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Abstract: This paper presents a control strategy of maximum power point tracking and focuses on hybrid q-learning 

and type-2 fuzzy logic control strategy. Photovoltaics have non-linear voltage and current characteristics which 

influenced by temperature and exposure of solar irradiation so that the maximum power point (MPP) can change at 

any time. Unfortunately, operating conditions outside the MPP could reduce the efficiency of electrical power transfer 

from the photovoltaic system to the load. Q-learning (QL) has the potential to provide action decisions of duty cycle 

signal based on the state of the power gradient percentage range. The Q-learning hybrid method with Type-2 fuzzy 

logic control is proposed to provide correction of QL control signal by considering the uncertainty direction of power 

point shifting. The proposed strategy is important particularly to avoid a sudden change in solar irradiation exposure. 

The simulation results show that the Q-learning hybrid type-2 fuzzy logic control based MPPT response in the 

photovoltaic control system has tracking efficiency about 97%, rapid rise time of 0.08s, settling time of 0.23s, low 

overshoot and stable response for handling the change of irradiation and temperature exposure simultaneously. 

Keywords: Maximum power point tracking, Photovoltaic system, Q-learning, Type-2 fuzzy logic. 

 

 

1. Introduction 

Photovoltaic system is one of the fastest growing 

renewable energy conversion and technologies, the 

energy source is very abundant, friendly to the 

environment, noiseless, clean and has adjustment 

flexibility to the required electricity production 

capacity. Photovoltaic system is proven for large-

scale to small-scale electricity such as district 

electricity, residence, households, and street lighting. 

Research and innovation in increasing the efficiency 

and optimization of electric generation are the key to 

support reliable and sustainable energy infrastructure 

[1]. 

The development of maximum power points 

tracking (MPPT) method is one effort to increase the 

efficiency of photovoltaic systems. The MPP method 

has been developed from traditional to artificial 

intelligence (AI). The motivation for the 

development of the AI method in this area is mainly 

driven by the issue of global MPP deal with non-

linear systems and changes in environmental 

conditions such as solar irradiation shifting and 

ambient temperature [2]. Photovoltaics have non-

linear voltage and current characteristics which 

influenced by temperature and exposure of solar 

irradiation so that the maximum power point (MPP) 

can change at any time. Operating conditions outside 

the MPP could reduce the efficiency of electrical 

power transfer from the photovoltaic system to the 

load [3]. Consequently, the artificial intelligent-based 

MPPT is important to be considered in order to 

maintain the MPP. 

Several artificial intelligent-based MPPT 

methods explained in the literature [1] have been used 

widely and successfully such as fuzzy logic control 

(FLC), artificial neural network (ANN), sliding mode 

control (SMC), and particle swarm optimization 

(PSO). PSO has been investigated in [4], the system 
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performance achieves high power tracking efficiency 

about 99.98%, however, unfortunately, it has not 

been avoided from the power response oscillation 

problem. Several mixed methods with SMC have 

been reported. The researcher interested with SMC 

due to robustness and rapid response. Hybrid strategy 

of PSO-SMC [5] meets high accuracy and fast 

transient response yet cannot dispel of power 

undershoot response. Some other mixed method such 

as ANN-Backstepping SMC and high gain observer 

[6], SMC and high gain observer [7], backstepping 

integral sliding mode controller (BISMC) [8] have 

been developed by researcher with accurate and fast 

response. 

FLC [9] performs fast-tracking and low steady-

state fluctuation characteristic. However, varying of 

solar irradiation conditions will cause oscillation, 

drift, and uncertainty problems in MPP tracking. 

Fuzzy neural network (FNN) [10] yield power 

tracking efficiency about 96%, however still suffers 

from overshoot when temperature changes occur. 

The MPP achievement can be observed from the P-V 

curve where its gradient close to zero. Moreover, it 

can be approached by step-up or step-down of the 

voltage converter, while the rate needs to adjust, and 

the uncertainty problem of the power point shifting 

must be considered to achieve a more precise result. 

Type-2 fuzzy logic (T2FL) allows designer to 

accommodate the uncertainty of the gradient and shift 

direction of power points in the upper and lower 

boundary of membership function (MF) ranges, this 

is clearly different from type-1 fuzzy logic (T1FL) 

which tends so tied to MF absolute value. 

Comparative study of T1FL and T2FL in temperature 

control problem have been observed in [11] which 

T2FL perform successful results. The ability of T2FL 

was studied in determining more precise of medical 

diagnostic decisions [12]. 

Reinforcement learning (RL) has become 

attention in recent years and surprising of conquering 

most challenge in difficult game  [13], machine 

would be more active than smarter one, considering 

strategic options, efficiency and data need [14].  RL 

is a significant method, especially in dealing with 

optimization problems through a learning strategy in 

the process of interaction with the environment. In Q-

learning, as a type of RL, the results of the learning 

process will be accumulated in a table of quality. The 

optimum condition will be indicated by the 

achievement of the highest reward and quality. This 

table would be interested to accelerate finding the 

optimum point for each tracking condition. 

The main contribution of this paper is aimed to 

investigate the performance of hybrid expert Q-

learning and type-2 fuzzy logic controller as part of 

intelligent control in MPP tracking problem of 

photovoltaic systems. Q-learning has the potential to 

provide action decisions of duty cycle signal based on 

the state of the power gradient percentage range. 

Meanwhile, T2FL logic aim to provide a duty cycle 

correction signal based on the power gradient and 

direction of track point shifting by considering the 

range of uncertainty. Moreover, according to result of 

proposed method, it is interesting as compared to 

classical T1FL control with various of membership 

function forms and QL. 

This paper is constructed as follows, the second 

section presents the modelling of photovoltaic 

systems and maximum power point descriptions. The 

third section presents the control strategy, this section 

also describes the potential Q-learning that provides 

the expert table of optimum duty ratio and type-2 

fuzzy logic which dedicated for voltage uncertainty 

regulation. Q-learning is expected to provide the 

rapid optimum duty ratio, consequently the hybrid 

type-2 fuzzy logic and Q-learning is addressed to 

provide improvement of transient and stable response. 

The simulation result and discussion have been 

explained in section 4, which are resumed by the 

conclusion in the last section. 

2. System description and mathematical 

modelling  

The structure of the considered photovoltaic 

system in this paper is shown in Figure. 1 which 

consists of a solar power plant prototype based 

photovoltaic, buck-boost converter and resistive load. 

Photovoltaic energy conversion performance is 

influenced by the intrinsic non-linear characteristics, 

solar irradiation, temperature, and load conditions. 

This condition makes it difficult for the system to 

reach its maximum power point. The buck-boost 

converter is controlled by a standard PWM signal and 

used as an actuator for active tracking of maximum 

power points thereby increasing the operating 

efficiency of the photovoltaic system. The 

mathematical model of the system is described in the 

section below. 

2.1 Photovoltaic and maximum power point 

Photovoltaic is a semiconductor that has 

conduction and valence bands. Solar irradiation 

exposure on photovoltaic surfaces, which an amount 

of photon energy equal to or greater than the energy 

gap causes electrons in the weak valence band to 

move into the conduction band, becomes electric 

currents in the circuit. Figure. 2 is a photovoltaic cell 

model [15] which has been equated with an  
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Figure. 1 Structure of considered photovoltaic system 

 

equivalent electrical circuit consist of a current 

source, diode, resistors connected in series and in 

parallel circuit. Iph is the photocurrent generated from 

the photovoltaic conversion process, Rsh is the shunt 

resistance which represents the leakage current at the 

cell boundary, and Rs is the series resistance that 

comes from the intrinsic resistance of photovoltaic 

material. 

Applying Kirchoff's current law to photovoltaic 

equivalent circuit in Figure. 2 yields current 𝐼 =
𝐼𝑝ℎ − 𝐼𝑑 − 𝐼𝑝  where diode current Id and parallel 

current Ip across to shunt resistor presented by Eq. (1) 

and (2) respectively. 

 

𝐼𝑑 = 𝐼0 [𝑒𝑥𝑝 (
𝑉 + 𝐼. 𝑅𝑠

𝑎
) − 1]             (1) 

 

𝐼𝑝 =
𝑉 + 𝐼. 𝑅𝑠

𝑅𝑠ℎ
                                          (2) 

 

𝑎 =  
𝑁𝑠 . 𝐴. 𝑘. 𝑇𝑐   

𝑞
=  𝑁𝑠 . 𝐴. 𝑉𝑇                   (3) 

 

where a, k, Tc, q, Ns, A are thermal voltage, Boltzman 

constant, photovoltaic temperature, electron charge, 

number of serial photovoltaic, and ideality factor, 

respectively. According to Eq. (1) and (2), the 

photovoltaic current equation can rewritten as shown 

in Eq. (4). 

 

 

Figure. 2 Equivalent circuit of photovoltaic cell 

 
Figure. 3 Characteristic of photovoltaic in different 

irradiance level 

 

𝐼 =  𝐼𝑝ℎ − 𝐼0 [𝑒𝑥𝑝 (
𝑉 + 𝐼. 𝑅𝑠

𝑎
) − 1] −

𝑉 + 𝐼. 𝑅𝑠

𝑅𝑠ℎ
  (4) 

 

The power to voltage curve of photovoltaic can 

be used as one basis for maximum power point 

estimation. The P-V curve variation of photovoltaic 

in different solar irradiation and temperature are 

shown in Figure. 3. According to this figure, MPP 

value for each condition (800 W/m2, 250C), (900 

W/m2, 270C) and (1000 W/m2, 320C) are around 

82.15 W, 91.5 W and 98.1 W, respectively. 

2.2 Buck-boost converter 

Buck-boost converter is a type of dc/dc 

converter that produces a voltage magnitude greater 

or less than the input voltage through a switching 

regulation mechanism. Figure. 4 shows the basic 

circuit of converter [16]. MOSFET based element 

present for substitute switching device as indicated in 

Figure. 1 The standard PWM signal from the control 

element may employ to adjust the MOSFET 

saturation or cut-off state, so that the output voltage 

of the dc/dc converter can be modified. The converter 

is designed for 40 kHz switching frequency, 

minimum resistive load about 1 Ohm and duty cycle 

range 0- 0.8. 

When the MOSFET is saturated or switch-on 

and the diode is reverse biased then electrical energy 

will be stored to inductor with a voltage value 𝑉𝐿  

 

 
Figure. 4 Buck-boost converter 
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which equal to source voltage 𝑉𝑠. 

 

𝑉𝐿 =  𝑉𝑠 = 𝐿
𝑑𝑖𝐿

𝑑𝑡
                                   (5) 

 

since the change in current is relatively constant, Eq. 

(5) can be rewritten in Eq. (6) 

 
∆𝑖𝐿

∆𝑡
=

∆𝑖𝐿

𝐷𝑇
=

𝑉𝑠

𝐿
                                     (6) 

 

based on Eq. (1), the current in the inductor when 

switched-on is 

 

(∆𝑖𝐿)𝑐𝑙𝑜𝑠𝑒𝑑 = 𝐷𝑇
𝑉𝑠

𝐿
                              (7) 

 

which 𝐷 , 𝑇  and 𝐿  were a duty ratio, time interval, 

and inductance, respectively. The condition when the 

MOSFET is being cut-off or switch-off state and the 

diode is forward bias, therefore current flows towards 

the resistor and capacitor so that the inductor voltage 

𝑉𝐿 value was equal to output voltage 𝑉𝑜 

 
∆𝑖𝐿

∆𝑡
=

∆𝑖𝐿

(1 − 𝐷)𝑇
=

𝑉𝑜

𝐿
                          (8) 

 

so that the current change in inductor when switch-

off moment presented in Eq. (9) 

 

(∆𝑖𝐿)𝑜𝑝𝑒𝑛 = (1 − 𝐷)𝑇
𝑉𝑜

𝐿
                      (9) 

 

Consider Eq. (7, 9) and the MOSFET being switch-

off, then the relation between input and output 

voltage is shown in Eq. (10) 

 

𝑉𝑜 = −
𝐷

(1 − 𝐷)
𝑉𝑠                               (10) 

 

The buck-boost converter is a combination of 

buck and boost modes so the output voltage can be 

adjusted to be smaller or greater than the input. From 

Eq. (10) conclude that voltage profile can be 

modified by changing the duty ratio 𝐷, where 𝐷 > 0.5 

produces a step-up voltage while 𝐷 <0.5 produces a 

step-down. The shifting direction of 𝐷  value is 

determined by condition of power gradient against 

voltage, and the value become zero while the MPP 

position was reached. This simulation applies the 

power electronic diode which implements a diode in 

parallel with a series RC snubber circuit to reduce a 

spike and losses due to switching. The value of 

resistance Ron, forward voltage Vf, snubber resistance 

Rs, and snubber capacitance Cs are 0.1m, 0Volt, 

500 and 0.25nF, respectively. 

3. Control system 

The proposed control system is expressed in 

diagram block Fig. (6) The main objective of this 

control scheme is to investigate the effect of Q-

learning (QL) hybrid type-2 fuzzy logic (T2FL) 

control in regulating the power of the photovoltaic 

system in order to guarantee system operation at its 

maximum power point. QL has been designed to 

generate immediate recommendations for optimal 

duty-cycle change values based on power gradient 

information 𝑑𝑃/𝑑𝑉 or 𝑚. Furthermore, T2FL serves 

to provide a correction signal based on the power 

gradient information 𝑚  and gradient changes ∆𝑚 , 

moreover, T2FL aim to accommodate uncertainty of 

𝑚  and ∆𝑚  which may arise from change in solar 

irradiation and temperature. 

QL and T2FL control signals result, namely 

QLT2FL, follow the Eq. (5) which is the signal that 

determines the value of step-up or step-down mode 

in buck-boost converter. The duty cycle threshold is 

defined by 0.5, so the condition QLT2FL > 0 causes 

the duty-cycle value move up and the converter 

performs a voltage step-up, and vice versa. 

 

𝛿𝑄𝐿𝑇2𝑇𝐿 = ∆𝐷𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  ± ∆𝐷𝑄𝐿 ± ∆𝐷𝑇2𝐹𝐿   (11) 

3.1 Q-learning design 

The reinforcement learning (RL) method is one 

of the studies in machine learning that works based 

on a cumulative reward of an agent from the 

environment in making the right action decisions to 

achieve the goals [5]. In this study, Q-learning (QL) 

which is part of RL, is used. Figure. 7 is the basic QL 

structure which composed by several main functions 

such as action, state, reward, environment, and table 

of quality [17]. 

QL will map the state 𝑆𝑛 and action 𝐴𝑛 to a table 

called Q-table. The table initially set by zero, through  

 

 

Figure. 5 Power gradient of P-V curve 
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Figure. 6 Block diagram of proposed control system 

 

 
Figure. 7 Q-learning structure 

 

an iterative process will be updated by considering 

various possible actions that can be taken and the 

consequences of the prize 𝑟  will be received. The 

process was calculated using the Bellman Eq. (12) 

 

𝑄′(𝑠, 𝑎) = 𝑄(𝑠, 𝑎)

+ 𝛼[𝑟 + 𝛾. 𝑚𝑎𝑥𝑄(𝑠′, 𝑎′)

− 𝑄(𝑠, 𝑎)]                                      (12) 

 

where 𝑄′, 𝑄, 𝛼, 𝑠′, 𝑎′and 𝛾 are quality table update, 

past quality table, learning rate, next state, next 

action, and discount factor, respectively. Figure. 8 is 

an iterative flowchart of Q-learning to update Q-

table. The state variable is power gradient point 𝑚 

in PV curve and the action is duty-ratio change ∆𝐷 

as shown in  

Table 1.  

This paper presents five state 𝑆𝑛 for power point 

gradient condition [0-0.5%, 2.5-5%, 5-10%, 10-50%, 

50-100%] and five action 𝐴𝑛 represents the possible 

applicable ∆DQL value [0.02, 0.15, 0.01, 0.005, 

0]. The reward table referred to the highest point will 

be given to the nearest condition from MPP, and vice 

versa. The Q-table is updated for each episode such  

 
Figure. 8 Q-learning flowchart 

 

Algorithm 1 Q-learning [18] 

Initialize , 𝛼, 𝛾 

For each episode : 

set initial k = 0 , initialize 𝑥0 

Until 𝑥𝑘+1 is terminal : 

choose 𝑢(𝑗) ∈ 𝑈 using 𝜋𝜃  

perform 𝑢𝑘 = 𝑢(𝑗) 

observe state 𝑥𝑘+1 and reward 𝑟(𝑥𝑘 , 𝑢𝑘) 

𝑖 ←
arg 𝑚𝑎𝑥 𝜃𝑙

𝑇𝜑(𝑥𝑘+1)

𝑙
 

𝛿 ← 𝑟(𝑥𝑘 , 𝑢𝑘) + 𝛾𝜃𝑖
𝑇𝜑(𝑥𝑘+1) − 𝜃𝑗

𝑇𝜑(𝑥𝑘) 

𝜃 ← 𝜃 + 𝛼𝛿𝜑(𝑥𝑘) 

𝑥𝑘 ← 𝑥𝑘+1 

update 𝑘 ← 𝑘 + 1 

 

that achieved the condition where the gradient of PV 

curve equal to zero, which means the MPP point has 

been reached. Q-learning program was indicated in 

Algorithm 1. 

The convergence Q-table would be used for expert 

map selection for driving the control action. The best 

action according to QL is a Q-table column which has 

a maximum value in particular row corresponding to 

related state. The action is selected and immediately 

applied as control signal and continues until reaches 

the maximum power point. 

3.2 Type-2 Fuzzy logic control design 

The main purpose of T2FL is to deal with 

information uncertainty in order to improve system 

performance [19]. The probable value in membership 

function (MF) of T2FL for each corresponding input 

value is not absolute but a range values between the 

upper and lower limits as shown in Fig (9) [20].  

In this paper, the MF form is addressed for 𝑚 and 

𝑚 with an equal input range [-100 100] in order to 
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anticipate a drastic change that may occur by change 

in solar irradiation and ambient temperature. 
 

Table 1. Quality table 

 Action (∆D) 

A1 A2 A3 A4 A5 

State 

(m) 

S1 Q11 Q12   Q15 

S2 Q21 Q22   Q25 

S3 Q31 Q32   Q35 

S4 Q41 Q42   Q45 

S5 Q51 Q52   Q55 

 

 

Figure. 9 Membership function for m and m 

4. Simulation result and discussion 

This section shows performance results. The 

proposed QLT2FL control will be evaluated in 

MATLAB/SIMULINK simulation and then 

compared to QL, T1FL-triangle, T1FL-trapezoid, 

T1FL-gaussian performances and well established 

FNN. The control of photovoltaic system was 

simulated with solar irradiation input condition and 

temperature change every 0.5-time interval; 

800W/m2, 1000W/m2, and 900W/m2 as shown in 

upper of Figure. 15 (a). 

The Fig. 10 shows the surface graph of Q-table 

which is the evolution of the power gradient related 

to the corresponding duty ratio. The Q-table has 

dimensions of 5x5 and consists of 25 matrix elements. 

 
Table 2. Characteristic of SMP100-M module 

Electrical characteristic 

value at standard test condition STC  

(AM 1.5, 1000W/m2, 250C) 

Max power Pmax 100 Wp 

Max power voltage Vmp 18.75V 

Max power current Imp 5.35A 

Open circuit voltage Voc 22.53V 

Cell efficiency 17% 

Modul efficiency 15.10% 

 
Table 3. Buck-boost converter specification 

Switching Frequency (f) 40 KHz 

Inductor 125 µH 

Output capacitor 2200 µF 

Input capacitor 350 µF 

Minimum load 1  

Duty-ratio 0 – 0.8 

 

Figure. 10 Surface of Q-table 

 

 
Figure. 11 Surface of type-2 fuzzy logic 

 

According to the figure, it can be seen the 

evolutionary convergence of each element in the Q-

table that has been trained in 100 episodes. 

Meanwhile, Fig. 11 shows the surface of type-2 fuzzy 

logic related to power gradient 𝑚 and its changes ∆𝑚 

as input and duty ratio ∆𝐷 as crisp output. 

Fig. 12 displays the transient response of the 

output power with a resistive load of 10 Ohm. The 

result appears that each method at steady state shows 

a good MPP value, but the transient process and 

steady state ripple are different. At interval 0-0.5, the 

T1FL showed a slightly faster response but had a less 

stable ripple than QL and QLT2FL which relatively 

smooth. In the 0.5-1 range, QL and QLT2FL showed 

a faster and ripples response. For interval 1-1.5, QL 

showed a fairly high undershoot, while QLT2FL 

yielded a significant improvement from the T2FL 

correction signal so that the response was faster, 

without ripple and reaches MPP more precisely. The 

value of the average output power efficiency against 

the maximum power at each interval is shown in 
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Table 4 where the efficiency of QLT2FL is superior, 

which is 98.64 %. 

Fig. 13 shows the transient response of the output 

power with a resistive load 50 Ohm. Across all ranges, 

the QLT2FL showed superior, faster, and smoother 

 
 

response. However, in interval 1-1.5, QL showed a 

fairly high undershoot, contrast to QLT2FL which 

received a T2FL correction signal so that the response 

is faster, without ripple and more precise MPP. The 

value of the average output power efficiency against 

the maximum power at each interval is shown in 

Table 4 with load value 50 Ohm where the efficiency 

of QLT2FL was leading around 97.12 %. 

Fig. 14 shows the transient response of the output 

power with a resistive load 100 Ohm.  In all ranges, 

the QLT2FL again showed superior response, faster 

and smoother. Unfortunately, interval 0.5-1, QL has 

undershoot, in contrast to QLT2FL which received a 

correction signal from the T2FL so that the response 

is faster, without ripple and reaches MPP more 

precisely. The value of the average output power 

efficiency against the maximum power at each 

interval is shown in Table 4 with load value 100 Ohm 

where the QLT2FL efficiency is superior, which is 

95.13 %. 

The Fig. 15 (a) displays the system response from 

the photovoltaic module side. The top of figure is a 

system test scenario under varying of solar irradiation 

conditions and temperatures. The solar irradiation 

exposure value is divided into three intervals; 800 

W/m2, 1000 W/m2 and 900 W/m2. For each 

irradiation interval, the temperature changes also 

occur, namely 250C, 320C, and 270C. The solar 

energy that enters the photovoltaic was converted 

into electrical energy with a voltage simulation value 

𝑉𝑃𝑉 , current 𝐼𝑃𝑉  and photovoltaic power 𝑃𝑃𝑉  as 

shown in middle and lower part of figure. 

Fig. 15 (b) shows the response of the controller 

and electrical power generated by the system. At the 

top, two control signals are displayed, namely QL and 

T2FL, at time interval of 0-0.5 the incoming solar 

irradiation was 800 W/m2 and photovoltaic voltage 

increases greater than 𝑉𝑚𝑝𝑝 , consequently the 

controller, both from QL and T2FL, gradually reduce 

the value of the duty cycle. Consequently, this action 

caused the power gradient 𝑚 or 𝑑𝑃/𝑑𝑉moves from 

negative to zero, which means that the tracking point 

at right side of the MPP move to the left towards MPP 

until convergent. Moreover, the figure shows the 

comparative ability of fully automatic control mode 

and partial mode. The partial mode demonstrates 

power output while the condition is manually 

regulated which duty cycle sets constant by 0.5, after 

that the regulation is changed manually to automatic 

transfer which the duty cycle applied from QLT2FL 

control. The result shows that the proposed Q-

learning hybrid type-2 fuzzy logic control rise to 

achieve forward MPP successfully. 

At 0.5 seconds, there is a gradually change in solar 

irradiation from 800 W/m2 to 1000 W/m2 causing 𝐼𝑃𝑉 

increase while 𝑉𝑃𝑉 falls lower than the new 𝑉𝑚𝑝𝑝, so 

QL controller responds by step-up or increasing the 

duty-cycle. From the figure, it is observed that at the 

same time T2FL also adds a positive correction which 

results in the instantaneous positive forced power 

gradient or the power point moves to the left of the 

MPP and gradually converges back towards the new 

MPP. 

After 1 second, solar irradiation changes from 

1000 W/m2 to 900 W/m2 causing IPv decrease 

 

Table 4. Power Tracking Efficiency 

Load 

Value 

() 

Interval 
MPP 

(W) 

Tracked Power (W) Tracking efficiency (%) 

QLT2FL QL 
T1FL-

triangle 

T1FL-

trapezoid 

T1FL-

gauss 
QLT2FL QL 

T1FL-

triangle 

T1FL-

trapezoid 

T1FL-

gauss 

10 

0-0.5 82.15 81.12 81.08 80.60 80.61 80.77 98.75 98.70 98.11 98.12 98.32 

0.5-1 98.1 97.02 96.99 96.61 96.49 96.86 98.90 98.86 98.48 98.36 98.73 

1-1.5 91.5 89.91 89.88 89.41 89.48 89.58 98.26 98.23 97.72 97.79 97.90 

50 0-0.5 82.15 79.74 79.73 77.32 78.94 78.79 97.07 97.06 94.12 96.09 95.91 

0.5-1 98.1 95.67 95.67 94.60 94.82 94.83 97.52 97.52 96.43 96.66 96.67 

1-1.5 91.5 88.54 88.52 87.34 86.90 87.78 96.77 96.74 95.46 94.97 95.93 

100 0-0.5 82.15 76.84 76.94 74.12 75.31 74.19 93.54 93.66 90.23 91.68 90.31 

0.5-1 98.1 94.37 94.30 92.56 92.80 93.04 96.20 96.12 94.36 94.60 94.84 

1-1.5 91.5 87.53 87.51 85.89 86.15 85.41 95.66 95.64 93.87 94.15 93.34 
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Figure. 12 Output power with resistive load 10  

 
Figure. 13 Output power with resistive load 50  

 

 
Figure. 14 Output power with resistive load 100  

 

while𝑉𝑃𝑉 increases immediately higher than the new 

𝑉𝑚𝑝𝑝 . This situation was responded by the T2FL 

controller which gave a negative correction to QL 

resulted a temporary duty-ratio drop. Consequently, 

the power point moves oscillation around the MPP 

and then gradually converges back towards new MPP 

value. 

In order to evaluate the performance of the 

QLT2FL strategy, the time responses of simulation 

result of power output shown in Figure. 12, 13 and 14 

are summarize in Table 5. The response of the 

proposed strategy has no overshoot for each 

simulation test. The average rise time (Tr) in resistive 

load evaluation is about 0.08s.  

Tr of QLT2FL is approximately 1.64 time faster 

than that of QL and 1.36 time faster than that of the 

average rise times of T1FL. Moreover, the average 

settling time (Ts) of QLT2FL is approximately 0.23s 

which means that is 1.6 time faster than that of the 

QL and T1FL. 

Furthermore, the comparative study of 

performance evaluation of QLT2FL may 

 

 
(a) 

 
(b) 

Figure. 15 System response: (a) Photovoltaic module 

response (b) controller response and power output with 

Rload 100  

 

demonstrate with a well-known strategy under 

related condition, which is based hybrid fuzzy neural 

network (FNN) [10]. The FNN strategy performs 

tracking efficiency about 96%, some of the 



Received:  March 18, 2021.     Revised: June 30, 2021.                                                                                                    207 

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021           DOI: 10.22266/ijies2021.1031.19 

 

simulation result in irradiation condition about 800 

W/m2 shows the overshoot due to temperature 

changes. As can be noted, the proposed method is 

more accurate which has tracking efficiency about 

97%. Moreover, QLT2FL is more stable response for 

handle the change of irradiation and temperature 

exposure simultaneously. 

5. Conclusion 

In this paper, Q-table hybrid with type-2 fuzzy 

logic control was proposed. A simple Q-tables 

trained to generate maximum conditions of possible 

states and actions gave the advantage in selecting the 

maximum action. The Q-learning hybrid method with 

 

 
 

T2FL was proposed to provide correction of QL 

control signal by considering the direction 

uncertainty of power point shifting. The strategy was  

necessary particularly to avoid a sudden change in 

solar irradiation exposure. The simulation results 

showed that the QLT2FL-based MPPT response in 

the photovoltaic control system has faster rise time of 

about 0.08s than that of the varying membership 

function of T1FL performance and stand-alone QL 

method, with settling time of 0.23s, low power 

oscillation, and with the average effective power 

tracking efficiency of about 97%. 
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