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Abstract: This paper aims to present a new approach in the design of observers for a Class of Discrete-time Takagi-

Sugeno Singular Models (DTTSM) in the case of unmeasurable premise variables, allowing to estimate simultaneously 

the states of the system, and the faults in the actuators and sensors. The approach used is based on augmenting the state 

vector. The exponential convergence is studied using the Lyapunov theory. The stability conditions are presented as 

Linear Matrix Inequalities (LMIs). Lastly, a numerical application is used to evaluate the efficiency of the proposed 

dynamic system. It shows that the estimated variables catch up rapidly (around 0.3s), and accurately the real variables 

during the application time of the actuator and sensor faults. 
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1. Introduction 

The advent of microelectronics, control systems 

and computer technologies has played a major role in 

the development of industrial processes. Despite the 

sophistication, evolution and interconnection of 

equipment, various types of faults are capable of 

occurring in the process, its control or measuring 

devices. In order to ensure the continuity of 

production, and to meet the requirements of 

reliability, safety, availability, and security, the 

integration of a fault monitoring and diagnostic 

system has become essential. This makes information 

the most important raw material, to know at any time 

the state of the system and the appearance of 

abnormal phenomena or even unexpected changes in 

one or more of its characteristics. Consequently, 

obtaining this information is based on the presence of 

a physical sensor or an observer making it possible to 

collect this information. In this context, the design of 

an observer has drawn the attention of the scientific 

community and industrialists in the estimation of 

states, the control of engineering systems, the 

detection and diagnosis of faults, as well as fault-

tolerant control [1, 2].  

      Generally, the study of systems in many practical 

fields requires going through modeling which 

represents a crucial phase allowing the representation 

of the dynamic behavior of the system by a 

mathematical model. The latter one can be in explicit 

form described by Ordinary Differential Equations 

(ODE), or in singular form representing a large class 

of systems governed by Differential Algebraic 

Equations (DAE) showing the dynamics and 

constraints between their variables. Nonetheless, the 

analysis of nonlinear (NL) singular systems relies on 

more complex mathematical techniques and tools. 

Therefore, to facilitate the mathematical exploitation, 
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we use the Takagi-Sugeno (T-S) formalism 

permitting to have a convex polytopic representation 

based on the extension of the linear results [3, 4]. By 

using this practical tool, the observer synthesis 

becomes less complex for the studied system [5].  

      Many model-based methods [6] have been 

developed for detection and estimation of states and 

faults like parity space [7], parametric identification 

[8], and state estimation [9]. Among the most 

widespread are those based on observers that have 

been used with several system classes in the singular 

or explicit case and in continuous or discrete-time 

such as: linear parameter varying systems [10], 

piecewise linear systems [11], linear systems [12], 

uncertain systems [13], Lipschitz systems [14], and 

T-S models [2, 15-22].  

      A wide variety of research has been carried out 

for the simultaneous estimation of states and faults, 

at the level of the actuators or the sensors, for the case 

of T-S fuzzy systems. As an example in the 

continuous-time, the authors in [16] presented a 

generalized approach to synthesis a PD observer-

based fault estimator for a class of NL systems 

described by the T-S singular form subject to 

unknown fault with measurable premise variables. In 

[2] a new fuzzy functional observer for T-S explicit 

systems has been considered to estimate the faults 

affecting the dynamic states of the system. A novel 

methodology is proposed in [17] to design a robust 

observer for T-S singular systems considering 

unmeasurable premise variables and its execution on 

sensor faults only by considering the robust H∞ 

approach. Similarly, in the discrete-time, the authors 

in [18] designed a robust fault estimation observer for 

singular systems to estimate actuator faults based on 

the state augmentation approach. The study in [19] 

investigated an interval T-S unknown input observer 

allowing the interval estimation of actuator faults and 

states for a class of T-S explicit systems. 

      The aforementioned research papers generally lay 

focus on the study of the asymptotic convergence of 

the state and fault estimation errors for a class of T-S 

systems subject to only one fault at actuator or sensor. 

The main contribution of our research is to 

simultaneously estimate the states as well as the faults 

at the actuator and the sensor for a class of DTSSM. 

In order to show the convergence of the algebraic part, 

it proved sufficient to show it just from the 

convergence of the dynamic part, hence the 

usefulness of the new approach suggested in this 

paper. The stability conditions are formulated as 

linear matrix inequalities. The effectiveness of the 

proposed approach is demonstrated with the good 

results obtained during the simulation for a single-

link flexible joint robot, which show from their 

curves in each figure that the estimated variables by 

the proposed observer were able to catch up with the 

variations of real variables. 

      The organization of this paper will be as follows. 

In the second section, the class of systems to be 

studied is described. The third section presents the 

main purpose of this paper for the simultaneous 

estimation of states and faults, the stability analysis, 

and the convergence conditions are demonstrated. 

Then, the effectiveness of the proposed observer is 

illustrated by an application example in the fourth 

section. Finally, the last section is devoted to a 

summary conclusion. 

      Throughout this article, these notations are used: 

 

• B > 0 means that matrix B is symmetric  

 and positive definite 

• 𝐵𝑇 is the transpose of  matrix B  

• The identity and zero matrix are expressed by I 

and 0 respectively 

• The notation 𝑅𝑝 stands for the p-dimensional 

Euclidean space and 𝑅𝑝×m for the set of p×m 

real matrices 

• ∑ 𝛿𝑖
𝑞
𝑖,𝑗=1 𝛿𝑗 = ∑ ∑ 𝛿𝑖𝛿𝑗

𝑞
𝑗=1

𝑞
𝑖=1   

2. Model description 

In this paper, the following class of DTSSM in 

attendance of actuator and sensor faults is considered: 

 

{
  
 

  
 
𝐸𝑧𝑘+1 =∑𝜇𝑖(𝜗𝑘)(𝐴𝑖𝑧𝑘 +𝐵𝑖𝑢𝑘 + 𝐹𝑎𝑖𝑓𝑎𝑘)

𝑞

𝑖=1

𝑦𝑘 =∑𝜇𝑖(𝜗𝑘)

𝑞

𝑖=1

(𝐶𝑖𝑧𝑘 + 𝐷𝑖𝑢𝑘 +𝐷𝑎𝑖𝑓𝑎𝑘

+𝐹𝑠𝑖𝑓𝑠𝑘)

 

 
 
 

(1) 

 

where 

 

𝑧𝑘 = [𝑍𝑘
1𝑇  𝑍𝑘

2𝑇]𝑇 𝟄 𝑅𝑛 : The states vector 

𝑍𝑘
1𝟄 𝑅𝑟 : The vector of differential variables 

𝑍𝑘
2 𝟄  𝑅𝑛−𝑟 : The vector of algebraic variables 

𝑢𝑘 𝟄  𝑅
𝑚 : The control input 

𝑦𝑘𝟄  𝑅
𝑝 : The measured output vector 

𝑓𝑎𝑘𝟄  𝑅
𝑛𝑎 : The vector of actuator faults 

 𝑓𝑠𝑘𝟄  𝑅
𝑛𝑠 : The vector of sensor faults 

 

The matrices 𝐸 𝟄  𝑅𝑛×n such that rank(E) = r < n , 
𝐴𝑖  𝟄  𝑅

𝑛×n , 𝐵𝑖 𝟄  𝑅
𝑛×m , 𝐹𝑎𝑖 𝟄  𝑅

𝑛×𝑛𝑎
 
, 𝐶𝑖 𝟄  𝑅

𝑝×n

 
, 

𝐷𝑖 𝟄  𝑅
𝑝×m

 
, 𝐷𝑎𝑖 𝟄  𝑅

𝑝×𝑛𝑎 , and 𝐹𝑠𝑖  𝟄  𝑅
𝑝×𝑛𝑠  are real 

known constant matrices : 
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𝐸 = (
𝐼 0
0 0

) ,  𝐴𝑖 = (
𝐴11𝑖 𝐴12𝑖
𝐴21𝑖 𝐴22𝑖

)  

 

(2) 

𝐵𝑖 = (
𝐵1𝑖
𝐵2𝑖
) ,  𝐹𝑎𝑖 = (

𝐹𝑎𝑖
1

𝐹𝑎𝑖
2 ) ,   𝐶𝑖 = (𝐶1𝑖  𝐶2𝑖) 

(3) 

 

      The 𝐴22𝑖  
are supposed to be invertible and the 

number of sub-models is represented by q. 

      The vector containing the premise variable is 

𝜗𝑘  and the weighting functions are 𝜇𝑖(𝜗𝑘) aiming to 

ensure the transition between the contributions of 

each sub model: 

 

{
𝐸𝑧𝑘+1 = 𝐴𝑖𝑧𝑘 + 𝐵𝑖𝑢𝑘 + 𝐹𝑎𝑖𝑓𝑎𝑘

𝑦𝑘 = 𝐶𝑖𝑧𝑘 + 𝐷𝑖𝑢𝑘 + 𝐷𝑎𝑖𝑓𝑎𝑘 + 𝐹𝑠𝑖𝑓𝑠𝑘
   

(4) 
 

 

      Such that the weighting functions check the 

following properties of the convex sum: 

 

∑𝜇𝑖(𝜗𝑘)

𝑞

𝑖=1

= 1;   0 ≤ 𝜇𝑖(𝜗𝑘) ≤ 1 ;  

 𝑖 = 1,… , 𝑞 

 
(5) 

 

      Before giving the main result, let us make the 

following assumption, see [4]: 

 

Assumption 1: Suppose that: 

 

• (𝐸, 𝐴𝑖) are regular, i.e. 𝑑𝑒𝑡(𝑝𝐸 − 𝐴𝑖) ≠ 0 

∀𝑝 ∈ 𝐶  
• All submodels  Eq. (4) are impulse 

observable and detectable 

 

      In order to investigate the fuzzy observer design 

for DTSSM presented by Eq. (1), the approach is 

based on the separation between differential and 

algebraic equations in each sub-model Eq. (4). 

      By replacing, the matrices of system Eq. (4) by 

their expressions Eq. (2) and Eq. (3), we obtain the 

following system: 

 

{
 
 

 
 𝑍𝑘+1

1 = 𝐴11𝑖𝑍𝑘
1 + 𝐴12𝑖𝑍𝑘

2 +𝐵1𝑖𝑢𝑘 + 𝐹𝑎𝑖
1 𝑓𝑎𝑘

0 = 𝐴21𝑖𝑍𝑘
1 + 𝐴22𝑖𝑍𝑘

2 + 𝐵2𝑖𝑢𝑘 + 𝐹𝑎𝑖
2 𝑓𝑎𝑘

𝑦𝑘 = 𝐶1𝑖𝑍𝑘
1 + 𝐶2𝑖𝑍𝑘

2 + 𝐷𝑖𝑢𝑘 + 𝐷𝑎𝑖𝑓𝑎𝑘
+𝐹𝑠𝑖𝑓𝑠𝑘

 

 
(6) 

 

      From the above form Eq. (6) representing the 

second equivalent form [4] of system Eq. (4), and 

taking into account the existence of 𝐴22𝑖
−1 , we obtain: 

 

𝑍𝑘
2 = 𝑀𝑖𝑍𝑘

1+𝑁𝑖𝑢𝑘 + 𝑃𝑎𝑖𝑓𝑎𝑘                   (7) 

where  

{

𝑀𝑖 = −𝐴22𝑖
−1 𝐴21𝑖

𝑁𝑖 = −𝐴22𝑖
−1 𝐵2𝑖

𝑃𝑎𝑖 = −𝐴22𝑖
−1 𝐹𝑎𝑖

2

 

 
(8) 

 

 

      Substituting the expression Eq. (7) of the 

algebraic variable 𝑍𝑘
2 in Eq. (6) gives: 

 

{

𝑍𝑘+1
1 = 𝑄𝑖𝑍𝑘

1 + 𝑅𝑖𝑢𝑘 + 𝑆𝑎𝑖𝑓𝑎𝑘
𝑍𝑘
2 = 𝑀𝑖𝑍𝑘

1+𝑁𝑖𝑢𝑘 + 𝑃𝑎𝑖𝑓𝑎𝑘    

𝑦𝑘 = 𝑇𝑖𝑍𝑘
1 + 𝑈𝑖𝑢𝑘 + 𝑉𝑎𝑖𝑓𝑎𝑘 + 𝐹𝑠𝑖𝑓𝑠𝑘

            

 
(9) 

 

where 

 

{
 
 

 
 
𝑄𝑖 = 𝐴11𝑖 + 𝐴12𝑖𝑀𝑖
𝑅𝑖 = 𝐵1𝑖 + 𝐴12𝑖𝑁𝑖
𝑆𝑎𝑖 = 𝐹𝑎𝑖

1 + 𝐴12𝑖𝑃𝑎𝑖
𝑇𝑖 = 𝐶1𝑖 + 𝐶2𝑖𝑀𝑖
𝑈𝑖 = 𝐷𝑖 + 𝐶2𝑖𝑁𝑖
𝑉𝑎𝑖 = 𝐷𝑎𝑖 + 𝐶2𝑖𝑃𝑎𝑖

 

 
 
(10) 
 

 

      Which is equivalent to the following state 

representation: 

 

{

𝑍𝑘+1
1 = 𝑄𝑖𝑍𝑘

1 + 𝑅𝑖𝑢𝑘 + 𝑆𝑖𝑓𝑘
𝑍𝑘
2 = 𝑀𝑖𝑍𝑘

1+𝑁𝑖𝑢𝑘 + 𝑃𝑖𝑓𝑘     

𝑦𝑘 = 𝑇𝑖𝑍𝑘
1 + 𝑈𝑖𝑢𝑘 + 𝑉𝑖𝑓𝑘

                

     
(11) 
 

 

where 

 

{
 
 

 
 𝑓𝑘 = (

𝑓𝑎𝑘
𝑓𝑠𝑘
)

𝑆𝑖 = (𝑆𝑎𝑖  0)

𝑃𝑖 = (𝑃𝑎𝑖  0)

𝑉𝑖 = (𝑉𝑎𝑖  𝐹𝑠𝑖)

 

 
 
(12) 

 

      Then, from Eq. (11) the weighting functions 

𝜇𝑖(𝜗𝑘) can be rewritten as: 

𝜇𝑖(𝜗𝑘) = 𝜇𝑖(𝑍𝑘
1, 𝑍𝑘

2 = 𝑀𝑖𝑍𝑘
1+𝑁𝑖𝑢𝑘 + 𝑃𝑖𝑓𝑘)

= 𝜇𝑖(휀𝑘)  
with  휀𝑘

𝑇 = [𝑍𝑘
1𝑇  𝑢𝑘

𝑇  𝑓𝑘
𝑇] 

Thus, the global fuzzy model can be represented as: 
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{
 
 
 
 

 
 
 
 
𝑍𝑘+1
1 =∑𝜇𝑖(휀𝑘)

𝑞

𝑖=1

(𝑄𝑖𝑍𝑘
1 + 𝑅𝑖𝑢𝑘 + 𝑆𝑖𝑓𝑘 

𝑍𝑘
2 =∑𝜇𝑖(휀𝑘)

𝑞

𝑖=1

(𝑀𝑖𝑍𝑘
1+𝑁𝑖𝑢𝑘 + 𝑃𝑖𝑓𝑘)  

𝑦𝑘 =∑𝜇𝑖(휀𝑘)

𝑞

𝑖=1

(𝑇𝑖𝑍𝑘
1 + 𝑈𝑖𝑢𝑘 + 𝑉𝑖𝑓𝑘)

  

 
 
 
 
(13) 

 

Assumption 2: Assuming 
 
𝑓𝑘 as a constant 

unknown fault signal per time interval i.e.: 

 

𝑓𝑘+1 = 𝑓𝑘;    𝑘 ∈ [𝑇1 𝑇2];  ∀ 𝑇1, 𝑇2  
∈ 𝑅+       

(14) 

 

       In order to simultaneously estimate state and 

fault vectors, we construct the following augmented 

state vector such that 𝑋𝑘
1𝑇 = [𝑍𝑘

1𝑇   𝑓𝑘
𝑇]  and  𝑋𝑘

2 =
𝑍𝑘
2. Then the equivalent augmented state 

representation of the system Eq. (13) can be written 

as follows: 

 

{
 
 
 
 

 
 
 
 
𝑋𝑘+1
1 =∑𝜇𝑖(𝜔𝑘)

𝑞

𝑖=1

(�̃�𝑖𝑋𝑘
1 + �̃�𝑖𝑢𝑘)       

𝑋𝑘
2 =∑𝜇𝑖(𝜔𝑘)

𝑞

𝑖=1

(�̃�𝑖𝑋𝑘
1+𝑁𝑖𝑢𝑘)    

𝑦𝑘 =∑𝜇𝑖(𝜔𝑘)

𝑞

𝑖=1

(�̃�𝑖𝑋𝑘
1 + 𝑈𝑖𝑢𝑘)   

    

 
 
 
 
(15) 

 

where 

{
 
 
 
 

 
 
 
 𝜔𝑘 = (

𝑋𝑘
1

𝑢𝑘
)        

�̃�𝑖 = (
𝑄𝑖 𝑆𝑖
0 𝐼

)

�̃�𝑖 = (
𝑅𝑖
0
)        

�̃�𝑖 = (𝑀𝑖   𝑃𝑖)  

�̃�𝑖 = (𝑇𝑖   𝑉𝑖)  

    

 
 
 
 
(16)   

3. Simultaneous state and fault estimation 

In this section, the purpose is to estimate 

simultaneously the unmeasurable states and unknown 

faults of DTSSM Eq. (1) or the equivalent system Eq. 

(15) by proposing a new observer design method. 

Thus, the proposed fuzzy observer takes the 

following form: 

    

{
 
 
 
 

 
 
 
 
�̂�𝑘+1
1 =∑𝜇𝑖(�̂�𝑘)

𝑞

𝑖=1

(�̃�𝑖�̂�𝑘
1 + �̃�𝑖𝑢𝑘

−𝑊𝑖(�̂�𝑘 − 𝑦𝑘))

�̂�𝑘
2 =∑𝜇𝑖(�̂�𝑘)

𝑞

𝑖=1

(�̃�𝑖�̂�𝑘
1+𝑁𝑖𝑢𝑘)

�̂�𝑘 =∑𝜇𝑖(�̂�𝑘)

𝑞

𝑖=1

(�̃�𝑖�̂�𝑘
1 +𝑈𝑖𝑢𝑘)

 

 
 
 
 
(17) 

 

where 

 

(�̂�𝑘
1, �̂�𝑘

2):The estimate of the augmented state vector 

  �̂�𝑘 : The estimate of the output vector 

  �̂�𝑘 : The estimate of the decision variable vector 

 

      The gains matrices 𝑊𝑖  are to be determined such 

that (�̂�𝑘
1, �̂�𝑘

2)  converges to  (𝑋𝑘
1, 𝑋𝑘

2)
 
 exponentially. 

For establishing the conditions for the asymptotic 

convergence of the observer Eq. (17), let us define the 

state estimation error: 

 

𝛾𝑘 = (
𝛾𝑘
1

𝛾𝑘
2) = (

�̂�𝑘
1 − 𝑋𝑘

1

�̂�𝑘
2 − 𝑋𝑘

2)      
 
(18) 
 

 

      From Eq. (15) and Eq. (17), the dynamics of state 

estimation error 𝛾𝑘 are: 

 

𝛾𝑘+1
1 =∑𝜇𝑖(�̂�𝑘)

𝑞

𝑖=1

(�̃�𝑖�̂�𝑘
1 + �̃�𝑖𝑢𝑘

−𝑊𝑖(�̂�𝑘 

                −𝑦𝑘)) −∑𝜇𝑖(𝜔𝑘)

𝑞

𝑖=1

(�̃�𝑖𝑋𝑘
1

+ �̃�𝑖𝑢𝑘) 

 
 

 (19) 

 

 𝛾𝑘
2 =∑𝜇𝑖(�̂�𝑘)

𝑞

𝑖=1

(�̃�𝑖�̂�𝑘
1+𝑁𝑖𝑢𝑘)       

               −∑𝝁𝒊(𝝎𝒌)

𝒒

𝒊=𝟏

(�̃�𝒊𝑿𝒌
𝟏+𝑵𝒊𝒖𝒌)       

 
 

(20) 

 

      which are equivalent to the following equations: 

 

𝛾𝑘+1
1 =∑𝜇𝑖(�̂�𝑘)

𝑞

𝑖=1

(�̃�𝑖𝛾𝑘
1 −𝑊𝑖(�̂�𝑘 − 𝑦𝑘)) 
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 −∑(𝜇𝑖(𝜔𝑘) − 𝜇𝑖(�̂�𝑘))

𝑞

𝑖=1

(�̃�𝑖𝑋𝑘
1 + �̃�𝑖𝑢𝑘)   

 
 (21) 

 

 

𝛾𝑘
2 =∑𝜇𝑖(�̂�𝑘)

𝑞

𝑖=1

�̃�𝑖𝛾𝑘
1                                    

−∑(𝜇𝑖(𝜔𝑘) − 𝜇𝑖(�̂�𝑘))

𝑞

𝑖=1

(�̃�𝑖𝑋𝑘
1+𝑁𝑖𝑢𝑘) 

 
 

(22) 
 
 

 

      From Eq. (21) and Eq. (22), to prove the 

convergence of the state estimation error 𝛾𝑘 toward 

zero, it suffices to prove that 𝛾𝑘
1 converges to zero. 

Wielding the following writing: 

 

(∑𝜇𝑖(𝜔𝑘

𝑞

𝑖=1

) −∑𝜇𝑖(�̂�𝑘)

𝑞

𝑖=1

)𝐾𝑖

= ∑ 𝜇𝑖(𝜔𝑘

𝑞

𝑖,𝑗=1

)𝜇𝑗(�̂�𝑘)∆𝐾𝑖𝑗 

 

With 𝐾𝑖 can be �̃�𝑖 , �̃�𝑖, �̃�𝑖 or 𝑁𝑖 ,  ∆𝐾𝑖𝑗 = 𝐾𝑖 − 𝐾𝑗.  

Then, the differential equation Eq. (21) becomes: 

 

𝛾𝑘+1
1 =∑𝜇𝑖(�̂�𝑘)

𝑞

𝑖=1

(�̃�𝑖𝛾𝑘
1 −𝑊𝑖(�̂�𝑘 − 𝑦𝑘))    

− ∑ 𝜇𝑖

𝑞

𝑖,𝑗=1

(𝜔𝑘)𝜇𝑗(�̂�𝑘)(∆�̃�𝑖𝑗𝑋𝑘
1 + ∆�̃�𝑖𝑗𝑢𝑘) 

 
 
(23) 

 

Since ∑ 𝜇𝑖(𝜔𝑘) = 1,
𝑞
𝑖=1  the equality Eq. (23) can 

be written as follows: 

 

𝛾𝑘+1
1 = ∑ 𝜇𝑖(𝜔𝑘)𝜇𝑗(�̂�𝑘)

𝑞

𝑖,𝑗=1

(�̃�𝑗𝛾𝑘
1 

−𝑊𝑗(�̂�𝑘 − 𝑦𝑘))  

− ∑ 𝜇𝑖

𝑞

𝑖,𝑗=1

(𝜔𝑘)𝜇𝑗(�̂�𝑘)(∆�̃�𝑖𝑗𝑋𝑘
1 + ∆�̃�𝑖𝑗𝑢𝑘) 

 
 
 
(24) 

          

In the same way, the output 𝑦𝑘  and its estimate 

can be written as follows: 

 

𝑦𝑘 = ∑ 𝜇𝑖

𝑞

𝑖,ℎ=1

(𝜔𝑘)𝜇ℎ(�̂�𝑘)((�̃�ℎ + ∆�̃�𝑖ℎ)𝑋𝑘
1 

                           +(𝑈ℎ + ∆𝑈𝑖ℎ)𝑢𝑘)      

 
(25) 

 

Such as:  ∆�̃�𝑖ℎ = �̃�𝑖 − �̃�ℎ and ∆𝑈𝑖ℎ = 𝑈𝑖 −𝑈ℎ  

      By replacing 𝑦𝑘  and �̂�𝑘with their expressions Eq. 

(25) and Eq. (26) in Eq. (24), we obtain: 

 

𝛾𝑘+1
1

= ∑ 𝜇𝑖

𝑞

𝑖,𝑗,ℎ=1

(𝜔𝑘)𝜇𝑗(�̂�𝑘)𝜇ℎ(�̂�𝑘)(𝜓𝑗ℎ𝛾𝑘
1 

                                 +𝛩𝑖𝑗ℎ𝑋𝑘
1 + 𝛯𝑖𝑗ℎ𝑢𝑘)     

 
 
(27) 
 

 
where  

 

{
 
 

 
 
𝜓𝑗ℎ = �̃�𝑗 −𝑊𝑗�̃�ℎ       

𝛩𝑖𝑗ℎ = 𝑊𝑗∆�̃�𝑖ℎ − ∆�̃�𝑖𝑗

𝛯𝑖𝑗ℎ = 𝑊𝑗∆𝑈𝑖ℎ − ∆�̃�𝑖𝑗
𝑖, 𝑗, ℎ ∈ (1,… , 𝑞)

                  

 
(28) 

 

We set  �̃�𝑘
1𝑇 = (𝛾𝑘

1𝑇  𝑋𝑘
1𝑇),

  
then we get: 

 

�̃�𝑘+1
1 = ∑ 𝜇𝑖

𝑞

𝑖,𝑗,ℎ=1

(𝜔𝑘)𝜇𝑗(�̂�𝑘)𝜇ℎ(�̂�𝑘) 

                                (𝛺𝑖𝑗ℎ�̃�𝑘
1 + 𝛬𝑖𝑗ℎ𝑢𝑘)              

 
(29) 

 

where  

 

{
 
 

 
 𝛺𝑖𝑗ℎ = (

𝜓𝑗ℎ 𝛩𝑖𝑗ℎ

0 �̃�𝑖
)

𝛬𝑖𝑗ℎ = (
𝛯𝑖𝑗ℎ

�̃�𝑖
)

             

 
(30) 

 

To present the convergence conditions of the 

proposed observer Eq. (17), we formulate the 

following theorem. 

 

Theorem: Under assumptions 1 and 2, the state 

estimation error between the DTSSM Eq. (1) and its 

observer Eq. (17) converges exponentially towards 

zero, if for a scalar 𝛽  between 0 and 1 there exist 

matrices 𝑌1 > 0, 𝑌2 > 0  
and 𝐿𝑖, 𝑖 = 1,… , 𝑞such that 

the following LMIs hold: 

 

(

 
 

휁11     휁21
𝑇       휁31

𝑇       휁41
𝑇

휁21      휁22     휁32
𝑇       휁42

𝑇

휁31     휁32     휁33      휁43
𝑇

   휁41     휁42      휁43     휁44   )

 
 
< 0        

 
 
(31) 

�̂�𝑘 = ∑ 𝜇𝑖

𝑞

𝑖,ℎ=1

(𝜔𝑘)𝜇ℎ(�̂�𝑘)(�̃�ℎ�̂�𝑘
1 +𝑈ℎ𝑢𝑘) 

 

 
(26) 
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𝑖, 𝑗, ℎ ∈ (1,… , 𝑞)  
 

Where 

 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
휁11 = �̃�𝑗

𝑇𝑌1�̃�𝑗 − �̃�𝑗
𝑇𝐿𝑗�̃�ℎ − �̃�ℎ

𝑇𝐿𝑗
𝑇�̃�𝑗 − 𝛽

2𝑌1

휁21 = ∆�̃�𝑖𝑗
𝑇𝐿𝑗�̃�ℎ + ∆�̃�𝑖ℎ

𝑇𝐿𝑗
𝑇�̃�𝑗 − ∆�̃�𝑖𝑗𝑌1�̃�𝑗     

휁22 = �̃�𝑖
𝑇𝑌2�̃�𝑖 − ∆�̃�𝑖𝑗

𝑇𝐿𝑗∆�̃�𝑖ℎ + ∆�̃�𝑖𝑗
𝑇𝑌1∆�̃�𝑖𝑗

−∆�̃�𝑖ℎ
𝑇𝐿𝑗

𝑇∆�̃�𝑖𝑗 − 𝛽
2𝑌2

휁31 = ∆𝑈𝑖ℎ
𝑇 𝐿𝑗

𝑇�̃�𝑗
𝑇 + ∆�̃�𝑖𝑗

𝑇𝐿𝑗�̃�ℎ − ∆�̃�𝑖𝑗
𝑇𝑌1�̃�𝑗   

휁32 = �̃�𝑖
𝑇𝑌2�̃�𝑖 + ∆�̃�𝑖𝑗

𝑇𝑌1∆�̃�𝑖𝑗 − ∆�̃�𝑖𝑗
𝑇𝐿𝑗∆�̃�𝑖ℎ

−∆𝑈𝑖ℎ
𝑇 𝐿𝑗

𝑇∆�̃�𝑖𝑗

휁33 = �̃�𝑖
𝑇𝑌2�̃�𝑖 + ∆�̃�𝑖𝑗

𝑇𝑌1∆�̃�𝑖𝑗 − ∆�̃�𝑖𝑗
𝑇 𝐿𝑗∆𝑈𝑖ℎ

−∆𝑈𝑖ℎ
𝑇 𝐿𝑗

𝑇∆�̃�𝑖𝑗

휁41 = 𝐿𝑗�̃�ℎ                                                           

휁42 = −𝐿𝑗∆�̃�𝑖ℎ                                                   

휁43 = −𝐿𝑗∆𝑈𝑖ℎ                                                   

휁44 = −𝑌1                                                           

 (32) 

 

As the observer gains in Eq. (17) are determined by: 

 

    𝑊𝑖 = 𝑌1
−1𝐿𝑖  (33) 

 

Proof: The theorem is proven by considering the 

following quadratic Lyapunov function: 

 

 𝑉𝑘 = �̃�𝑘
1𝑇𝑌 �̃�𝑘

1    (34) 

 

with 

 

𝑌 = (
𝑌1 0
0 𝑌2

)   >     0  
(35) 

 

      Guaranteeing the following condition ensures 

the exponential convergence of  Eq. (29): 

 

∆𝑽𝒌 = 𝑽𝒌+𝟏 − 𝑽𝒌 < (𝜷
𝟐 − 𝟏)𝑽𝒌 

with                        0 < 𝛽 < 1 

(36) 

 

      From Eq. (29) and Eq. (34), the inequality Eq. 

(36) becomes: 

 

∆𝑉𝑘 = ∑ 𝜇𝑖

𝑞

𝑖,𝑗,ℎ=1

(𝜔𝑘)𝜇𝑗(�̂�𝑘)𝜇ℎ(�̂�𝑘) 

                           (�̃�𝑘
1𝑇𝑢𝑘

𝑇)𝜆𝑖𝑗ℎ (
�̃�𝑘
1

𝑢𝑘
) < 0 

 
 
(37) 

where 

 

𝜆𝑖𝑗ℎ = (
𝛺𝑖𝑗ℎ
𝑇 𝑌𝛺𝑖𝑗ℎ − 𝛽

2𝑌 𝛺𝑖𝑗ℎ
𝑇 𝑌𝛬𝑖𝑗ℎ

𝛬𝑖𝑗ℎ
𝑇 𝑌𝛺𝑖𝑗ℎ 𝛬𝑖𝑗ℎ

𝑇 𝑌𝛬𝑖𝑗ℎ
) 

 
(38) 

 

      Substituting 𝛺𝑖𝑗ℎ , 𝛬𝑖𝑗ℎ , and 𝑌 by their 

expressions Eq. (30) and Eq. (35) in Eq. (38), we 

obtain:  

𝜆𝑖𝑗ℎ = (
𝜎11         𝜎21

𝑇          𝜎31
𝑇

𝜎21        𝜎22         𝜎32
𝑇

 𝜎31        𝜎32         𝜎33

)   

 

𝑖, 𝑗, ℎ ∈ (1,… , 𝑞) 

 

(39) 

 

where 

 

{
 
 
 

 
 
 
𝜎11 = 𝜓𝑗ℎ

𝑇 𝑌1𝜓𝑗ℎ − 𝛽
2𝑌1                     

𝜎21 = 𝛩𝑖𝑗ℎ
𝑇 𝑌1𝜓𝑗ℎ                                   

𝜎22 = 𝛩𝑖𝑗ℎ
𝑇 𝑌1𝛩𝑖𝑗ℎ + �̃�𝑖

𝑇𝑌2�̃�𝑖 − 𝛽
2𝑌2

𝜎31 = 𝛯𝑖𝑗ℎ
𝑇 𝑌1𝜓𝑗ℎ                                    

𝜎32 = 𝛯𝑖𝑗ℎ
𝑇 𝑌1𝛩𝑖𝑗ℎ + �̃�𝑖

𝑇𝑌2�̃�𝑖              

𝜎33 = 𝛯𝑖𝑗ℎ
𝑇 𝑌1𝛯𝑖𝑗ℎ + �̃�𝑖

𝑇𝑌2�̃�𝑖              

 

 

 

 

(40) 

 

      The inequality Eq. (37) is satisfied if: 

 

𝜆𝑖𝑗ℎ < 0  ;    𝑖, 𝑗, ℎ ∈ (1,… , 𝑞)   (41) 

 

      Then, the LMI conditions Eq. (31) defined in the 

theorem can be established by replacing each matrice 

by its expression, using the Schur complement and 

the following change of variables: 

 

 𝐿𝑗 = 𝑌1𝑊𝑗  (42) 

 

      Thus, from the Lyapunov stability theory, the 

error dynamic equation Eq. (29) is exponentially 

stable if the LMI conditions Eq. (31) are satisfied. 

This completes the proof of theorem. 

4. Numerical application to single-link 

flexible Joint Robot 

      To test the proposed observer Eq. (17), let us 

consider the following DTSSM of the single-link 

flexible joint robot with unmeasurable premise 

variables that is given by Euler discretisation of the 

model given in [23] in which actuator and sensor 

faults have been introduced such that the step size is 

T= 0.012s. 
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{
  
 

  
 𝐸𝑧𝑘+1 =∑𝜇𝑖(𝜗𝑘)(𝐴𝑖𝑧𝑘 +𝐵𝑢𝑘 + 𝐹𝑎𝑓𝑎𝑘)

2

𝑖=1

𝑦𝑘 =∑𝜇𝑖(𝜗𝑘)

2

𝑖=1

(𝐶𝑧𝑘 + 𝐷𝑢𝑘 + 𝐷𝑎𝑓𝑎𝑘

+𝐹𝑠𝑓𝑠𝑘)

  (43) 

 

where 

 

 𝑧𝑘 = [𝑧1𝑘 , … , 𝑧6𝑘]: The state vector  

𝑧1𝑘 : The motor rotation angle 

𝑧2𝑘 : The link rotation angle 

𝑧3𝑘 : The angular velocity of the motor 

𝑧4𝑘 : The angular velocity of the link 

𝑧5𝑘 and 𝑧6𝑘 : Their angular accelerations 

𝑢𝑘 and 𝑦𝑘: The control and the output measurements 

vectors respectively. 

𝑓𝑎𝑘 and 𝑓𝑠𝑘 : The vector of actuator and sensor faults 

respectively. 

      The control variable and the physical parameters 

are given in [23].        

 

𝐴1 =

(

  
 

1 0 0.0120 0 0 0
0 1 0 0.0120 0 0
0 0 1 0 0.0120 0
0 0 0 1 0 0.0120

−0.5838 0.5858 −0.1492 0 −0.0120 0
0.2323 −0.2323 0 0 0 −0.0120)

  
 

 

 
 

𝐴2 =

(

  
 

1 0 0.0120 0 0 0
0 1 0 0.0120 0 0
0 0 1 0 0.0120 0
0 0 0 1 0 0.0120

−0.5838 0.5858 −0.1492 0 −0.0120 0
0.2323 −0.6443 0 0 0 −0.0120)

  
 

 

 

𝐵 = (0  0  0  0  0.2595  0)𝑇 ;   𝐶 = (
1  0  0  0  0  0
0  0  1  0  0  0
0  0  0  1  0  0

) 

 
𝐹𝑎 = 𝐵 and 𝐹𝑠 = (0  1  0)

𝑇 
 

      Under assumption 2, faults 𝑓𝑎𝑘  and 𝑓𝑠𝑘  are 

defined respectively as in Fig. 1 and Fig. 2 which are 

overlapping during the intervals [20s, 30s] and [50s, 

60s]. 

 

 
Figure. 1 Actuator fault 𝑓𝑎𝑘 and its estimate 

 
Figure. 2 Sensor fault 𝑓𝑠𝑘 and its estimate 

 

Therefore, to apply the proposed observer design 

Eq. (17) for the singular model Eq. (43), as stated in 

the theorem, it suffices to rewrite the model Eq. (43) 

into its equivalent form Eq. (15) as previously 

mentioned. Thus, the resolution of the LMIs defined 

in the theorem with 𝛽 = 0.5  leads the following 

numerical values of the observer gains:  

 



Received:  April 16, 2021.     Revised: June 2, 2021.                                                                                                        521 

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021           DOI: 10.22266/ijies2021.0831.45 

 

𝑊1 = 10
3

(

 
 
 

0.0015
−0.8102
0.0748
0.9830
1.9670
−0.0491

      

0
0.0018
0.0018
−0.0009
−0.0001

0

      

0
−0.0005

0
0.0013
0.0011
0 )

 
 
 

 

𝑊2 =

(

  
 

1.5537
207.0810
94.5085
−27.7870
−255.3948
−49.4911

      

0.0120
1.4988
1.8448
−1.1346
0.4606
−0.0008

      

0
−0.4512
0.0010
1.2749
1.0554
0.0005 )

  
 

 

      The following simulation results show that the 

existence of faults leads to an unwanted and 

remarkable deviation in the system states at the time 

of the appearance of faults. While, according to the 

results, we can see, from Fig. 3 to Fig. 8 that the 

proposed observer designed by using these numerical 

values of the gain 𝑊1  and 𝑊2allows the estimated 

states to catch up with real states as quickly as 

possible, to recover the desired performance, and to 

ensure the stability despite the presence of faults.  

 
Figure. 3 Motor rotation angle 𝑧1𝑘 and its estimate 

  

 

 
Figure. 4 Link rotation angle 𝑧2𝑘  and its estimate 

 

 
Figure. 5 Angular velocity of the motor 𝑧3𝑘  and its 

estimate 

 

 
Figure. 6 Angular velocity of the link 𝑧4𝑘  and its 

estimate 

 

 
Figure. 7 Angular acceleration of the motor 𝑧5𝑘  and its 

estimate 
 

In [15, 21], the simultaneous estimation of states 

and faults based observer was carried out on the class 

of T-S models whose premise variables are measured. 

It is obvious that this class, with premise 

 



Received:  April 16, 2021.     Revised: June 2, 2021.                                                                                                        522 

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021           DOI: 10.22266/ijies2021.0831.45 

 

 
Figure. 8 Angular acceleration of the link 𝑧6𝑘  and its 

estimate 

 

variables relating to the measured variables such as 

the input or/and the output of the system, is easy to 

study since the measurements are available. It also 

serves to benefit from the methods already developed 

for linear systems, and it will allow a factorization of 

the weighting functions 𝜇𝑖(𝜗𝑘) when studying the 

convergence of the estimation error due to the use of 

the same premise variables on the part of the observer 

and the model. While in practice, the output 

considered as a premise variable may be noisy. 

Therefore, this will have an influence on the accuracy 

of the model representing the system, as well as the 

results obtained in this case will not be used for the 

determination of observer gains in our proposed class. 

Hence the idea of studying the class of T-S models 

whose premise variables are unmeasured, 

representing a large class of NL systems while 

guaranteeing an exact representation of the NL 

behaviour of the studied system. Furthermore, the 

approach presented in [21] is valid in the case of 

systems guaranteeing the condition of rank 

mentioned in the paper, while in [22], the resolution 

of LMIs is related to the value of the Lipschitz 

constant which must not be larger than an admissible 

value in order to apply the proposed design method. 

This motivated us to propose our new approach 

unrelated to the Lipschitz constant and the rank 

condition. 

5. Conclusion 

      To conclude, a novel observer design method, 

allowing the contribution to the simultaneous 

estimation of states and faults, for a class of DTSSM 

with unmeasurable premise variables is exposed. The 

proposed result is based on the separation of 

differential and algebraic equations in the considered 

model. Thanks to this approach, it turned out that to 

show the exponential convergence of the state 

estimation error, it will suffice to study the 

convergence of the differential part using Lyapunov's 

theory then conclude the convergence of the 

algebraic part. The stability conditions are given in 

terms of LMIs. The usefulness of the proposed 

observer design for simultaneous estimation of 

unknown states and faults is well represented by 

numerical simulations where the proposed observer 

allows the estimated variables to quickly catch up 

with the real variables in about 0.3s.   
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