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Abstract: This paper aims to present a new approach in the design of observers for a Class of Discrete-time Takagi-
Sugeno Singular Models (DTTSM) in the case of unmeasurable premise variables, allowing to estimate simultaneously
the states of the system, and the faults in the actuators and sensors. The approach used is based on augmenting the state
vector. The exponential convergence is studied using the Lyapunov theory. The stability conditions are presented as
Linear Matrix Inequalities (LMIs). Lastly, a numerical application is used to evaluate the efficiency of the proposed
dynamic system. It shows that the estimated variables catch up rapidly (around 0.3s), and accurately the real variables
during the application time of the actuator and sensor faults.
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1. Introduction

The advent of microelectronics, control systems
and computer technologies has played a major role in
the development of industrial processes. Despite the
sophistication, evolution and interconnection of
equipment, various types of faults are capable of
occurring in the process, its control or measuring
devices. In order to ensure the continuity of
production, and to meet the requirements of
reliability, safety, availability, and security, the
integration of a fault monitoring and diagnostic
system has become essential. This makes information
the most important raw material, to know at any time
the state of the system and the appearance of
abnormal phenomena or even unexpected changes in
one or more of its characteristics. Consequently,
obtaining this information is based on the presence of
a physical sensor or an observer making it possible to
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collect this information. In this context, the design of
an observer has drawn the attention of the scientific
community and industrialists in the estimation of
states, the control of engineering systems, the
detection and diagnosis of faults, as well as fault-
tolerant control [1, 2].

Generally, the study of systems in many practical
fields requires going through modeling which
represents a crucial phase allowing the representation
of the dynamic behavior of the system by a
mathematical model. The latter one can be in explicit
form described by Ordinary Differential Equations
(ODE), or in singular form representing a large class
of systems governed by Differential Algebraic
Equations (DAE) showing the dynamics and
constraints between their variables. Nonetheless, the
analysis of nonlinear (NL) singular systems relies on
more complex mathematical techniques and tools.
Therefore, to facilitate the mathematical exploitation,
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we use the Takagi-Sugeno (T-S) formalism
permitting to have a convex polytopic representation
based on the extension of the linear results [3, 4]. By
using this practical tool, the observer synthesis
becomes less complex for the studied system [5].

Many model-based methods [6] have been
developed for detection and estimation of states and
faults like parity space [7], parametric identification
[8], and state estimation [9]. Among the most
widespread are those based on observers that have
been used with several system classes in the singular
or explicit case and in continuous or discrete-time
such as: linear parameter varying systems [10],
piecewise linear systems [11], linear systems [12],
uncertain systems [13], Lipschitz systems [14], and
T-S models [2, 15-22].

A wide variety of research has been carried out
for the simultaneous estimation of states and faults,
at the level of the actuators or the sensors, for the case
of T-S fuzzy systems. As an example in the
continuous-time, the authors in [16] presented a
generalized approach to synthesis a PD observer-
based fault estimator for a class of NL systems
described by the T-S singular form subject to
unknown fault with measurable premise variables. In
[2] a new fuzzy functional observer for T-S explicit
systems has been considered to estimate the faults
affecting the dynamic states of the system. A novel
methodology is proposed in [17] to design a robust
observer for T-S singular systems considering
unmeasurable premise variables and its execution on
sensor faults only by considering the robust Hoo
approach. Similarly, in the discrete-time, the authors
in [18] designed a robust fault estimation observer for
singular systems to estimate actuator faults based on
the state augmentation approach. The study in [19]
investigated an interval T-S unknown input observer
allowing the interval estimation of actuator faults and
states for a class of T-S explicit systems.

The aforementioned research papers generally lay
focus on the study of the asymptotic convergence of
the state and fault estimation errors for a class of T-S
systems subject to only one fault at actuator or sensor.
The main contribution of our research is to
simultaneously estimate the states as well as the faults
at the actuator and the sensor for a class of DTSSM.
In order to show the convergence of the algebraic part,
it proved sufficient to show it just from the
convergence of the dynamic part, hence the
usefulness of the new approach suggested in this
paper. The stability conditions are formulated as
linear matrix inequalities. The effectiveness of the
proposed approach is demonstrated with the good
results obtained during the simulation for a single-
link flexible joint robot, which show from their
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curves in each figure that the estimated variables by
the proposed observer were able to catch up with the
variations of real variables.

The organization of this paper will be as follows.
In the second section, the class of systems to be
studied is described. The third section presents the
main purpose of this paper for the simultaneous
estimation of states and faults, the stability analysis,
and the convergence conditions are demonstrated.
Then, the effectiveness of the proposed observer is
illustrated by an application example in the fourth
section. Finally, the last section is devoted to a
summary conclusion.

Throughout this article, these notations are used:

¢ B >0 means that matrix B is symmetric
and positive definite
e BT is the transpose of matrix B

e The identity and zero matrix are expressed by |
and O respectively

e The notation RP stands for the p-dimensional
Euclidean space and RP*™ for the set of pxm
real matrices

° Lj=16i 6 = Z?=1 Z?:l 8;0;

ij=1
2. Model description
In this paper, the following class of DTSSM in

attendance of actuator and sensor faults is considered:

[ q
Ezyiq = Z i (9y) (Aizy + Biuy + Foifar)
i=1
1 €Y)
Yk = Z 1 (9i) (Cizy + Dijuy + Dg;fax

=1
+Fsifsk)

where

7, = [ZiT ZET]T € R™ : The states vector
Zte R" : The vector of differential variables
Z% € R™ " : The vector of algebraic variables
ux € R™ : The control input

V€ RP : The measured output vector

fax€ R™e : The vector of actuator faults

fsk€ R™s : The vector of sensor faults

The matrices E € R™ " such that rank(E) =r < n,
Ai € Ran, Bi € Rnxm, Fai € R "a , Ci € RPXn ,
D; € RP*™  D,; € RP*™a and F;; € RP*™s are real
known constant matrices :
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_(I 0 _ (A11i A1zi> (2)
b= (O 0)' A= (A21i Az
By; Fy; 3)
B; = (lei): Fgi = <F2> Ci = (Cy; Cyp)

The A,,; are supposed to be invertible and the
number of sub-models is represented by g.

The vector containing the premise variable is
Iy and the weighting functions are p; (9, ) aiming to
ensure the transition between the contributions of
each sub model:

{ Ezyy1 = Az + Biug + Fyifax 4)
Yk = Cizi + Diuge + Dgifar + Fsifsic

Such that the weighting functions check the
following properties of the convex sum:

q
Zﬂi(ﬁk) =1 0< (V) =1; (5)
i=1

i=1,..,q

Before giving the main result, let us make the
following assumption, see [4]:

Assumption 1: Suppose that:

o (E,A)) areregular, i.e. det(pE —A;) # 0
VpeC

e All submodels Eq. (4) are impulse
observable and detectable

In order to investigate the fuzzy observer design
for DTSSM presented by Eg. (1), the approach is
based on the separation between differential and
algebraic equations in each sub-model Eq. (4).

By replacing, the matrices of system Eq. (4) by
their expressions Eq. (2) and Eq. (3), we obtain the
following system:

(Zigr1 = Ar1iZie + ArziZ + Brjug + Faifar
J 0 = Az1iZk + Ag2iZit + Bouy + Fifar (©)
l Vi = CriZi + CoiZig + Dy + Dyifa
+Fsifsk
From the above form Eq. (6) representing the
second equivalent form [4] of system Eq. (4), and
taking into account the existence of A53;, we obtain:

ZI% = MiZI%'i'Niuk + Pyifak )
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where
M; = —A35;Az1
N; = —A33By; (®
Pai = —Ag5iF;

Substituting the expression Eq. (7) of the
algebraic variable Z?2 in Eq. (6) gives:

Ziyr = QiZ + Ryug + Saifar
Z¢ = MiZi+ Ny + Poifa ©)
Yk = TiZI% + Uiy + Vaifak + Fsifsk

where
Qi = Aq1; + A12iM;
R; = By; + A1z;N;
Sai = Fai + A12iPa; (10)
Ti = Cq; + C3iM;
lk Ui = D; + C3;N;
Vai = Dgi + C2iPg;
Which is equivalent to the following state
representation:
Zier1 = QiZi + Ryug + Sifyc
7% = MZ}+Nay, + Pify (1)
Yk = TiZjg + Uy + Vific
where
_ (fak)
; fsk
S; = (Sqi 0) (12)
LPi = (Pai 0)
Vi=Va Fs)

Then, from Eq. (11) the weighting functions
u; (9;) can be rewritten as:
1) = wi(Zi, Z§ = MiZg+Nw + Pify)
= pi(eg)
with &g = [Z;" ug fi(]
Thus, the global fuzzy model can be represented as:
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)
Zjyr = Z pi(er) (QiZg + Ryuy + Sifi

i=1

V28 = ) mile) MZE+Naw + Pfi) - (13)
i=1
q

Vi = ZM (ex) (TiZg + Uguy + Vify)
\ i=1

Assumption 2: Assuming f;, as a constant
unknown fault signal per time interval i.e.:

frer1 = fio k€[TL Tol;
€R*

VT,T, (14)

In order to simultaneously estimate state and
fault vectors, we construct the following augmented
state vector such that XiT = [ZiT f£I] and X2 =
ZZ. Then the equivalent augmented state
representation of the system Eq. (13) can be written
as follows:

( q
Xiey1 = Z.Ui(wk) (Qi Xy + Ryuy)
=1

a
{ Xi= Z pi(wy) (M X +Nyug) (15)

i=1

Yk = Z ui(wr) (TiX + Uyu)

i=1
where
=<uk>

~ Q; S;
Q — i

- (;? 2 (16)
ki :(0)
M; = (M; P)
T, =(T; V)

3. Simultaneous state and fault estimation

In this section, the purpose is to estimate
simultaneously the unmeasurable states and unknown
faults of DTSSM Eq. (1) or the equivalent system Eq.
(15) by proposing a new observer design method.

Thus, the proposed fuzzy observer takes the
following form:
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Rhar = ) (@) (Q.FE + R
i=1
—Wi(Fk — yi))
a (17)

Xi = Z 1 () (M; Xj+Nyuyg)
=1
q

P = ) w@0) TR+ U
i=1

where

(X#, X?):The estimate of the augmented state vector
¥k : The estimate of the output vector
@y, : The estimate of the decision variable vector

The gains matrices W; are to be determined such
that (X, X?) convergesto (Xi, X?) exponentially.

For establishing the conditions for the asymptotic
convergence of the observer Eq. (17), let us define the
state estimation error:

(v _ (RE—xi
m\vz) T \x2-x2 (18)

From Eq. (15) and Eq. (17), the dynamics of state
estimation error y;, are:

Yis1 = Z 1 (@) (QiXi + Riuy,
i=1

(19)
- Wi(f’k
i) - z i) @iX
+ R uk)
q
2 ~ 7 v1
yE = Zl wi (@) (T R4+Niwy) o0

q
- Z pi(wy) (M Xj+N )
i=1
which are equivalent to the following equations:

q
Vb= ) 1@ (@v = Wi = 3
i=1
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q
=) @) — @) (X + Raw) 1)
i=1

q
VR = w@o Mk
= (22)

= (@) — k(@) (FXi+Niaw)
i=1

From Eg. (21) and Eg. (22), to prove the
convergence of the state estimation error y,, toward
zero, it suffices to prove that y; converges to zero.
Wielding the following writing:

a a
Z pi(wy) — Z wi(@r) | K;
=1 =1

a

= ) (@ @0K;
i,j=1
Wlth Ki can be Qi' ﬁi' Mi or Ni! AKU = Ki - I(]
Then, the differential equation Eq. (21) becomes:

q
Vher = ) 1@ @k = WG = 310)
= (23)

q
- Z 1i (i) (@) (AQ;j Xk + AR;juy)
=1

Since Z‘Z:l u;(wy) = 1, the equality Eq. (23) can
be written as follows:

q
VI%+1 = z Mi(wk)ﬂj(@k) (@jVI%
i,j=1
. =Wk — yi)) (24)
= D i @@ BQXE + BRyu)
i,j=1

In the same way, the output y, and its estimate
can be written as follows:

q
V= ) @@ (T + MT)XE (25
o +(Un + AUip)uy)
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q
B = Z ti (@i @) (Th&E + Upy)  (26)
i,h=1

Such as: ATy, = T; — T, and AU;, = U; — U,

By replacing y, and ¥, with their expressions Eq.
(25) and Eqg. (26) in Eq. (24), we obtain:

VI%+1
q
= ) @R @I @)Wt @7)
i1
+0;n Xic + Eijnii)
where
(ll’jh = Q; —WT,
{ Oijn = WjAT;, — AQy; (28)
Eijn = WjAUip — AR;;
i,jyh €(,..,q)
We set 727 = (yiT XiT), then we get:
q
Tha= ) m@Im@Om@) @9
ij=1
(Qijn¥i + Aijniix)
where
fﬂ _(¥in Bijn
! =9 g (30)

_ (Eijn
[ =3

To present the convergence conditions of the
proposed observer Eqg. (17), we formulate the
following theorem.

Theorem: Under assumptions 1 and 2, the state
estimation error between the DTSSM Eg. (1) and its
observer Eq. (17) converges exponentially towards
zero, if for a scalar 8 between 0 and 1 there exist
matrices ¥; > 0,Y, > 0 and L;,i = 1, ..., qsuch that
the following LMIs hold:

(1 1 {gl {g 1 {41-' 1
{2 1 (2 2 (?’{2 (Z 2

(3 1 (3 2 (3 3 (Z 3
(4- 1 (4- 2 (4- 3 {4—4—

<0 (31)
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i,j,h €(,..,q)

Where

(01 =0/Y1Q; — Q[ L;T, — T L] Q; — B*Y;
{21 = AQLiTy + AT LT Q; — AQ;Y10Q;
{22 = Q1 Y,Q; — AQ[;LiATy, + AQ[;Y1AQ;;

—AT, L] AQ;j — B2Y,
{31 = AU L] Q] + AR L; Ty, — AR[;Y, Q;
{32 = R Y,Q; + AR}, AQ;; — AR LATy,

\ —AUf, LT AQy; (32)
{33 = R Y,R; + AR[;Y,AR;; — AR];L; AU,
—AUJL, L AR;;
(a1 = LjTh
{42 = —LjATy,
(a3 = _LjAUih
\{44 = —Y;

As the observer gains in Eq. (17) are determined by:

W =YL, (33)

Proof: The theorem is proven by considering the
following quadratic Lyapunov function:

Vi =75 Y 7k (34)
with
("1 O (35)
r=(g Yz) > 0

Guaranteeing the following condition ensures
the exponential convergence of Eq. (29):

AV = Vigr — Vi < (B2 = 1)V, (36)
with 0<p<1

From Eq. (29) and Eq. (34), the inequality Eq.
(36) becomes:

q
= D" @@ (@)
Ljh=1 (37)

(P uk)Aijn (Z’i) <0
where
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(n{jhmﬁh — B%Y niTthAijh>
. .h —_ 38
L ALY ATpvag,)  G8)

Substituting £2; , A;j, , and Y by their
expressions Eqg. (30) and Eg. (35) in Eq. (38), we
obtain:

T T
011 021 031 39
Lijn =\ & o oT (39)
21 22 32
031 032 033

where

011 = 1/’jThY1¢jh - B*Y;

021 = 00 Y1

022 = 0linY10ijn + Q] Y,0; — B*Y, (40)
031 = Ep i

032 = Elin Y10y, + RV, 0

_ =T o pT D
033 = EjjpY1Zijn + R Y2R;

The inequality Eq. (37) is satisfied if:
}lijh<0 ; i,j,hE(l,...,Q) (41)

Then, the LMI conditions Eq. (31) defined in the
theorem can be established by replacing each matrice
by its expression, using the Schur complement and
the following change of variables:

Lj =W, (42)

Thus, from the Lyapunov stability theory, the
error dynamic equation Eq. (29) is exponentially
stable if the LMI conditions Eq. (31) are satisfied.
This completes the proof of theorem.

4. Numerical application to
flexible Joint Robot

To test the proposed observer Eq. (17), let us
consider the following DTSSM of the single-link
flexible joint robot with unmeasurable premise
variables that is given by Euler discretisation of the
model given in [23] in which actuator and sensor
faults have been introduced such that the step size is
T=10.012s.

single-link
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( 2 74 - The motor rotation angle
Ezpiq = Zyi(ﬁk)(Aizk + Buy + F;fu1) Z,1 - The link rotation angle
i=1 731 - The angular velocity of the motor
{ 2 (43) Z4y - The angular velocity of the link
Vi = z wi () (Czy + Duy + Dy fur Zsy, and zg, : Their angular accelerations
i=1 u and yy: The control and the output measurements
\ +Ffsr) vectors respectively.
far @nd fg : The vector of actuator and sensor faults
where respectively.
The control variable and the physical parameters
Zx = [Z1x » -, Zey ] The state vector are given in [23].
1 0 0.0120 0 0 0
/ 0 1 0 0.0120 0 0 \
4 = 0 0 1 0 0.0120 0 I
! 0 0 0 1 0 0.0120
k—0.5838 0.5858 —0.1492 0 —0.0120 0 )
0.2323 —0.2323 0 0 0 —0.0120

1 0 0.0120 0 0 0
/ 0 1 0 0.0120 0 0 \
A =1 0 0 1 0 0.0120 0 I
2 0 0 0 1 0 0.0120
—0.5838 0.5858 —0.1492 0 —0.0120 0
0.2323 —0.6443 0 0 0 —0.0120
100000
B=00000.25507"; C=(001000 103
0 O 0 1 0 O _fsk:real
10 —_— fSk : Estimated
F,=BandF, = (0 1 0)T

Under assumption 2, faults f,, and f, are &l
defined respectively as in Fig. 1 and Fig. 2 which are i
overlapping during the intervals [20s, 30s] and [50s, 4r
60s]. |

ol I
0.08
*fak:real 5
0.06 [ TR fak - Estimated 1 1] 10 20 30 4[[) 50 60 70 8O
0.04 1 1 Figure. 2 Sensor fault f;; and its estimate

o2l | [ § l 1 Therefore, to apply the proposed observer design
Eq. (17) for the singular model Eq. (43), as stated in

the theorem, it suffices to rewrite the model Eq. (43)

g 1 into its equivalent form Eq. (15) as previously

mentioned. Thus, the resolution of the LMIs defined

in the theorem with § = 0.5 leads the following

006 : : : . : : numerical values of the observer gains:

0 10 20 30 40 50 60 70 80
t

Figure. 1 Actuator fault f,;, and its estimate

0.04
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0.0015 0 0
—0.8102 0.0018 —0.0005
_1n3] 0.0748 0.0018 0
Wi =10 0.9830 —0.0009  0.0013
\1.9670 —0.0001 0.0011/
—0.0491 0 0
1.5537 0.0120 0
/207.0810 1.4988 —0.4512\
W2=I 94.5085 1.8448 0.0010 |
—27.7870 —1.1346 1.2749
—255.3948  0.4606 1.0554
—49.4911 —0.0008  0.0005

The following simulation results show that the
existence of faults leads to an unwanted and
remarkable deviation in the system states at the time
of the appearance of faults. While, according to the
results, we can see, from Fig. 3 to Fig. 8 that the
proposed observer designed by using these numerical
values of the gain W, and W,allows the estimated
states to catch up with real states as quickly as
possible, to recover the desired performance, and to
ensure the stability despite the presence of faults.

0.2

:real

Z1k

0.15 « i
E Estimated

0.1

0.05 filf

o

-
™

=]

-0.05

04

-0.15 : ;
0 10 20 30 40 50

t
Figure. 3 Motor rotation angle z,, and its estimate

60 70 80

0.4

:real

Zak

03 “ :
Zy" Estimated

0.2

0.1

|
i

Zak

!i"uilfuw,J\WV 4r—}‘“__ i o I |

0.1
I

0.2

03 L L
1] 10 20 30 40 50

t
Figure. 4 Link rotation angle z,, and its estimate

60 70 80
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Zak
Eo Estimated

:real

0.5 i

0 ‘r"ULrU!'r"""“MW

0.5

I L
40 50
t

L L L
o 10 20 30

60 70 80

Figure. 5 Angular velocity of the motor z5;, and its

Z5k

estimate

Zak
Zyt Estimated

:real

1m‘
0.5 l

i

1] 10 20 30 40 50

t

60 70 80

Figure. 6 Angular velocity of the link z,;, and its

estimate

20

“8k
zg Estimated

:real

10r

=]

|
-

y

o 10 20 30 40 50

t

60 70 80

Figure. 7 Angular acceleration of the motor zg;, and its

estimate

In [15, 21], the simultaneous estimation of states
and faults based observer was carried out on the class
of T-S models whose premise variables are measured.

is obvious that this class,

with premise
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20

) ‘“ll"“’“?' —}
5 w

-15F

: real

26k
Zgt Estimated

Zgk
(=]

-20 : - - : ; ; ;
o 10 20 30 40 50 60 70 80
t
Figure. 8 Angular acceleration of the link zg;, and its

estimate

variables relating to the measured variables such as
the input or/and the output of the system, is easy to
study since the measurements are available. It also
serves to benefit from the methods already developed
for linear systems, and it will allow a factorization of
the weighting functions p;(9;) when studying the
convergence of the estimation error due to the use of
the same premise variables on the part of the observer
and the model. While in practice, the output
considered as a premise variable may be noisy.
Therefore, this will have an influence on the accuracy
of the model representing the system, as well as the
results obtained in this case will not be used for the

determination of observer gains in our proposed class.

Hence the idea of studying the class of T-S models
whose premise variables are unmeasured,
representing a large class of NL systems while
guaranteeing an exact representation of the NL
behaviour of the studied system. Furthermore, the
approach presented in [21] is valid in the case of
systems guaranteeing the condition of rank
mentioned in the paper, while in [22], the resolution
of LMIs is related to the value of the Lipschitz
constant which must not be larger than an admissible
value in order to apply the proposed design method.
This motivated us to propose our new approach
unrelated to the Lipschitz constant and the rank
condition.

5. Conclusion

To conclude, a novel observer design method,
allowing the contribution to the simultaneous
estimation of states and faults, for a class of DTSSM
with unmeasurable premise variables is exposed. The
proposed result is based on the separation of
differential and algebraic equations in the considered
model. Thanks to this approach, it turned out that to
show the exponential convergence of the state
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estimation error, it will suffice to study the
convergence of the differential part using Lyapunov's
theory then conclude the convergence of the
algebraic part. The stability conditions are given in
terms of LMIs. The usefulness of the proposed
observer design for simultaneous estimation of
unknown states and faults is well represented by
numerical simulations where the proposed observer
allows the estimated variables to quickly catch up
with the real variables in about 0.3s.
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