

publicly

𝜃𝑉
Probability of sharing a service request

publicly

𝐶 Total no. of smart contracts

𝐴 Average size of a smart contract

Received: May 20, 2021. Revised: July 28, 2021. 512

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.44

world. It affects the possibility of the local storage of

two ledgers and also the speed of data retrieval. The

number of transactions in 𝑃𝑢𝐷𝐿 determines its size.

Due to the different sizes of the headers and blocks

on the DLTs, the 𝑃𝑢𝐷𝐿 size order can be estimated

by assessing the number of transactions, i.e., the

number of established relationships. To this end, we

need to have real data of a large number of connected

devices and their information, such as their

capabilities, model, and brand, over time. Although

some initial implementation of the SIoT is conducted

[22], few real devices are now connected to it. A

dataset is also provided for the SIoT using simulation

[31], but it simulated the SIoT only for ten days. So,

an alternative solution is required. To achieve this,

We utilized SWIM [32], a mobility model, to

simulate the devices’ mobility and study their social

behavior and relationships. This model considers

social relationships among people through the

simulation of their movements. In SWIM, the

destination is determined based on its distance to the

user’s home or the place’s popularity. The α

parameter, varying from 0 and 1, specifies people’s

tendency to go to destinations closer to their home or

more popular destinations.

The user perception radius is another influential

parameter in the SWIM model. It determines the

communication radius for each user, i.e., how far

each user can communicate with another user. Since

the available space is in the range of [0, 1] in the

model, horizontal and vertical axes are divided based

on this parameter. The number of simulation cells is

determined based on it. Therefore, to increase the

number of cells in the model, we need to decrease this

parameter.

The output of the SWIM model is a trace of

individuals’ movements. In the simulation of the

devices’ movement, it is assumed that each user owns

a set of devices. Some of the devices are in the user’s

house, while the rest are mobile and move with the

user. To assign the devices to users, we used the data

from the Global Web Index report in 2019 [33]. It is

provided by a survey of more than 270,000 Internet

users. According to the report (Table 2), a set of

devices were assigned to each user in the SWIM

model. Based on the resulting network, it is possible

to create traces of the devices’ movements and their

interactions.

The purpose of this simulation is to show how the

number of relationships changes over time. To this

end, we conducted the simulation using a virtual

server with 20 vCPUs and 16 GB RAM by adjusting

the α equal to 0.9 [31]. We simulated two scenarios.

In the first scenario, the simulation runs for a varied

number of users for 100 days. The second scenario

simulates 1000 users for 1000 days. Table 3 shows

the information and configurations used in the

simulations.

Since the number of objects is fixed, the number

of PORs does not change. The objects’ ownership is

assumed to be permanent, and thus, the number of

OORs is fixed too. CLOR is established between the

static objects that are in the communication range of

each other. Each user has a specific number of static

devices in two scenarios, and therefore, the number

of CLOR does not change over time.

CWOR and SOR are two types of relationships

whose numbers increase over time in these scenarios.

CWOR is created between a mobile object and a

static object if the meeting duration is longer than 𝑇𝐶.

It was assumed that 𝑇𝐶 is 1 hour. SOR is established

between two mobile objects. It is set if the two objects

meet each other 𝑁𝑀 times, the meeting duration is

more than 𝑇𝑀 , and the time interval between two

consecutive meetings is longer than 𝑇𝐼 . In this

scenario, 𝑁𝑀, 𝑇𝑀, and 𝑇𝐼 were considered equal to 3,

1h, and 6h, respectively. Additionally, we introduced

𝑇𝐿 to closing the long-term simulations’ results to

real-world data. If the time interval between two

consecutive meetings is longer than 𝑇𝐿, the 𝑁𝑀 will

be reset to zero. In other words, the 𝑁𝑀 will hit zero

if the two objects have not established a relationship

yet and didn’t meet in the interval of 𝑇𝐿.

Fig. 5 and 6 show the number of established

CWOR and SOR in the first scenario for 100 days,

respectively. We assumed 𝑇𝐿 = ∞. The results show

that the number of established relationships is a small

Table 2. Device ownership

Device Ownership (%) Type

Smartphone 95 Mobile

Pc/Laptop 70 Static

Smart TV 39 Static

Tablet 37 Mobile

Game Console 22 Static

TV Streaming Device 15 Static

Smartwatch 13 Mobile

e-Reader 12 Mobile

Smart Wristband 11 Mobile

Smart Home Devices 12 Static

Table 3. Simulation configuration parameters

No.

of

Users

No. of

Mobile

Devices

No. of

Static

Devices

Total

No. of

Devices

User

Perception

Radius

500 841 803 1644 0.0141

1000 1674 1608 3282 0.0100

2000 3416 3180 6596 0.0070

4000 6773 6378 13151 0.0050

Received: May 20, 2021. Revised: July 28, 2021. 513

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.44

percentage of all possible relationships between the

objects. For example, 0.36% of all CWORs are set for

4000 users after 100 days. This value is only about

0.14% for the complete graph of SOR. The trend of

establishing new relationships in Fig. 5 shows a

nearly linear function. In Fig. 6, the function initially

has an ascending slope due to the

constraintsconsidered to establish the SORs. Some

objects might not meet each other enough times in the

initial days. SOR is established between them as the

meeting number increases over time. Therefore, the

number of SORs has a higher slope at the first 60 to

70 days, but the function has become linear later.

Fig. 7 and 8 showing the number of established

SORi and CWORi in the second scenario in which

index “i” is the value of 𝑇𝐿 in terms of days. For

example, in CWOR10, 𝑇𝐿 is set to 10 days. We have

done the simulation for 𝑇𝐿 = 10, 20, 30, 40, 50 days

and also 𝑇𝐿 = ∞. In the two figures, if 𝑇𝐿 = ∞, the

function increases linearly over time. If the valid

interval for establishing of relationship (i.e., 𝑇𝐿) is

limited, the number of established relationships

decreased. In the case of CWOR, because users often

visit constant locations over time, all of CWORs are

set in the first 100 days. Besides, by limiting 𝑇𝐿, the

number of established SORs shapes a concave

function whose slope has decreased over time. The

results show that in a more realistic scenario, by

limiting 𝑇𝐿, the number of established relationships

doesn’t jump up very high. A small percentage of all

possible relationships between the objects are set

after 1000 days. For example, with 𝑇𝐿 = 50, only

about 0.85% of all CWORs and 12.04% of all SORs

are established for 1000 users after 1000 days.

The simulation results demonstrated that storing

𝑃𝑢𝐷𝐿 in local storage is feasible; however, solutions

like Light Node [34] and Pruning [35] can be applied

when its size has become increasingly large. The

scalability of SocioChain depends on the degree to

which the utilized DLT is scalable. Currently,

solutions such as Sidechain Technology [36] and

Sharding [37] are being used to improve the

scalability of DLTs. Utilizing such solutions can help

us reach more than 1,000,000 transactions per second,

which has highly exceeded the current maximum

transactional throughput of centralized solutions [38].

4.2 Comparison and performance analysis

Scalability and latency are two important aspects

that should be considered in SocioChain. We

implemented an experiment to demonstrate the

efficiency of this architecture and compare it with the

Figure.5 No. of established SOR over time

0

5000

10000

15000

20000

25000

30000

35000

0 10 20 30 40 50 60 70 80 90 100

E
st

ab
li

sh
ed

 S
O

R
s

Days

500 Users

1000 Users

2000 Users

4000 Users

Figure.6 No. of established CWOR over time

0

20000

40000

60000

80000

100000

0 10 20 30 40 50 60 70 80 90 100

E
st

ab
li

sh
ed

 C
W

O
R

s

Days

500 Users

1000 Users

2000 Users

4000 Users

Figure.7 No. of established CWOR over the time for 1000

users

0

20000

40000

60000

80000

100000

120000

140000

0 100 200 300 400 500

E
st

ab
li

sh
ed

 C
W

O
R

s

Days

CWOR∞
CWOR50

CWOR40
CWOR30

CWOR20

CWOR10

Figure.8 No. of established SOR over the time for 1000 users

0

50000

100000

150000

200000

250000

300000

350000

E
st

ab
li

sh
ed

 S
O

R
s

Days

SOR∞

SOR50

SOR40

SOR30

SOR20

SOR10

Received: May 20, 2021. Revised: July 28, 2021. 514

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.44

previous cloud-based/centralized SIoT architectures.

One of the main operations in SIoT is accessing the

details of the relationship between objects. According

to the last section results, it is possible to keep ledgers

data locally. Ledgers data must be indexed to be

explorable. Using relational database structure is a

common approach for indexing ledgers data. An

Example of such indexers is Eth-indexer

(https://github.com/getamis/eth-indexer). We

developed a web application using Python, which is

connected to a MySQL database, containing

information about the relationships between objects.

We conducted our experiment in two scenarios.

In the first scenario, the database and web application

are deployed on a server featuring eight vCPUs cores

of Intel(R) Xeon(R) E-2176G. In the second scenario,

a Raspberry Pi 3 Model B was employed as an IoT

device on which the database and web application

were deployed. We assumed that 10,000 new entries

are added to the relationships database for every 1000

devices added to the network in both scenarios. In the

first scenario, 10% of the devices send requests to the

server simultaneously. In our second scenario, only

the database size increases as more devices are added

to the network, and there will be only one request

from the device itself at any moment.

To dimension our experiments, we use a

benchmark tool called ApacheBench, which is a tool

for measuring the performance of web servers. Fig. 9

presented the results of implementing the

experiments in both scenarios on a logarithmic scale.

In the cloud server scenario, the latency has grown

dramatically by increasing the number of devices and

simultaneous requests. In the local server scenario,

although response time has increased with the

growing number of relationships in the database, the

search operation is still conducted in an admissible

time. This demonstrates that removing the central

SIoT server in SocioChain leads to more efficient and

scalable architecture comparing to other SIoT

implementations.

5. Conclusion

This paper proposed a distributed architecture for

social relationships between IoT objects, using the

promising SIoT architecture. The new architecture is

more scalable, secure, and privacy-preserving;

besides, it exploits establishing social relationships

between objects. In this architecture, objects

relationships and service transactions are stored as

entries in a two-layer distributed ledger. Public

transactions are added to 𝑃𝑢𝐷𝐿 , and private

transactions are inserted in 𝑃𝑟𝐷𝐿𝑢.

A challenge in implementing SocioChain is

storing ledgers’ data locally. We initially present an

equation to calculate the size of 𝑃𝑢𝐷𝐿 . Then, we

simulate the social movements and relationships of

users and their devices using the SWIM simulator.

The results show that less than 10% of all possible

relationships are established after 1000 days. So,

ledgers’ data may be kept in the local storage. Based

on these results, we conducted another experiment to

compare latency in Sociochian and previous SIoT

implementation. It revealed that the proposed

architecture has a significant advantage in latency

and is more scalable. For instance, response latency

in SocioChain is ten times less than previous SIoT-

based architectures for 10000 devices.
Our future work plan is to develop an

implemented prototype of SocioChain to analyze its

efficiency in the real world and various domains,

such as smart cities and vehicular networks. Also, we

will study and analyze diverse DLTs to determine the

best one for SocioChain with the highest efficiency

and scalability.

Conflicts of interest

The authors declare no conflict of interest.

Author contributions

Conceptualization, A.Sohofi and A.Amidian;

methodology, A.Sohofi and Y.Farjami; software,

A.Sohofi; validation, A.Sohofi; formal analysis,

A.Sohofi; investigation, A.Sohofi; resources,

A.Sohofi; data curation, A.Sohofi; writing—original

draft preparation, A.Sohofi; writing—review and

editing, A.Sohofi, A.Amidian, and Y.Farjami;

visualization, A.Sohofi; supervision, A.Amidian, and

Y.Farjami.

References

[1] S. Nižetić, P. Šolić, D. L. D. I. G. D. Artaza, and

L. Patrono, “Internet of Things (IoT):

Opportunities, issues and challenges towards a

smart and sustainable future”, J. Clean. Prod.,

Figure.9 Comparison of response latency

1

10

100

1000

10000

1000 5000 10000 15000 20000

L
at

en
cy

 i
n
 m

il
li

se
co

n
d

s

No. of Devices

Local Server

Cloud Server

Received: May 20, 2021. Revised: July 28, 2021. 515

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.44

Vol. 274, p. 122877, 2020.

[2] M. Shirer, The Growth in Connected IoT

Devices Is Expected to Generate 79.4ZB of Data

in 2025, According to a New IDC Forecast,

2019.

https://www.idc.com/getdoc.jsp?containerId=pr

US45213219

[3] M. Noura, M. Atiquzzaman, and M. Gaedke,

“Interoperability in Internet of Things:

Taxonomies and Open Challenges”, Mob.

Networks Appl., Vol. 24, No. 3, pp. 796–809,

2019.

[4] M. Aziez, S. Benharzallah, and H. Bennoui, “A

full comparison study of service discovery

approaches for internet of things”, Int. J.

Pervasive Comput. Commun., Vol. 15, No. 1, pp.

30–56, 2019.

[5] P. Asghari, A. M. Rahmani, and H. H. S. Javadi,

“Service composition approaches in IoT: A

systematic review”, J. Netw. Comput. Appl., Vol.

120, pp. 61–77, 2018.

[6] L. Atzori, A. Iera, and G. Morabito, “SIoT:

Giving a Social Structure to the Internet of

Things”, IEEE Commun. Lett., Vol. 15, No. 11,

pp. 1193–1195, 2011.

[7] L. Atzori, A. Iera, G. Morabito, and M. Nitti,

“The social internet of things (SIoT) - When

social networks meet the internet of things:

Concept, architecture and network

characterization”, Comput. Networks, Vol. 56,

No. 16, pp. 3594–3608, 2012.

[8] M. S. Roopa, S. Pattar, R. Buyya, K. R.

Venugopal, S. S. Iyengar, and L. M. Patnaik,

“Social Internet of Things (SIoT): Foundations,

thrust areas, systematic review and future

directions”, Comput. Commun., Vol. 139, pp.

32–57, 2019.

[9] J. A. Muhtadi, M. Qiang, K. Saleem, M.

AlMusallam, and J. J. P. C. Rodrigues, “Misty

clouds—A layered cloud platform for online

user anonymity in Social Internet of Things”,

Futur. Gener. Comput. Syst., Vol. 92, pp. 812–

820, 2019.

[10] Y. Sahni, J. Cao, S. Zhang, and L. Yang, “Edge

Mesh: A New Paradigm to Enable Distributed

Intelligence in Internet of Things”, IEEE Access,

Vol. 5, pp. 16441–16458, 2017.

[11] Z. K. Zhang, M. C. Y. Cho, C. W. Wang, C. W.

Hsu, C. K. Chen, and S. Shieh, “IoT security:

Ongoing challenges and research opportunities”,

In: Proc. IEEE 7th International Conference on

Service-Oriented Computing and Applications,

SOCA 2014, pp. 230–234, 2014.

[12] C. Sarkar, A. U. Akshay, R. V. Prasad, A. Rahim,

R. Neisse, and G. Baldini, “DIAT: A scalable

distributed architecture for IoT”, IEEE Internet

Things J., Vol. 2, No. 3, pp. 230–239, 2015.

[13] S. Nakamoto, Bitcoin: A peer-to-peer electronic

cash system, 2008.

[14] H. N. Dai, Z. Zheng, and Y. Zhang, “Blockchain

for Internet of Things: A Survey”, IEEE Internet

Things J., Vol. 6, No. 5, pp. 8076–8094, 2019.

[15] L. Zhou, L. Wang, Y. Sun, and P. Lv,

“BeeKeeper: A Blockchain-Based IoT System

with Secure Storage and Homomorphic

Computation”, IEEE Access, Vol. 6, pp. 43472–

43488, 2018.

[16] J. A. Jaoude and R. G. Saade, “Blockchain

applications - Usage in different domains”, IEEE

Access, Vol. 7, pp. 45360–45381, 2019.

[17] M. S. Ali, M. Vecchio, M. Pincheira, K. Dolui,

F. Antonelli, and M. H. Rehmani, “Applications

of Blockchains in the Internet of Things: A

Comprehensive Survey”, IEEE Commun. Surv.

Tutorials, pp. 1–1, 2018.

[18] K. Christidis and M. Devetsikiotis,

“Blockchains and Smart Contracts for the

Internet of Things”, IEEE Access, Vol. 4, pp.

2292–2303, 2016.

[19] I. Mashal, O. Alsaryrah, T. Y. Chung, C. Z.

Yang, W. H. Kuo, and D. P. Agrawal, “Choices

for interaction with things on Internet and

underlying issues”, Ad Hoc Networks, Vol. 28.

pp. 68–90, 2015.

[20] A. M. Ortiz, D. Hussein, S. Park, S. N. Han, and

N. Crespi, “The cluster between internet of

things and social networks: Review and research

challenges”, IEEE Internet Things J., Vol. 1, No.

3, pp. 206–215, 2014.

[21] F. Cicirelli, A. Guerrieri, G. Spezzano, and A.

Vinci, “An edge-based platform for dynamic

Smart City applications”, Futur. Gener. Comput.

Syst., Vol. 76, pp. 106–118, 2017.

[22] R. Girau, S. Martis, and L. Atzori, “Lysis: A

platform for iot distributed applications over

socially connected objects”, IEEE Internet

Things J., Vol. 4, No. 1, pp. 1–1, 2017.

[23] S. Ali, M. G. Kibria, M. A. Jarwar, H. K. Lee,

and I. Chong, “A Model of Socially Connected

Web Objects for IoT Applications”, Wirel.

Commun. Mob. Comput., Vol. 2018, pp. 1–20,

2018.

[24] X. Zhu and Y. Badr, “Fog Computing Security

Architecture for the Internet of Things Using

Blockchain-Based Social Networks”, In: Proc.

of 2018 IEEE International Conference on

Internet of Things (iThings) and IEEE Green

Computing and Communications (GreenCom)

and IEEE Cyber, Physical and Social

Computing (CPSCom) and IEEE Smart Data

Received: May 20, 2021. Revised: July 28, 2021. 516

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.44

(SmartData), pp. 1361–1366, 2018.

[25] K. Park, Y. Park, A. K. Das, S. Yu, J. Lee, and

Y. Park, “A Dynamic Privacy-Preserving Key

Management Protocol for V2G in Social Internet

of Things”, IEEE Access, Vol. 7, pp. 76812–

76832, 2019.

[26] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and

W. Zhao, “A Survey on Internet of Things:

Architecture, Enabling Technologies, Security

and Privacy, and Applications”, IEEE Internet

Things J., Vol. 4, No. 5, pp. 1125–1142, 2017.

[27] T. Jiang, H. Fang, and H. Wang, “Blockchain-

based internet of vehicles: Distributed network

architecture and performance analysis”, IEEE

Internet Things J., Vol. 6, No. 3, pp. 4640–4649,

2019.

[28] O. Novo, “Blockchain Meets IoT: An

Architecture for Scalable Access Management

in IoT”, IEEE Internet Things J., Vol. 5, No. 2,

pp. 1184–1195, 2018.

[29] M. Nitti, R. Girau, and L. Atzori,

“Trustworthiness management in the social

internet of things”, IEEE Trans. Knowl. Data

Eng., Vol. 26, No. 5, pp. 1253–1266, 2014.

[30] M. M. L. Wasko and S. Faraj, “Why should I

share? Examining social capital and knowledge

contribution in electronic networks of practice”,

MIS Q. Manag. Inf. Syst., Vol. 29, No. 1, pp. 35–

57, 2005.

[31] C. Marche, L. Atzori, and M. Nitti, “A Dataset

for Performance Analysis of the Social Internet

of Things”, In: Proc. of IEEE International

Symposium on Personal, Indoor and Mobile

Radio Communications, PIMRC, Vol. 2018-

Septe, pp. 1–5, 2018.

[32] S. Kosta, A. Mei, and J. Stefa, “Large-Scale

Synthetic Social Mobile Networks with SWIM”,

IEEE Trans. Mob. Comput., Vol. 13, No. 1, pp.

116–129, 2014.

[33] “The device trends to watch in 2019”, 2019.

https://www.globalwebindex.com/reports/devic

e

[34] “Light client protocol”.

https://eth.wiki/en/concepts/light-client-

protocol

[35] “Block file pruning”.

https://github.com/bitcoin/bitcoin/blob/v0.11.0/

doc/release-notes.md#block-file-pruning

[36] A. Singh, K. Click, R. M. Parizi, Q. Zhang, A.

Dehghantanha, and K. K. R. Choo, “Sidechain

technologies in blockchain networks: An

examination and state-of-the-art review”, J.

Netw. Comput. Appl., Vol. 149, p. 102471, 2020.

[37] H. Dang, T. T. A. Dinh, D. Loghin, E. C. Chang,

Q. Lin, and B. C. Ooi, “Towards scaling

blockchain systems via sharding”, In: Proc. of

the ACM SIGMOD International Conference on

Management of Data, pp. 123–140, 2019.

[38] “Scaling DLT to over 1M TPS on Google

Cloud”, https://www.radixdlt.com/post/scaling-

dlt-to-over-1m-tps-on-google-cloud/.

